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1 Introduction and Preliminaries

Gähler[1]–[3] introduced the definition of 2-metric spaces and discussed the existence problems

of fixed points. From then on, many authors discussed and obtained the existence problems

of coincidence points and (common) fixed points with a variety of different forms. Especially,

there have appeared a lot of useful results in recent years, see the references [4]–[16] and

the related papers. All these results generalize and improve the corresponding fixed point

theorem in metric spaces.

Definition 1.1 [1]–[3] A 2-metric space (X, d) consists of a nonempty set X and a function

d : X ×X ×X → [0, +∞) such that

(i) for distant elements x, y ∈ X, there exists a u ∈ X such that d(x, y, u) ̸= 0;

(ii) d(x, y, z) = 0 if and only if at least two elements in {x, y, z} are equal;

(iii) d(x, y, z) = d(u, v, w), where {u, v, w} is any permutation of {x, y, z};
(iv) d(x, y, z) ≤ d(x, y, u) + d(x, u, z) + d(u, y, z) for all x, y, z, u ∈ X.
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Definition 1.2 [1]–[3] A sequence {xn}n∈N+ in 2-metric space (X, d) is said to be a

Cauchy sequence if for each ε > 0 there exists a positive integer N ∈ N+ such that

d(xn, xm, a) < ε for all a ∈ X and n,m > N. A sequence {xn}n∈N+ is said to be con-

vergent to x ∈ X if for each a ∈ X, lim
n→+∞

d(xn, x, a) = 0. And we write that xn → x and

call x the limit of {xn}n∈N+
. A 2-metric space (X, d) is said to be complete if every Cauchy

sequence in X is convergent.

Choudhury[17] introduced the next definition in a real metric space:

Definition 1.3 [17] Let (X, d) be a metric space and T : X → X be a map. T is said to

be weak C-contraction if there exists a continuous function φ : [0, +∞)
2 → [0, +∞) with

φ(s, t) = 0 ⇐⇒ s = t = 0 such that

d(Tx, Ty) ≤ 1

2
[d(x, Ty) + d(y, Tx)]− φ(d(x, Ty), d(y, Tx)), x, y ∈ X.

Choudhury[17] also proved that any map satisfying the weak C-contraction has a unique

fixed point on a complete metric space (see [17], Theorem 2.1). Later, the above result was

extended to the case in a complete ordered metric spaces (see [18], Theorems 2.1, 2.3 and

3.1).

In 2013, Definition 1.3 was extended to the case in a 2-metric space by Dung and Hang[10]

as follows:

Definition 1.4 [10] Let (X, ≼, d) be a ordered 2-metric space, T : X → X a map. T is

said to be weak C-contraction if there exists a continuous function φ : [0, +∞)2 → [0, +∞)

with φ(s, t) = 0 ⇐⇒ s = t = 0 such that for any x, y, a ∈ X with x ≼ y or y ≼ x,

d(Tx, Ty, a) ≤ 1

2
[d(x, Ty, a) + d(y, Tx, a)]− φ(d(x, Ty, a), d(y, Tx, a)).

Dung and Hang[10] proved that any weakly C-contractive map has fixed points on com-

plete ordered 2-metric spaces (see [10], Theorems 2.3, 2.4 and 2.5). The results generalized

and improved the corresponding conclusions in [17]–[18].

Definition 1.5 Let (X, ≼, d) be a ordered 2-metric space and S, T : X → X be two

maps. S, T are said to be weakly C∗-contractive maps if there exists a continuous function

φ : [0, +∞)2 → [0, +∞) with φ(s, t) = 0 ⇐⇒ s = t = 0 such that for any x, y, a ∈ X with

x ≼ y or y ≼ x,

d(Sx, Ty, a) ≤ kd(x, y, a) + l[d(x, Ty, a) + d(y, Sx, a)]− φ(d(x, Ty, a), d(y, Sx, a)),

where k and l are two real numbers satisfying l > 0 and 0 < k + l ≤ 1− l.

Obviously, if S = T and k = 0 and l =
1

2
, then Definition 1.5 becomes Definition 1.3.

Definition 1.6 [10] Let (X, d) be a 2-metric space and a, b ∈ X, r > 0. The set

B(a, b; r) = {x ∈ X : d(a, b, x) < r}
is said to be a 2-ball with centers a and b and radius r. Each 2-metric d on X generalizes a

topology τ on X whose base is the family of 2-balls. τ is said to be a 2-metric topology.
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Lemma 1.1 [13]–[14] If a sequence {xn}n∈N+ in a 2-metric space (X, d) is convergent to

x, then

lim
n→+∞

d(xn, b, c) = d(x, b, c), b, c ∈ X.

Lemma 1.2 [19] Let {xn}n∈N+ be a sequence in (X, d) satisfying lim
n→∞

d(xn, xn+1, a) = 0

for any a ∈ X. If {xn} is not Cauchy, then there exists an a ∈ X and an ϵ > 0 such that for

any i ∈ N+, there exist m(i), n(i) ∈ N+ with m(i) > n(i) > i such that d(xm(i), xn(i), a) >

ϵ, but d(xm(i)−1, xn(i), a) ≤ ϵ.

Lemma 1.3 [6] lim
n→∞

xn = x in 2-metric space (X, d) if and only if lim
n→∞

xn = x in 2-

metric topology space X.

Lemma 1.4 [6] Let X and Y be two 2-metric spaces and T : X → Y be a map. If T is

continuous, then lim
n→∞

xn = x implies lim
n→∞

Txn = Tx.

Lemma 1.5 [6] Each 2-metric space is T2-space.

The purpose of this paper is to use the method in [10] to discuss and study the existence

problems of common fixed points for two maps satisfying weakly C∗-contractive condition

on ordered 2-metric spaces and give a sufficient condition under which there exists a unique

common fixed point.

2 Unique Common Fixed Points

Let φ : [0, +∞) × [0, +∞) → [0, +∞) be a continuous function with φ(x, y) = 0 ⇔ x =

y = 0. φ(x, y) =
x+ y

2
and φ(x, y) =

max{x, y}
2

for any x, y ∈ [0, ∞) satisfy the above

conditions.

Now, we discuss the existence problems of unique common fixed point for two maps on

non-complete 2-metric spaces without ordered relation.

Theorem 2.1 Let (X, d) be a 2-metric space and S, T : X → X be two maps. Suppose

that

d(Sx, Ty, a) ≤ kd(x, y, a) + l[d(x, Ty, a) + d(y, Sx, a)]

− φ(d(x, Ty, a), d(y, Sx, a)), x, y, a ∈ X, (2.1)

where k, l are two real numbers such that l > 0 and 0 < k + l ≤ 1 − l. If S(X) or T (X) is

complete, then S and T have a unique common fixed point.

Proof. Take any element x0 ∈ X and construct a sequence {xn} satisfying

x2n+1 = Sx2n, x2n+2 = Tx2n+1, n = 0, 1, 2, · · ·
For any n = 0, 1, 2, · · · and a ∈ X, by (2.1), we can get

d(x2n+1, x2n+2, a)
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= d(Sx2n, Tx2n+1, a)

≤ kd(x2n, x2n+1, a) + l[d(x2n, x2n+2, a) + d(x2n+1, x2n+1, a)]

− φ(d(x2n, x2n+2, a), d(x2n+1, x2n+1, a))

= kd(x2n, x2n+1, a) + ld(x2n, x2n+2, a)− φ(d(x2n, x2n+2, a), 0)

≤ kd(x2n, x2n+1, a) + ld(x2n, x2n+2, a). (2.2)

Take a = x2n in (2.2), we obtain

d(x2n, x2n+1, x2n+2) = 0, n = 0, 1, 2, · · · (2.3)

By using (2.3) and Definition 1.1(iv), we obtain from (2.2) that

d(x2n+1, x2n+2, a) ≤ kd(x2n, x2n+1, a) + l[d(x2n, x2n+1, a) + d(x2n+1, x2n+2, a)],

which implies

d(x2n+1, x2n+2, a) ≤
k + l

1− l
d(x2n, x2n+1, a)

≤ d(x2n, x2n+1, a), n = 0, 1, 2, · · · , a ∈ X. (2.4)

Similarly, for any n = 0, 1, 2, · · · and a ∈ X, by (2.1), we have

d(x2n+3, x2n+2, a)

= d(Sx2n+2, Tx2n+1, a)

≤ kd(x2n+2, x2n+1, a) + l[d(x2n+2, x2n+2, a) + d(x2n+1, x2n+3, a)]

− φ(d(x2n+2, x2n+2, a), d(x2n+1, x2n+3, a))

= kd(x2n+2, x2n+1, a) + ld(x2n+1, x2n+3, a)− φ(0, d(x2n+1, x2n+3, a))

≤ kd(x2n+2, x2n+1, a) + ld(x2n+1, x2n+3, a). (2.5)

Take a = x2n+1 in (2.5), we obtain

d(x2n+1, x2n+2, x2n+3) = 0, n = 0, 1, 2, · · · (2.6)

By using (2.6) and Definition 1.1(iv), we obtain from (2.5) that

d(x2n+3, x2n+2, a) ≤ kd(x2n+2, x2n+1, a) + l[d(x2n+1, x2n+2, a) + d(x2n+2, x2n+3, a)],

which implies

d(x2n+3, x2n+2, a) ≤
k + l

1− l
d(x2n+1, x2n+2, a)

≤ d(x2n+1, x2n+2, a), n = 0, 1, 2, · · · , a ∈ X. (2.7)

Combining (2.3), (2.4), (2.6) and (2.7), we have{
d(xn, xn+1, xn+2) = 0,

d(xn+1, xn+2, a) ≤ d(xn, xn+1, a),
n = 0, 1, 2, · · · , a ∈ X. (2.8)

For any fixed a ∈ X, let cn(a) = d(xn, xn+1, a), n = 0, 1, 2, · · · Then, by (2.8),

{cn(a)}∞n=0 is a non-increasing non-negative real sequence. Hence there is a real number

ξ(a) ≥ 0 such that

lim
n→∞

cn(a) = ξ(a).

It is easy to obtain

ξ(a) ≤ c2n+1(a)
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= d(x2n+1, x2n+2, a)

= d(Sx2n, Tx2n+1, a)

≤ kd(x2n, x2n+1, a) + ld(x2n, x2n+2, a)− φ[d(x2n, x2n+2, a), 0]

≤ kd(x2n, x2n+1, a) + ld(x2n, x2n+2, a)

≤ kd(x2n, x2n+1, a) + l[d(x2n, x2n+1, a) + d(x2n+1, x2n+2, a)]. (2.9)

Let n → ∞. Then from the first to third line, fifth line, sixth line in (2.9), we obtain

(k + 2l)ξ(a) ≤ ξ(a) ≤ kξ(a) + l lim
n→∞

d(x2n, x2n+2, a) ≤ kξ(a) + 2lξ(a).

Hence

lim
n→∞

d(x2n, x2n+2, a) = 2 ξ(a).

Let n → ∞ again. Then from (2.9), we obtain

(k + 2l)ξ(a) ≤ ξ(a) ≤ kξ(a) + 2lξ(a)− φ(2ξ(a), 0) ≤ kξ(a) + 2lξ(a).

Hence we have

φ(2ξ(a), 0) = 0.

So ξ(a) = 0 by the property of φ, that is,

lim
n→∞

d(xn, xn+1, a) = 0, a ∈ X. (2.10)

By Definition 1.1(ii),

d(x0, x1, x0) = 0,

which implies that

d(x1, x2, x0) = 0

by (2.8). Hence, by the mathematical induction,

d(xn, xn+1, x0) = 0, n = 0, 1, 2, · · · (2.11)

And for any fixed point m ≥ 1,

d(xm−1, xm, xm) = 0.

Hence, by (2.8) and the mathematical induction, we have

d(xn, xn+1, xm) = 0, n ≥ m− 1. (2.12)

For 0 ≤ n < m− 1, since m− 1 ≥ n+ 1, using (2.12), we obtain

d(xm−1, xm, xn+1) = d(xm−1, xm, xn) = 0. (2.13)

Hence

d(xn, xn+1, xm) ≤ d(xn, xn+1, xm−1) + d(xn, xm, xm−1) + d(xn+1, xm, xm−1)

= d(xn, xn+1, xm−1).

So, by the mathematical induction, we have

d(xn, xn+1, xm) ≤ d(xn, xn+1, xm−1)

≤ d(xn, xn+1, xm−2)

≤ · · ·

≤ d(xn, xn+1, xn+1)

= 0,
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that is,

d(xn, xn+1, xm) = 0, 0 ≤ n < m− 1. (2.14)

Combining (2.11), (2.12) and (2.14), we obtain

d(xn, xn+1, xm) = 0, n,m = 0, 1, 2, · · · (2.15)

For any i, j, k = 0, 1, 2, · · · (we can assume i < j), by (2.8) and (2.15), we have

d(xi, xj , xk) ≤ d(xi, xj , xj−1) + d(xj−1, xj , xk) + d(xi, xj−1, xk)

= d(xi, xj−1, xk)

≤ · · ·

≤ d(xi, xi+2, xk)

≤ d(xi, xi+1, xk) + d(xi+1, xi+2, xk) + d(xi, xi+1, xi+2)

= 0.

Hence

d(xi, xj , xk) = 0, i, j, k = 0, 1, 2, · · · (2.16)

Suppose that {xn} is not Cauchy, then by Lemma 1.2, there exists a b ∈ X and an ϵ > 0

such that for any natural number k, there exist two natural numbers m(k), n(k) satisfying

m(k) > n(k) > k such that the following holds

d(xm(k), xn(k), b) > ϵ, d(xm(k)−1, xn(k), b) ≤ ϵ. (2.17)

By (2.16) and (2.17), we have

ϵ < d(xm(k), xn(k), b)

≤ d(xm(k), xm(k)−1, b) + d(xm(k)−1, xn(k), b)

≤ d(xm(k), xm(k)−1, b) + ϵ.

Let k → ∞. Then by (2.10) and from the above, we obtain

lim
k→∞

d(xm(k), xn(k), b) = lim
k→∞

d(xm(k)−1, xn(k), b) = ϵ. (2.18)

By Definition 1.1(iv) and (2.16), we have

d(xn(k), xm(k)−1, b)

≤ d(xn(k), xn(k)−1, b) + d(xm(k)−1, xn(k)−1, b)

≤ d(xn(k), xn(k)−1, b) + d(xm(k)−1, xm(k), b) + d(xm(k), xn(k)−1, b) (2.19)

and

d(xn(k)−1, xm(k), b) ≤ d(xm(k), xn(k), b) + d(xn(k)−1, xn(k), b). (2.20)

Letting k → ∞ in (2.19) and (2.20), and using (2.10) and (2.18), we have

lim
k→∞

d(xm(k), xn(k), b) = lim
k→∞

d(xm(k)−1, xn(k), b) = lim
k→∞

d(xm(k), xn(k)−1, b) = ϵ. (2.21)

On the other hand, it is easy to know that

d(xm(k)−1, xn(k)−1, b) ≤ d(xm(k)−1, xm(k), b) + d(xm(k), xn(k)−1, b)

and

d(xm(k)−1, xn(k), b) ≤ d(xn(k), xn(k)−1, b) + d(xm(k)−1, xn(k)−1, b).
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Letting k → ∞ in the above two inequalities, and using (2.10) and (2.21), we obtain

lim
k→∞

d(xm(k)−1, xn(k)−1, b) = ϵ. (2.22)

Using (2.10), we can assume that the parity of m(k) and n(k) is different. Let m(k) be

odd and n(k) be even. We obtain

ϵ ≤ d(xm(k), xn(k), b)

= d(Sxm(k)−1, Txn(k)−1, b)

≤ kd(xm(k)−1, xn(k)−1, b) + l[d(xm(k)−1, xn(k), b) + d(xn(k)−1, xm(k), b)]

− φ(d(xm(k)−1, xn(k), b), d(xn(k)−1, xm(k), b))

≤ kd(xm(k)−1, xn(k)−1, b) + l[d(xm(k)−1, xn(k), b) + d(xn(k)−1, xm(k), b)].

Let k → ∞ in the above inequality. Then by (2.21) and (2.22), we have

(k + 2l)ϵ ≤ ϵ ≤ (k + 2l)ϵ− φ(ϵ, ϵ) ≤ (k + 2l)ϵ,

which implies that φ(ϵ, ϵ) = 0, i.e., ϵ = 0. This is a contradiction. Hence {xn} is a Cauchy

sequence.

Suppose that SX is complete. Since x2n+1 = Sx2n ∈ SX for all n = 0, 1, 2, · · · , there
exists a u ∈ SX such that x2n+1 → u as n → ∞. And since {xn} is a Cauchy sequence and

the following holds

d(x2n+2, u, a)

≤ d(x2n+1, x2n+2, a) + d(x2n+1, u, a) + d(x2n+1, x2n+2, u), n = 0, 1, 2, · · · , a ∈ X,

so x2n+2 → u as n → ∞.

By Lemma 1.1 and (2.1), for any a ∈ X, one has

d(u, Tu, a) = lim
n→∞

d(x2n+1, Tu, a)

= lim
n→∞

d(Sx2n, Tu, a)

≤ lim
n→∞

{kd(x2n, u, a) + l[d(x2n, Tu, a) + d(u, Sx2n, a)]

− φ[d(x2n, Tu, a), d(u, Sx2n, a)]}

= ld(u, Tu, a)− φ[d(u, Tu, a), 0]

≤ ld(u, Tu, a).

Hence

d(u, Tu, a) = 0, a ∈ X,

so Tu = u.

Similarly, we have

d(Su, u, a) = lim
n→∞

d(Su, x2n+2, a)

= lim
n→∞

d(Su, Tx2n+1, a)

≤ lim
n→∞

{kd(u, x2n+1, a) + l[d(u, Tx2n+1, a) + d(x2n+1, Su, a)]

− φ[d(u, Tx2n+1, a), d(x2n+1, Su, a)]}

= ld(u, Su, a)− φ[0, d(u, Su, a)]

≤ ld(u, Su, a).
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Hence

d(u, Su, a) = 0, a ∈ X.

Therefore Su = u. So we have Tu = Su = u, that is, u is a common fixed point of S and T .

If v is also a common fixed point of S and T and u ̸= v, then there exists an a∗ ∈ X

such that d(u, v, a∗) > 0. By (2.1), we have

d(u, v, a∗) = d(Su, Tv, a∗)

≤ kd(u, v, a∗) + l[d(u, Tv, a∗) + d(v, Su, a∗)]− φ[d(u, Tv, a∗), d(v, Su, a∗)]

= (k + 2l)d(u, v, a∗)− φ[d(u, v, a∗), d(u, v, a∗)]

≤ d(u, v, a∗)− φ[d(u, v, a∗), d(u, v, a∗)]

≤ d(u, v, a∗).

Hence

φ[d(u, v, a∗), d(u, v, a∗)] = 0,

which implies that

d(u, v, a∗) = 0

by the property of φ. This is a contradiction to the choice of a∗. So u is the unique common

fixed point of S and T .

Similarly, we can prove the same result for TX being complete. The proof is completed.

Remark 2.1 If l = 0 and φ(x, y) = 0 for any x, y ∈ [0, +∞), then Theorem 2.1 becomes

Banach type common fixed point theorem; if k = 0 and φ(x, y) = 0 for any x, y ∈ [0, +∞),

then Theorem 2.1 is Kannan type common fixed point theorem; if k = 0 and l =
1

2
,

then Theorem 2.1 is the variant result of Theorem 2.3 in [10]. Hence Theorem 2.1 greatly

generalizes and improves some (common) fixed point theorems.

From now, we discuss the existence problems of common fixed points for two mappings

on non-complete ordered 2-metric spaces.

Theorem 2.2 Let (X, ≼, d) be an ordered 2-metric space and S, T : X → X be two

maps. Suppose that for each comparable elements x, y ∈ X,

d(Sx, Ty, a) ≤ kd(x, y, a) + l[d(x, Ty, a) + d(y, Sx, a)]

− φ[d(x, Ty, a), d(y, Sx, a)], a ∈ X, (2.23)

where k, l are two real numbers satisfying l > 0 and 0 < k + l ≤ 1 − l. If S and T satisfy

the following conditions:

(i) for each x ∈ X, x ≼ Sx and x ≼ Tx;

(ii) S and T are both continuous;

(iii) S(X) or T (X) is complete,

then S and T have a common fixed point.
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Proof. Take an element x0 ∈ X. Using (i), we have

x0 ≼ Sx0 =: x1, x1 ≼ Tx1 =: x2, x2 ≼ Sx2 =: x3, x3 ≼ Tx3 =: x4, · · ·
Hence we obtain a sequence {xn} satisfying

x2n+1 = Sx2n, x2n+2 = Tx2n+1, xn ≼ xn+1, n = 0, 1, 2, · · · (2.24)

For each m,n = 0, 1, 2, · · · , xn and xm are comparable by (2.24), hence modifying the

derivation process of Theorem 2.1, we can prove that {xn} is a Cauchy sequence.

Suppose that SX is complete. Since x2n+1 = Sx2n ∈ SX for all n = 0, 1, 2, · · · , there
exists a u ∈ SX such that x2n+1 → u as n → ∞. And since {xn} is Cauchy and

d(x2n+2, u, a)

≤ d(x2n+1, x2n+2, a) + d(x2n+1, u, a) + d(x2n+1, x2n+2, u), n = 0, 1, 2, · · · , a ∈ X,

so x2n+2 → u as n → ∞. Hence, by (ii), we have

u = lim
n→∞

x2n+1 = lim
n→∞

Sx2n = S lim
n→∞

x2n = Su,

u = lim
n→∞

x2n+2 = lim
n→∞

Tx2n+1 = T lim
n→∞

x2n+1 = Tu.

Therefore, u is a common fixed point of S and T .

Similarly, we can prove the same result for TX being complete. The proof is completed.

The following result is the non-continuous version of Theorem 2.2.

Theorem 2.3 Let (X, ≼, d) be a ordered 2-metric space and S, T : X → X be two maps.

Suppose that (2.23) holds. If S and T satisfy:

(i) for each x ∈ X, x ≼ Sx and x ≼ Tx;

(ii) if {xn} is non-decreasing sequence and lim
n→∞

xn = x, then for each n, xn ≼ x;

(iii) S(X) or T (X) is complete,

then S and T have a common fixed point.

Proof. By the derivation process of Theorem 2.2, we can construct a non-decreasing se-

quence {xn} satisfying (2.24). Suppose that SX is complete. Then there exists a u ∈ SX

such that x2n+1 → u as n → ∞ and x2n+2 → u as n → ∞ (see the proof of Theorem 2.2),

hence lim
n→∞

xn = u. Therefore, xn ≼ u for all n = 0, 1, 2, · · · by (ii). Since x2n and u are

comparable, by (2.23), for any a ∈ X,

d(u, Tu, a) = lim
n→∞

d(x2n+1, Tu, a)

= lim
n→∞

d(Sx2n, Tu, a)

≤ lim
n→∞

{kd(x2n, u, a) + l[d(x2n, Tu, a) + d(u, Sx2n, a)]

− φ[d(x2n, Tu, a), d(u, Sx2n, a)]}

= ld(u, Tu, a)− φ[d(u, Tu, a), 0]

≤ ld(u, Tu, a).

Hence

d(u, Tu, a) = 0, a ∈ X.

So Tu = u.
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Similarly, Since u and x2n+1 are comparable, we have

d(Su, u, a) = lim
n→∞

d(Su, x2n+2, a)

= lim
n→∞

d(Su, Tx2n+1, a)

≤ lim
n→∞

{kd(u, x2n+1, a) + l[d(u, Tx2n+1, a) + d(x2n+1, Su, a)]

− φ[d(u, Tx2n+1, a), d(x2n+1, Su, a)]}

= ld(u, Su, a)− φ[0, d(u, Su, a)]

≤ ld(u, Su, a).

Hence

d(u, Su, a) = 0, a ∈ X.

So Su = u. Therefore Tu = Su = u, i.e., u is a common fixed point of S and T . The proof

is completed.

Now, we give a sufficient condition under which there exists a unique common fixed point

for two mappings in Theorems 2.2 and 2.3.

Theorem 2.4 Suppose that all of the conditions in Theorem 2.2 or Theorem 2.3 hold.

Furthermore, if

(I) for each x, y ∈ X, there exists a z ∈ X such that z and x are comparable, z and y

are comparable;

(II) u ≺ v implies that Snu ≼ v and Tnu ≼ v for all n = 1, 2, · · · ,
then S and T have a unique common fixed point.

Proof. From Theorems 2.2 and 2.3 we know that S and T have a common fixed point u.

Suppose that v is another common fixed point of S. Then u ̸= v.

Case 1. u and v are comparable.

Since u ̸= v, there exists an a∗ ∈ X such that d(u, v, a∗) > 0. By (2.23), we have

d(u, v, a∗) = d(Su, Tv, a∗)

≤ kd(u, v, a∗) + l[d(u, Tv, a∗) + d(v, Su, a∗)]

− φ[d(u, Tv, a∗), d(v, Su, a∗)]

= (k + 2l)d(u, v, a∗)− φ[d(u, v, a∗), d(u, v, a∗)]

≤ d(u, v, a∗)− φ[d(u, v, a∗), d(u, v, a∗)]

≤ d(u, v, a∗).

Hence

φ[d(u, v, a∗), d(u, v, a∗)] = 0,

which implies d(u, v, a∗) = 0 by the property of φ. This is a contradiction to the choice of

a∗. Therefore, u is the unique common fixed point of S and T .

Case 2. u and v are not comparable.

By (I), there exists a w ∈ X such that w and u are comparable and w and v are also

comparable. Hence w ̸= u and w ̸= v. Assume that u ≺ w. Then by (II) and the condition
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(i) in Theorem 2.2 or Theorem 2.3, we obtain that for each n = 1, 2, · · · ,
Snu ≼ w ≼ Tw ≼ T 2w ≼ · · · ≼ Tnw,

which means that Snu and Tnw are comparable. By (2.23), for each fixed a ∈ X, we have

d(u, Tnw, a)

= d(SSn−1u, TTn−1w, a)

≤ kd(Sn−1u, Tn−1w, a) + l[d(Sn−1u, TTn−1w, a) + d(SSn−1u, Tn−1w, a)]

− φ[d(Sn−1u, TTn−1w, a), d(SSn−1u, Tn−1w, a)]

= kd(u, Tn−1w, a) + l[d(u, Tnw, a) + d(u, Tn−1w, a)]

− φ[d(u, Tnw, a), d(u, Tn−1w, a)]

≤ kd(u, Tn−1w, a) + l[d(u, Tnw, a) + d(u, Tn−1w, a)]. (2.25)

Hence

d(u, Tnw, a) ≤ k + l

1− l
d(u, Tn−1w, a) ≤ d(u, Tn−1w, a), n = 1, 2, · · · , a ∈ X.

This shows that {d(u, Tnw, a)}∞n=1 is a non-increasing non-negative real number sequence.

Hence there exists M(a) ≥ 0 such that

lim
n→∞

d(u, Tnw, a) = M(a). (2.26)

Letting n → ∞ in (2.25) and using (2.26), we obtain

M(a) ≤ (k + 2l)M(a)− φ(M(a), M(a)) ≤ M(a)− φ(M(a), M(a)) ≤ M(a).

Hence

φ(M(a), M(a)) = 0,

which implies M(a) = 0, i.e.,

lim
n→∞

d(u, Tnw, a) = 0, a ∈ X.

Therefore,

lim
n→∞

Tnw = u.

If u in the above derivation process is replaced by v, then we similarly obtain

lim
n→∞

Tnw = v.

Hence u = v by Lemma 1.5, which is a contradiction. So u is the unique common fixed

point of S and T .
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