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1 Introduction

The research of soliton equations is one of the most important subjects in the field of

nonlinear science. However, due to their high nonlinearity, it is very difficult to solve them.

Up to now, several systematic methods has been developed to obtain explicit solutions

of soliton equations, for instance, the inverse scattering transformation (see [1]–[2]), the

Hirota bilinear derivative transformation (see [3]–[4]), the dressing method (see [5]), the

Bäcklund and the Darboux transformation (see [6]–[8]), the algebra-geometric method (see

[9]–[10]), the nonlinearization approach of eigenvalue problems or Lax pairs (see [11]–[12]),

etc. Among the various methods, the Hirota bilinear derivative transformation is a powerful

tool to generate exact solutions of the nonlinear evolution equations. And this method has

the advantage of being applicable directly upon the nonlinear evolution equations. The key

of the method is to transform the equation under consideration into the bilinear derivative
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equation through the dependent variable transformation. Then N -soliton solutions with

exponential function form can be obtained with the help of the perturbation expansion and

truncation technique.

As is well known, classical Boussinesq-Burgers (CBB) spectral problem is

ϕx =

(
λ− u βux + v

−1 −λ+ u

)
ϕ, ϕ =

(
ϕ1

ϕ2

)
, (1.1)

where λ is a spectral parameter, β is a constant, u and v are two potentials. The spectral

problem was initially introduced by Date[13]. Geng and Wu[14] constructed the finite-band

solutions of evolution equations associated with the spectral problem (1.1), and the CBB

equation is given as follows:

ut =
1

2
(β − 1)uxx + 2uux +

1

2
vx, (1.2a)

vt = β
(
1− 1

2
β
)
uxxx +

1

2
(1− β)vxx + 2(uv)x. (1.2b)

Xu[15] discussed its Darboux transformation and give some explicit solutions. For the

special case of the spectral problem (1.1) with β = 0, this has been studied by Li[16].

In the present paper, we would consider the special case of (1.2) (β = 1), which is

Boussinesq-Burgers equation as follows.

ut = 2uux +
1

2
vx, (1.3a)

vt =
1

2
uxxx + 2(uv)x. (1.3b)

Based on Hirota bilinear derivative transformation, we obtain three-soliton solutions, five-

soliton solutions and 2N + 1-soliton solutions of (1.3). To our knowledge, these solutions

are new ones.

2 Bilinear Equation and 2N + 1-soliton Solutions

In this section, firstly, we introduce the logarithm transformations of dependent variables u

and v as

u =
1

2

(
ln

g

f

)
x
, v =

1

2
(ln fg)xx. (2.1)

Substituting transformations (2.1) into (1.3) and integrating it once with respect to x, (1.1)

can be transformed into the following bilinear equations:

(2Dt −D2
x)g · f = 0, (2.2a)

(2DtDx −D3
x)g · f = 0, (2.2b)

where D is the well-known Hirota’s bilinear operator that defined as

Dm
x Dn

t f(x, t)g(x, t) = (∂x − ∂′
x)

m(∂t − ∂′
t)

nf(x, t)g(x′, t′)|x′=x, t′=t. (2.3)

In what follows, we would construct multi-soliton solutions of (1.3) based on the perturbation

method. We expand f , g as the power series in a small parameter ε that are different from

the usual.

f = 1 + f (1)ε+ f (2)ε2 + · · ·+ f (j)εj + · · · , (2.4a)
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g = 1 + g(1)ε+ g(2)ε2 + · · ·+ g(j)εj + · · · (2.4b)

Substituting (2.4) into (2.2) and collecting terms of each order of ε yields the following

recursion relations

− 2f
(1)
t − f (1)

xx + 2g
(1)
t − g(1)xx = 0, (2.5a)

− 2f
(2)
t − f (2)

xx + 2g
(2)
t − g(2)xx = (D2

x − 2Dt)g
(1) · f (1), (2.5b)

− 2f
(3)
t − f (3)

xx + 2g
(3)
t − g(3)xx = (D2

x − 2Dt)(g
(1) · f (2) + g(2) · f (1)), (2.5c)

− 2f
(4)
t − f (4)

xx + 2g
(4)
t − g(4)xx = (D2

x − 2Dt)(g
(1) · f (3) + g(2) · f (2) + g(3) · f (1)), (2.5d)

· · · · · ·

2f
(1)
tx + f (1)

xxx + 2g
(1)
tx − g(1)xxx = 0, (2.6a)

2f
(2)
tx + f (2)

xxx + 2g
(2)
tx − g(2)xxx = (D3

x − 2DtDx)g
(1) · f (1), (2.6b)

2f
(3)
tx + f (3)

xxx + 2g
(3)
tx − g(3)xxx = (D3

x − 2DtDx)(g
(1) · f (2) + g(2) · f (1)), (2.6c)

2f
(4)
tx + f (4)

xxx + 2g
(4)
tx − g(4)xxx = (D3

x − 2DtDx)(g
(1) · f (3) + g(2) · f (2) + g(3) · f (1)), (2.6d)

· · · · · ·
(1) Three-soliton solutions. Integrating (2.6a) once with respect to x and selecting the

constant of integration to be zero, we have

2f
(1)
t + f (1)

xx + 2g
(1)
t − g(1)xx = 0, (2.7)

(2.5a) plus (2.7), we get

2g
(1)
t − g(1)xx = 0. (2.8)

Then we can select a special solution

g(1) = eξ1 , ξ1 = k1x+ ω1t+ ξ
(0)
1 , 2ω1 − k21 = 0. (2.9)

Similarly, (2.7) minus (2.5a), we arrive at

f (1) = eη1 , η1 = l1x+ σ1t+ η
(0)
1 , 2σ1 + l21 = 0. (2.10)

Substituting g(1) = eξ1 , f (1) = eη1 into (2.5b) and (2.6b), after a direct calculation, we have

g(2) =
k21

(k1 + l1)2
eξ1+η1 , f (2) =

l21
(k1 + l1)2

eξ1+η1 . (2.11)

Putting (2.9), (2.10), (2.11) into (2.5c) and (2.6c), they return to (2.5a) and (2.6a) by using

superscript (1.3) instead of (1.1), then we can choose

g(3) = f (3) = 0.

Take

g(4) = f (4) = g(5) = f (5) = · · · = 0.

Select ε = 1. Thus, f and g are truncated as

g1 = 1 + eξ1 + k21e
ξ1+η1+θ13 , (2.12a)

f1 = 1 + eη1 + l21e
ξ1+η1+θ13 , (2.12b)

eθ13 = (k1 + l1)
−2. With the help of (2.1), we get a three-soliton solutions of (1.3)

u =
1

2

(
ln

1 + eξ1 + k21e
ξ1+η1+θ13

1 + eη1 + l21e
ξ1+η1+θ13

)
x

, (2.13a)
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v =
1

2
[ln(1 + eξ1 + k21e

ξ1+η1+θ13)(1 + eη1 + l21e
ξ1+η1+θ13)]xx. (2.13b)

The corresponding graphs are shown in Fig. 2.1.

Fig. 2.1 The shape of the three-soliton solutions of (2.13) with k1 = 2, l1 = 1.5,

ξ
(0)
1 = 2, η

(0)
1 = 4

(2) Five-soliton solutions. Obviously,

g(1) = eξ1 + eξ2 , f (1) = eη1 + eη2 , (2.14)

with

ξi = kix+ ωit+ ξ
(0)
i , 2ωi − k2i = 0, i = 1, 2, (2.15)

ηi = lix+ σit+ η
(0)
i , 2σi + l2i = 0, i = 1, 2 (2.16)

are still solutions of (2.5a) and (2.6a).

Substituting (2.14) into (2.5b) and (2.6b), and integrating (2.6b) once with respect to x

and selecting the constant of integration to be zero, we can get

2f
(2)
t + f (2)

xx − 2g
(2)
t + g(2)xx = 2

∑
i,j=1,2

kilje
ξi+ηj , (2.17a)

2f
(2)
t + f (2)

xx + 2g
(2)
t − g(2)xx = −2

∑
i,j=1,2

kilj(ki − lj)

ki + lj
eξi+ηj . (2.17b)

Letting (2.17b) minus or plus (2.17a), we can obtain

2g
(2)
t − g(2)xx = −2

∑
i,j=1,2

k2i lj
ki + lj

eξi+ηj , (2.18a)
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2f
(2)
t + f (2)

xx = 2
∑

i,j=1,2

kil
2
j

ki + lj
eξi+ηj . (2.18b)

Then the linear equations (2.18) have a special solution

g(2) =
∑

i,j=1,2

k2i
(ki + lj)2

eξi+ηj

= k21e
ξ1+η1+θ13 + k21e

ξ1+η2+θ14 + k22e
ξ2+η1+θ23 + k22e

ξ2+η2+θ24 . (2.19a)

f (2) =
∑

i,j=1,2

l2j
(ki + lj)2

eξi+ηj

= l21e
ξ1+η1+θ13 + l21e

ξ2+η1+θ23 + l22e
ξ1+η2+θ14 + l22e

ξ2+η2+θ24 , (2.19b)

where eθj(s+2) = (kj + ls)
−2 (j, s = 1, 2).

Similarly, utilizing (2.14) and (2.19), from (2.5c) and (2.6c) through complicated calcu-

lation, we get

g(3) =
l21(k1 − k2)

2

(k1 + l1)2(k2 + l1)2
eξ1+ξ2+η1 +

l22(k1 − k2)
2

(k1 + l2)2(k2 + l2)2
eξ1+ξ2+η2

= l21e
ξ1+ξ2+η1+θ12+θ13+θ23 + l22e

ξ1+ξ2+η2+θ12+θ14+θ24 , (2.20a)

f (3) =
k21(l1 − l2)

2

(k1 + l1)2(k1 + l2)2
eξ1+η1+η2 +

k22(l1 − l2)
2

(k2 + l1)2(k2 + l2)2
eξ2+η1+η2

= k21e
ξ1+η1+η2+θ13+θ14+θ34 + k22e

ξ2+η1+η2+θ23+θ24+θ34 , (2.20b)

where eθ12 = (k1 − k2)
2, eθ34 = (l1 − l2)

2.

Substituting (2.14), (2.19) and (2.20) into (2.5c) and (2.6c), after tedious calculation

with the help of the maple, we arrive at

g(4) =
k21k

2
2(k1 − k2)

2(l1 − l2)
2

(k1 + l1)2(k1 + l2)2(k2 + l1)2(k2 + l2)2
eξ1+ξ2+η1+η2

= k21k
2
2e

ξ1+ξ2+η1+η2+θ12+θ13+θ14+θ23+θ24+θ34 , (2.21a)

f (4) =
l21l

2
2(l1 − l2)

2(k1 − k2)
2

(k1 + l1)2(k2 + l1)2(k1 + l2)2(k2 + l2)2
eξ1+ξ2+η1+η2

= l21l
2
2e

ξ1+ξ2+η1+η2+θ12+θ13+θ14+θ23+θ24+θ34 . (2.21b)

Putting (2.14), (2.19)–(2.21) into (2.5d) and (2.6d), we can obtain a special solution

g(5) = f (5) = 0.

Take g(6) = f (6) = g(7) = f (7) = · · · = 0 and ε = 1. Then the functions f , g are reduced to

g2 = 1 + eξ1 + eξ2 + k21e
ξ1+η1+θ13 + k21e

ξ1+η2+θ14 + k22e
ξ2+η1+θ23 + k22e

ξ2+η2+θ24

+ l21e
ξ1+ξ2+η1+θ12+θ13+θ23 + l22e

ξ1+ξ2+η2+θ12+θ14+θ24

+ k21k
2
2e

ξ1+ξ2+η1+η2+θ12+θ13+θ14+θ23+θ24+θ34 , (2.22a)

f2 = 1 + eη1 + eη2 + l21e
ξ1+η1+θ13 + l21e

ξ2+η1+θ23 + l22e
ξ1+η2+θ14 + l22e

ξ2+η2+θ24

+ k21e
ξ1+η1+η2+θ13+θ14+θ34 + k22e

ξ2+η1+η2+θ23+θ24+θ34
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+ l21l
2
2e

ξ1+ξ2+η1+η2+θ12+θ13+θ14+θ23+θ24+θ34 . (2.22b)

Substituting (2.14), (2.19)–(2.21) into (2.1), we work out a five-soliton solutions of the

Boussinesq-Burgers equation (1.3). The corresponding graphs are shown in Fig. 2.2.

Fig. 2.2 The shape of the five-soliton solutions of (2.13) with k1 = 1.5, l1 = 1.2, k2 = 3,

l2 = 2.5, ξ
(0)
1 = 2, η

(0)
1 = 2, ξ

(0)
2 = 1, η

(0)
2 = 4

(3) 2N + 1-soliton solutions. In general, we have

gN (t, x) =
∑
µ=0,1

A1(µ)exp

{
N∑
j=1

µj(ξj + 2 ln kj) +

2N∑
j=N+1

µjξj +

2N∑
1≤j<s

µjµsθjs

}

+
∑
µ=0,1

A2(µ)exp

{
N∑
j=1

µjξj +
2N∑

j=N+1

µj(ξj + 2 ln lj−N ) +
2N∑

1≤j<s

µjµsθjs

}
,

(2.23a)

fN (t, x) =
∑
µ=0,1

A1(µ)exp

{
N∑
j=1

µjξj +
2N∑

j=N+1

µj(ξj + 2 ln lj−N ) +
2N∑

1≤j<s

µjµsθjs

}

+
∑
µ=0,1

A3(µ)exp

{
N∑
j=1

µj(ξj + 2 ln kj) +

2N∑
j=N+1

µjξj +

2N∑
1≤j<s

µjµsθjs

}
, (2.23b)

where
ξN+j = ηj , j = 1, 2, · · · , N,

eθj(N+s) = (kj + ls)
−2, j, s = 1, 2, · · · , N,

eθjs = (kj − ks)
2, j < s = 2, · · · , N,

eθ(N+j)(N+s) = (lj − ls)
2, j < s = 2, · · · , N,
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the notations A1, A2 and A3 stand for all possible combinations of µj = 0, 1 (j = 1, 2, · · · , N)

and satisfy the conditions
N∑
j=1

µj =
N∑
j=1

µN+j ,
N∑
j=1

µj = 1 +
N∑
j=1

µN+j , 1 +
N∑
j=1

µj =
N∑
j=1

µN+j ,

respectively. Substituting (2.23) into (2.1), we arrive at 2N + 1-soliton solutions of the

Boussinesq-Burgers equation (1.3). And they are new soliton solutions of (1.3).

3 Conclusions

In the present paper, we obtain 2N + 1-soliton solutions for Boussinesq-Burgers equa-

tion based on Hirota bilinear derivative method and the perturbation technique. However,

whether the Boussinesq-Burgers equation have Wronskian determinant form of solution re-

mains an open problem, and we will discuss it elsewhere.
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