East Asian Journal on Applied Mathematics Vol. 10, No. 1, pp. 1-21
doi: 10.4208/eajam.281018.100419 February 2020

TTSCSP-Based Iteration Methods for Complex
Weakly Nonlinear Systems

Tahereh Salimi Siahkolaei and Davod Khojasteh Salkuyeh*

Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran.

Received 28 October 2018; Accepted (in revised version) 10 April 2019.

Abstract. We present Picard-TTSCSP and nonlinear TTSCSP-like iteration methods for
systems of weakly nonlinear equations. These methods require solving two subsystems
with constant positive definite coefficient matrices. Such subsystems are solved by the
conjugate gradient method. Local convergence of the methods is established and nu-
merical experiments demonstrate the efficiency of the methods.

AMS subject classifications: 65F10, 65F50, 65W05

Key words: Weakly nonlinear system, TTSCSP iteration method, inner/outer iteration scheme.

1. Introduction

Let A € C™" be a large, sparse, complex symmetric matrix, D ¢ C" and ¢: D — C"
a continuously differentiable function. We consider the iterative solution of the systems of
weakly nonlinear equations

Au = ¢ (u) or equivalently F(u) = Au— ¢(u) =0, (1.1)

with a matrix A = W +iT, where W € R™" and T € R™" are symmetric positive defi-
nite and symmetric positive semidefinite matrices, respectively. The system (1.1) is called
weakly nonlinear if the linear term Au is strongly dominant over the term ¢ (u) in a norm
[14,30]. Such systems arise in various areas of scientific computing and engineering, in-
cluding the discretisation of nonlinear partial differential equations [3,4,12,13,24], colloca-
tion of nonlinear integral equations [28], saddle point problems in image processing [6,15]
and other applications [20].

The Newton iteration method [2,17] is an efficient tool for solving systems of nonlin-
ear equations (1.1). However, at each iteration step, the method uses a Jacobian matrix,
the construction of which is costly and complicated. Various approaches to improve the
efficiently of the method have been proposed — cf. Refs. [2-5,7,11,14,16,18,29]. In

*Corresponding author. Email addresses: khojasteh@guilan.ac.ir (D.K. Salkuyeh), salimi_tahereh@
phd.guilan.ac.ir (T.S. Siahkolaei)

http://www.global-sci.org/eajam 1 (©)2020 Global-Science Press

2 T.S. Siahkolaei and D.K. Salkuyeh

particular, recent work of Bai et al. [10], where Hermitian and skew-Hermitian splitting
(HSS) iteration methods [9] are used as inner solvers for the Newton’s method, intro-
duces a new class of Newton-HSS methods for large sparse systems of nonlinear equations.
Bai [3] proposed sequential two-stage iteration methods for nonlinear equations (1.1) —
cf. also Refs. [5,11]. Picard-HSS and nonlinear HSS-like iteration methods are developed
in [14]. Zhu et al. [32] considered Picard-CSCS and nonlinear CSCS-like iteration meth-
ods for weakly nonlinear systems. Using the MHSS iteration [8] as an inner solver for the
Picard method, Yang et al. [31] developed Picard-MHSS and the nonlinear MHSS-like iter-
ation methods. These methods can be described as follows.

Picard-MHSS iteration method. Given an initial guess u® € D and a sequence {lk},fi 0
of positive integers, for k = 0,1,2,... compute u**1) by the iteration scheme below until
{u(0} satisfies a stopping criterion:

(@) Set ulo0) =),
(b) To obtain u*!*Y for1 =0,1,2,..., I, — 1, solve the following linear system:
(al +W)u®HD = (a1 —iT)u®D + ¢ (u®),
(al + T)uoD = (al +iw)u®H+12 — g (),
where a and f3 are given positive constants.
(@ Setu+D .=kl

Following the works [14,31], Li et al. [21] used the lopsided PMHSS (LPMHSS) iterations
[22] as an inner solver for the Picard method and developed Picard-LPMHSS and nonlinear
LPMHSS-like iteration methods.

Picard-LPMHSS iteration method. Given an initial guess u(”) € D and a sequence {I;.} ,fi 0
of positive integers, for k = 0,1,2,... compute u**1) by the iteration scheme below until
{u(0} satisfies a stopping criterion:

(a) Set u&9 .=y,

(b) For1=0,1,2,...,l; —1, solve the following linear system to obtain ylel+1).

WukH /2 = iy 4 (0,
(aP + T = (aP +iw B2 — g (u®),
where «a is a given positive constant and P a symmetric positive definite matrix.
(@ Setu+D .=kl

Recently, Salkuyeh and Siahkolaei [26] proposed a two-parameter two-step scale-split-
ting (TTSCSP) method for systems of linear equations

(W+iT)x =b,

TTSCSP-Based Iteration Methods 3

where W € R™" and T € R™" are, respectively, symmetric positive definite and symmet-
ric positive semidefinite matrices and b € C". The TTSCSP method reduces to two-step
scale-splitting (TSCSP) method from [25]. In this work, we employ the TTSCSP method as
an inner solver in Picard iterations to solve large scale systems of weakly nonlinear equa-
tions (1.1).

The rest of this paper is organised as follows. In Section 2 we provide a brief description
of the TTSCSP method for symmetric systems of linear equations. A Picard-TTSCSP method
is considered in Section 3 and a nonlinear TTSCSP-like iteration method is discussed in Sec-
tion 4. Inexact versions of the Picard-TTSCSP and nonlinear TTSCSP-like iteration methods
are introduced in Section 5. Section 6 contains results of numerical experiments and our
conclusions are in Section 7.

2. TTSCSP Iteration Method

If $: D — C" is a constant vector — i.e. if ¢(u) = b, the system of weakly nonlinear
equations (1.1) becomes the system of linear equations

Au=0>, (2.1

where A€ C™" and u, b € C". There are various methods to solve (2.1) — cf. Refs [8, 19,
22,23,25,26,30]. In particular, the authors of this paper split the coefficient matrix A and
studied the convergence of the following TTSCSP method — cf. [26].

TTSCSP iteration method. Let u(®) € C" be an initial guess. For k =0,1,2, ..., until {u®}
converges, compute u**1) according to the following scheme:

(aW + T)u® 2 = i(w —aT)u® + (a—i)b,

2.2
W + BTV = i(W — T)u*+1/2 4 (1 — Bi)b, (22)

where a and 3 are positive numbers .

If a = f3, the TTSCSP method becomes TSCSP method and it was shown in [25] that
for symmetric positive definite matrices W and T, the TSCSP method converges for any
positive a. We write the TTSCSP iteration method in the matrix-vector form

k
u D = ¢(a, pu® + €(a,) = 9(a, Y 1@+ > G(a, B) € (a, B)b,
j=0

where
G(a,B):=(a+B)W+BT)Y YW —iT)(aW +T)*

and
G(a,B):=W+BT) UT —=BW)(aW + T) Y (W —aT)

is the iteration matrix of the method.

4 T.S. Siahkolaei and D.K. Salkuyeh

Setting
= _1ﬂuwv+wa=4Ty40v+ﬁTL
N := ﬁ(T —BW)H(W —iT) Y(W —aT),

we have A=M —N and ¥(a,8) = M~!N.

3. Picard-TTSCSP Method

In what follows, we write || - || for the L?-norm of vectors or matrices. Spectrum and
spectral radius of a matrix A are, respectively, denoted by o (A) and p(A) and the Kronecker
product of A and B by A® B.

If linear and nonlinear terms Au and ¢ (u) are well-separated and Au is strongly domi-
nant over ¢ (u), one can apply the Picard iteration method

AU = @), k=0,1,2,... (3.1)

to the system (1.1) — cf. [1-3,24]. At each step of the Picard iterations, we have to de-
termine u**V from the system of linear equations (3.1). This can be done by the TTSCSP
iteration method from [26]. As the result, we arrive at the Picard-TTSCSP iteration method
described as follows.

Picard-TTSCSP iteration method. Let ¢p: D — C" be a continuously differentiable func-
tionand A= W+iT, where W and T are symmetric positive definite and symmetric positive
semidefinite matrices, respectively. Given an initial guess u(® € D and a sequence {lk},‘:i 0
of positive integers, for k = 0,1,2,... we compute yk+1) by the iteration scheme below
until {u®} satisfies a stopping criterion:

(@) Set ulo0 =y,
(b) Forl=0,1,2,...,l; —1 determine u®*D from the linear systems

(aW + T)u®HYD = (W — aT)u®D + (a—i)p (w®),
W+ BT = i(Bw — T2 + (1— Bi)g (™),

where a and 8 are given positive constants.
(© Set ulktD) .=yl

Note that as an inner solver in the Picard iterations (3.1), we can also use the TSCSP
method, thus obtaining the Picard-TSCSP iteration method. If a = f3, the Picard-TTSCSP
iteration method becomes the Picard-TSCSP iteration method.

In Picard-TTSCP and nonlinear TTSCSP-like methods, the coefficient matrices of the
corresponding linear subsystems are symmetric positive definite. Therefore, these subsys-
tems can be exactly solved by Cholesky factorisation of the coefficient matrices or inexactly

TTSCSP-Based Iteration Methods 5

by the conjugate gradient (CG) method. Using Picard-TTSCSP iterations, we determine
u®*1 in the form
l—1

1D = g(q, f)ku® + Z G(a, Y 6(a,f)ow™), k=0,1,.... (3.2)
j=0

Suppose that the vector u* € D is the solution of the system (1.1). It is easily seen that

l—1
w =9, Pt + Y 9(a, Y 6(a, Blp?), k=0,1,.... (3.3)
=0

Subtracting (3.3) from (3.2) yields

L—1

Dy = g(a, B —ur) + Z Y(a, pY 6 (a,)W) — puh)].

j=0
Let a be a real number. By |a] we denote the smallest integer such that a < |a|. Setting

0(a,B) =l 9(a,p) N, n:=Aa"¢'W"l
and taking into account [14, Theorem 3.1], we obtain the following result.

Theorem 3.1. Let W and T be, respectively, symmetric positive definite and symmetric positive
semidefinite matrices and A=W +iT. If ¢ : D — C" is a G-differentiable function in an open
neighborhood N, C D of the point u* € D such that ¢'(u*) is continuous and F(u*) = Au* —
¢ (u*) = 0, then there is an open neighborhood N € Ny of u* such that for any u® € N and any
sequence of positive integers l;, k = 0,1,2,..., the iteration sequence {u(k)};:io generated by
the Picard-TTSCSP iteration method is well-defined and converges to u*, provided that n < 1

and
Iy > {m((l_—”) /1n(9(a,/5)))J.
1+n
Moreover,
1i£nsup||u(’<)—u* IVE< 4+ (1+n)6(a, B, (3.4)
—00

where 1, = liminfy_, oo ;. In particular, if limy_, oo [= 00, then the convergence rate is
R-linear and
limsup || u* —u* [RARS . (3.5)
k— o0
Proof. The proof runs similar to the proof of the convergence of the Picard-HSS iteration
method in [14]. O

Theorem 3.1 shows that the convergence rate of the Picard-TTSCSP method depends
on 6(a, B) and 7, so that small §(a, #) and n imply the fast convergence of Picard-TTSCSP
iterations.

6 T.S. Siahkolaei and D.K. Salkuyeh

4. Nonlinear TTSCSP-Like Method

The main drawback of the Picard-TTSCSP iteration method is that in actual computa-
tions, the data in the inner iteration steps [,k = 0,1,2,... are often problem-dependent
and are difficult to determine. Since the problem is related to the nonlinearity of the fixed-
point equations

(W +Tu=i(W—aT)u+ (a—1i)p(u),
W+BTDu=i(BW —Tu+(1—-pi)¢w),

here we propose a nonlinear TTSCSP-like iteration method.

Nonlinear TTSCSP-like method. Let ¢: D — C" be a continuously differentiable func-
tion and A=W +iT, where W and T symmetric positive definite and symmetric positive
semidefinite matrices, respectively. Given an initial guess u®eD, fork=0,1,2,... com-
pute u**1) by the iteration scheme below until {u¥)} satisfies a stopping criterion:

(aW + T)u(k+1/2) =i(W— aT)u(k) +(a— i)gb(u(k)),
W+ BT+ = i(pw — T+ 4 (1 — ﬁi)¢(u(k+1/2)),

where a and f3 are positive constants.
We want to study the convergence of the TTSCSP-like iteration method. Writing

F(u) = (aW + T) Hi(W —aT)u+ (a—i)pWw)],
V) =W +BT) (AW —Tu+(1—Bi)pw)],

and introducing the function y(u) := VoF(u) = V(F(u)), we represent the nonlinear
TTSCSP-like iterations as

ykD) — w(u(k)), k=0,1,2,....

Taking into account Ostrowski theorem — cf. [14, Theorem 10.1.3], we observe that if
p(y’(u*)) < 1, then u* is a point of attraction of the nonlinear TTSCSP-like iterations.
Assuming that u* € D is a solution of the system (1.1), we can easily verify the identities

Fw)=u*, V(u*)=u*
F'(u*)=(aW + T) [i(W —aT) + (a —i)¢’(u")],
VW) =W+ BT iAW —T)+ (1 - D)’ ()],
and the chain rule — cf. [24, Theorem 3.1.7], yields
Y'(W*) =V'W)F' W) =W +BT)'[i(BW —T) + (1 - Bi)¢’(u)]
x (aW + T) Hi(W —aT) + (a—1i)¢’(w)].

Summarising the results above, we state the following theorem.

TTSCSP-Based Iteration Methods 7

Theorem 4.1. Let A=W +iT, where W and T are, respectively, symmetric positive definite
and symmetric positive semidefinite matrices and

G(a,Bsu*) =(W + BT)'[i(BW —T) + (1 — Bi)¢p’ (u")]
x (aW + T)'[i(W —aT) + (a—i)¢’(u*)].

If ¢ : D — C" is an F-differentiable function at a point u* € D such that Au* = ¢(u*) and
Y(a,B;u*) < 1, then u* € D is a point of attraction of the nonlinear TTSCSP-like iteration
method.

Theorem 4.2. Assume that the conditions of Theorem 4.1 are satisfied and let

& :=max{|| ¢'WIW +BT) " I, Il ¢’)aw +T)7" |I},

{1—a.u1 1—aun}
a .= max)
a+ g a+ Un
b::max{ B—u , B— i, }
1+ Buqy| |1+ Buy

where u, and w,, are the smallest and the largest eigenvalues of WT. If

ab+5(bV1+aZ+ay/1+62)+62/(1+a?)(1+p2) <1, (4.1)

then
p(9(a,pB,u")) <1.

Proof. By simple computations, we have

(W +BT)Y(a, B;u*)W + BT)!
=(W +BT)Y(a, YW +BT)
+ (1 +ad)(BW =T)aW + T) ¢’ W)W +BT) ™
+(B+1)p W)(aW +TY Y (W —aT)(W +BT) ™
+(1—Bi)(a—1)¢' W) (aW + T) 1o'WW +BT)},
and
19(a, Bl = l(aW + TY ' (W —aT)(W + BT) (T — BW)|

= ll(al +8)" (I —aS)I + BS) ' (BI =S
<l +8)7 T —aS)IIT +BS)H(BI=S)I

]__ —_

= max a,u max ﬁ ‘U,

uea(S) || a+u |} uea(s) | |1+ Bu
1— 1— - -

:max{ ap, ap, }max{ B— s , B— }:ab.
atyp || aty, 1+Bur| |1+ Bun

8 T.S. Siahkolaei and D.K. Salkuyeh
Hence
19(a, B;u)l| =||(W +BT)Y(a, B;u")W +BT) !
<||(W +BT)Y(a, BYW +BT) ||
+]|(@+ ad)(BW —T)(aW + T) ' ¢’ W)(W + BT) ||
+|(B + D)o’ W) aW + T) ' (W —aT)(W +BT) |
+|(1=BD(a— D' W) aW + T) ¢’ (u)W + BT) ||
<||9(a, B)|| + || + ad(BW —TYW + BT) | ||¢’ w)(aw + T) 7|
+|(B + D(aW + TY (W —aT)|| || ¢’ W)W +BT) |
+]@—pid)a—1)|||¢'@)aw + T)7H|||¢’@HW +BT)!|
<ab+5(bV1+aZ+ay/1+2)+62/(1+a2)(1+p2).

The condition (4.1) yields
p(9(a,B;u") <1¥9(a,B;u")l <1,

and the proof is completed. O
Remark 4.1. The inequality (4.1) holds if ab < 1 and ¢ is sufficiently small. We note that
sufficient conditions for ab < 1 are presented in [26].

Remark 4.2. For nonlinear TSCSP-like iteration method, the convergence conditions are
the same as in Theorem 4.1 but one has to set a = 3.

The convergence speed of the iteration methods for the system (1.1) depends on two
factors — viz. on the weak nonlinearity of the system and on optimality of the parameters.
These factors are problem-based and are difficult to handle. However, as is shown in [26],
the spectral radius of the iteration matrix ¥4(a,) satisfies the inequality

p(¥4(a,p)) < 19(a, B

1— 1— — —
Smax{ ay, Ay }max{ B—p | | B—bm }:=G(a,/3),
atyy | | atp, 1+ Bur| |1+ Bu,
and
(a*,*) = arg min o(a,),
a,>0

where

o= Lot VO P Gt 1 4.2)

W1+ tn ’ a*

Let us point out that a* and 3* minimise the upper bound o(a,) of the spectral radius
4(a,), but not ¥(a, f;u*). On the other hand, if the linear term Au is strongly dominant
over the nonlinear term ¢ (u), one can use the parameters a* and * in the implementation
of the method and forthcoming numerical experiments confirm that these parameters often
provide satisfactory results.

TTSCSP-Based Iteration Methods 9

5. Inexact Picard-TTSCSP and Nonlinear Inexact TTSCSP-Like Methods

In order to determine u®**1) by Picard-TTSCSP or by nonlinear TTSCSP-like iteration
methods, one has to solve two subsystems with the coefficient matrices aW+T and W+ T.
The methods can be improved if one employs iteration methods for solving the subprob-
lems. Since aW +T and W + 3T are symmetric positive definite matrices, these subsystems
can be solved inexactly by the CG method such that the relative residual norms are smaller
than €,; > 0 and €,; > 0, respectively.

In the Picard-TTSCSP iteration method, we suppose that

WUol+1/2) — (D) 4 (kD)
and substitute it in the first subsystem, so that

(aW + T)z*D = (g —i)rkD, (5.1)
where r®D = ¢ () — AucD. Analogously, letting

u(RlHD) — g (R 1+1/2) | o (K,1+1/2).
we write the second subsystem as

(W + BTz = (1 — gi)rklH1/2)] (5.2)

where r&11/2) = ¢ (k) — Au1+1/2) . We inexactly solve the systems (5.1) and (5.2) by

the CG method. The nonlinear inexact TTSCSP-like iteration method is established in the
same way. The algorithms obtained have the following form:

Algorithm 5.1 Inexact Picard-TTSCSP (Picard-ITTSCSP) iteration method.

Choose an initial guess u(®.
for k =0,1,2,... until convergence do
Set b := ¢ (u").
Set u0) ;= (k)
forl=0,1,2,...,[;, —1do
Compute (oD = p —AukD,
Set 7D = (@ —i)rteD),
Solve (aW + T)z&D = (kD by CG to compute the approximate solution z*-!)
satisfying ||[FD — (aW + T)zRD||, < e, [[FED|,, uolH1/2) = (kD 4 5 (kD
Compute rol+1/2) = p — gy (k1+1/2),
Set FkI1+1/2) — (1 — g)p(k1+1/2)
Solve (W + B T)zk!1+1/2) = (k1+1/2) by CG to compute the approximate
solution z*1+1/2) satisfying ||F51+1/2) — (W + BT)zRIH1/2)||, < ey, 7RI/

10 T.S. Siahkolaei and D.K. Salkuyeh

u(k,l+1) = u(k,l+1/2) + Z(k’l+1/2).

end for
Set uk+D) .= (kL)

end for

Algorithm 5.2 Inexact TTSCSP-like (ITTSCSP-like) iteration method.

Choose an initial guess u(®.

for k =0,1,2,... until convergence do
Compute r®) = ¢ (@) —Au®.
Set 7K = (a —i)r®),
Solve (aW + T)z = 7 by CG to compute the approximate solution z¥)
satisfying ||F®) — (aW + T)z®)||, < elkIIF(k)llz, utk+1/2) .= (k) 4 (k)
Compute rk+1/2) = ¢ (u(k+1/2)) — Ay (k+1/2)
Set 7+1/2) = (1 — Bi)rk+1/2),
Solve (W + B T)zk+1/2) = (k+1/2) 1y CG to compute the approximate
solution zk*1/2) satisfying ||F(K+1/2) — (W + BT)z*kT1/2)|, < ey ||FEF1/D| .
Set (k1) .— 1 (k+1/2) 4 ,(k+1/2).

end for

6. Numerical Experiments

Let us now compare the Picard-TTSCSP method with Picard-MHSS, Picard-LPMHSS
and Picard-TSCSP iterations as well as the nonlinear TTSCSP-like method with nonlinear
MHSS-like, LPMHSS-like and TSCSP-like processes.

Consider the two-dimensional nonlinear convection-diffusion equation

ue —(ag +if1)(Wyy tuyy)+ ou=(ay+if;y) ue” +sin /1 +u2 +u§,
u(O;X,.)’)=u0(X,.)’); (X’Y)EQ, (61)
u(t,x,y)=0, (t,x,y)€(0,1]x24Q,

where Q = (0,1) x (0,1), 29 is the boundary of Q, a; = ; =1, a, = 8, = 0.5 and p is
a positive constant controlling the magnitude of the reaction term — cf. [21]. Using the
equidistant grid At = h = 1/(N + 1) at each temporal step of the implicit scheme for the
Eq. (6.1), we arrive at the system of weakly nonlinear equations (1.1) of the form

F(u) = Mu—h?¢(u) =0,
where
M =h(1+pAt)I,+ (a1 +if1)A, @I +IRA,),
¢(u) = (ay +iBy)Y(u) +sin(1 + B(u))
and

Y(u) = (ure™,uze', ... ue")’,

TTSCSP-Based Iteration Methods 11

sin(u) = (sin(u;), sin(u,), . . ., sin(u,))’,
AN = trldlag(—l,z, —1), B = CN ® CN,
Cy = tridiag(—1/h,0,1/h), n=N xN.

In all numerical experiments, the zero vector is used as the initial guess and the stopping

criterion is .
IF®)]l,

IE@©®)]l,
For the inner iterations in Picard-MHSS, Picard-LPMHSS, Picard-TSCSP and Picard-TTSCSP
methods, the stopping criterion is

<107°,

IIF @),
(k,0) <Nk
IF D)l

where [}, denotes the number of inner iteration steps. If 1, is fixed for all k, then we write n
for n;. The coefficient matrices of the subsystems in the Picard-TTSCSP and the nonlinear
TTSCSP-like iteration methods are symmetric positive definite and in the exact versions
of these algorithms, the subsystems are solved via Cholesky factorisation of the coefficient
matrices. In the inexact implementation of the algorithms, the corresponding subsystems
are solved by the CG method. The CG iterations are stopped when the residual norm is
reduced by a factor of 10%. The maximum number of iterations in the CG method is set to
1000.

All runs are implemented in MATLAB R2014b on a laptop with 2.40 GHz central process-
ing unit (Intel(R) Core(TM) i7-5500), 8 GB memory and Windows 10 operating system.
Numerical experiments are carried out for N = 32,64,128 — i.e. for n = 322,642,128
and for the tolerance n = 0.1, n = 0.01 and 1 = 0.001. The terms IT;,;, IT,,;, IT, CPU
show the average number of the inner iterations, the outer iteration, the total iteration
and the total CPU-time, respectively. As was already mentioned, optimal parameters in the
methods tested are problem-based even if the nonlinear term ¢ (u) is neglected. However,
in the TTSCSP-based methods, the parameters a* and 3* often provide suitable results —
cf. (4.2). The optimal parameters a,,, and f3,,, used in all the experiments are found
experimentally and ensure the smallest number of iterations. The parameters a,,, and
Bop: in Picard-MHSS, Picard-LPMHSS, Picard-TSCSP and Picard-TTSCSP are presented in
Tables 1-3.

Table 7 compares Picard-TTSCSP and Picard-MHSS, Picard-LPMHSS and Picard-TSCSP
iteration methods. The Picard-HSS, Picard-LPMHHS, Picard-TSCSP and Picard-TTSCSP are
respectively denoted by “P-MHSS”, “P-LPMHHS”, “P-TSCSP” and “P-TTSCSP”. It shows that
the Picard-TSCSP and Picard-TTSCSP methods outperform other iteration methods in terms
of iteration numbers and CPU time. For nonlinear TTSCSP-like, MHSS-like, the LPMHSS-
like and TSCSP-like iteration methods, numerical results are displayed in Table 10 and they
show that TTSCSP-like method performs better then others. Table 9 demonstrates the work
of the Picard-TTSCSP method if optimal parameters a,,,, 3,,; and the parameters a* and
pB* obtained from the Eq. (4.2) are used. We note that there is no substantial difference in
results concerning iteration numbers and CPU time.

12 T.S. Siahkolaei and D.K. Salkuyeh

Table 1: Experimentally optimal parameters for various iteration methods, N = 32.

Iteration o 0.1 1 10
7n=0.1 Picard-MHSS Qope | 0.34 0.34 0.35
Picard-LPMHSS | a,,. | 1.3 1.3 1.5
Picard-TSCSP Aope | 0.5 05 0.5
Picard-TTSCSP | a,,, | 1.17 1.17 1.17
Bope | 0.31 0.30 0.30
1n=0.01 | Picard-MHSS Aope | 0.33 0.34 0.36
Picard-LPMHSS | a,,, | 1.0 1.0 1.0
Picard-TSCSP Qope | 045 0.45 0.45
Picard-TTSCSP | a,p, | 1.17 1.17 1.17
Bop: | 0.30 0.30 0.30
7 =0.001 | Picard-MHSS Qo | 0.34 034 0.34
Picard-LPMHSS | a,,. | 1.5 1.5 1.6
Picard-TSCSP Qope | 043 0.43 0.42
Picard-TTSCSP | a,,, | 1.17 1.17 1.17
Bope | 0.30 0.30 0.30

Table 2: Experimentally optimal parameters for various iteration methods, N = 64.

Iteration o) 0.1 1 10

n=0.1 Picard-MHSS | a@,, | 0.20 0.20 0.20
Picard-LPMHSS | a 1.1 1.1 1.1

Picard-TSCSP a 0.36 0.36 0.36
Picard-TTSCSP | a,,, | 1.17 1.17 1.17
Bope | 0.30 030 0.30
1 =0.01 | Picard-MHSS Qope | 0,20 0.20 0.21
Picard-LPMHSS Qope | 1.0 1.0 1.0

Picard-TSCSP Qope | 0.36 0.36 0.35
Picard-TTSCSP | a,,, | 1.17 1.17 1.17
Bope | 0.30 0.30 0.30
n=0.001 | Picard-MHSS | a,,, | 0.19 0.19 0.20
Picard-LPMHSS | a,,, | 0.9 09 0.9

Picard-TSCSP Aope | 0.35 035 0.35
Picard-TTSCSP Qope | 1.17 117 1.17
Bope | 0.30 030 0.30

opt

opt

Tables 8-11 provide numerical results for the inexact versions of Picard-TTSCSP and
nonlinear TTSCSP-like methods for three values of 1, where inexact version of Picard-
MHSS, Picard-LPMHSS, Picard-TSCSP and Picard-TTSCSP are denoted by “P-IMHSS”, “P-
ILPMHSS”, “P-ITSCSP and “P-ITTSCSB respectively. The optimal values of the parameters

TTSCSP-Based Iteration Methods

Table 3: Experimentally optimal parameters for various iteration methods, N = 128.

Iteration o 0.1 1 10
7n=0.1 Picard-MHSS Qope | 012 0.12 0.12
Picard-LPMHSS | a,,, | 0.80 0.80 0.80
Picard-TSCSP Qope | 026 0.24 0.26
Picard-TTSCSP | a,,, | 1.17 1.17 1.17
Bope | 0.20 0.20 0.20
1n=0.01 | Picard-MHSS Qope | 013 0.13 0.13
Picard-LPMHSS | a,, | 0.80 0.80 0.80
Picard-TSCSP Qope | 024 0.24 0.25
Picard-TTSCSP | a,p, | 1.17 1.17 1.17
Bop: | 0.30 0.30 0.30
7 =0.001 | Picard-MHSS Qope | 012 0.12 0.12
Picard-LPMHSS | a,, | 0.80 0.80 0.80
Picard-TSCSP Ao | 023 0.23 0.23
Picard-TTSCSP | a,,, | 1.17 1.17 1.17
Bope | 0.30 0.30 0.30

Table 4: Experimentally optimal parameters for various

inexact

iteration methods, N = 32.

Iteration o) 0.1 1 10
n=0.1 Picard-IMHSS Aope | 043 043 0.45
Picard-ILPMHSS | a,, | 0.76 0.76 0.74
Picard-ITSCSP Aope | 0.50 0.49 0.44
Picard-ITTSCSP | a,,, | 1.17 1.17 1.17
Bope | 0.30 0.30 0.30
1n=0.01 | Picard-IMHSS Aope | 043 042 0.45
Picard-ILPMHSS | a,,, | 0.83 0.83 0.83
Picard-ITSCSP Aope | 045 045 0.45
Picard-ITTSCSP | a,,, | 1.17 1.17 1.17
Bope | 0.30 0.30 0.30
1 =0.001 | Picard-MHSS Aope | 040 0.41 0.42
Picard-ILPMHSS | a,,, | 0.83 0.83 0.81
Picard-ITSCSP Aope | 043 043 0.43
Picard-ITTSCSP | a,, | 1.17 1.17 1.17
Bope | 0.30 0.30 0.30

13

a and f3 are given in Tables 4-6. The inexact version of the nonlinear MHSS-like, LPMHSS-
like, TSCSP-like and TTSCSP-like are denoted by “IMHSS-like”, “ILPMHSS-like”, “ITSCSP-
like” and “ITTSCSP-like”, respectively. We also note that in both exact and inexact versions
of Picard-TTSCSP and nonlinear TTSCSP-like iteration methods, the optimal values of the

14 T.S. Siahkolaei and D.K. Salkuyeh

Table 5: Experimentally optimal parameters for various inexact iteration methods, N = 64.

Iteration o 0.1 1 10

n=0.1 Picard-IMHSS Aope | 0.26 026 0.27
Picard-ILPMHSS | a,,. | 0.78 0.78 0.78
Picard-ITSCSP a 0.35 035 0.31
Picard-ITTSCSP | a,, | 1.17 1.17 1.17
Bope | 0.30 0.30 0.30
1n=0.01 | Picard-IMHSS Aope | 027 026 0.27
Picard-ILPMHSS | a,, | 0.87 0.87 087
Picard-ITSCSP Aope | 0.35 035 0.35
Picard-ITTSCSP | a,, | 1.17 117 1.17
Bope | 0.30 0.30 0.30
1 =0.001 | Picard-IMHSS Aope | 025 025 0.26
Picard-ILPMHSS | a,,. | 0.87 0.879 0.86
Picard-ITSCSP Qope | 032 032 0.32
Picard-ITTSCSP | a,, | 1.17 117 1.17
Bope | 0.30 0.30 0.30

opt

Table 6: Experimentally optimal parameters for various inexact iteration methods, N = 128.

Iteration o 0.1 1 10

n=0.1 Picard-IMHSS Aope | 0.17 0.17 0.18
Picard-ILPMHSS | a,,. | 0.80 0.80 0.80
Picard-ITSCSP Qope | 0.27 028 0.27
Picard-ITTSCSP | a,, | 1.17 1.17 1.17
Bope | 030 030 0.30
1n=0.01 | Picard-IMHSS Aope | 0.18 0.18 0.18
Picard-ILPMHSS | a,,. | 0.80 0.80 0.80
Picard-ITSCSP Qope | 0.28 0.28 0.28
Picard-ITTSCSP | a,, | 1.16 1.17 1.17
Bope | 0.30 0.30 0.30
1 =0.001 | Picard-IMHSS Aope | 0.17 0.17 0.17
Picard-ILPMHSS | a,,. | 0.74 0.74 0.74
Picard-ITSCSP QAope | 0.24 024 0.23
Picard-ITTSCSP | a,, | 1.17 1.17 1.17
Bope | 0.30 0.30 0.30

parameters a and 3 do not depend on the problem size. We see that both of the inexact
Picard-TTSCSP and the TTSCSP-like methods provide suitable results for different values
of n and N.

TTSCSP-Based Iteration Methods

Table 7: Numerical results for various Picard iteration methods.

15

N =32 N =64 N =128
7 Iteration o |0.1 1 10 0.1 1 10 0.1 1 10
0.1 P-MHSS IT;,; [1.01 1.01 1.02 |1.01 1.01 1.01 1.01 1.01 1.01
IT,,. |70 70 67 107 106 103 155 155 153
IT (71.01 71.01 68.02]108.01 107.01 104.01 [156.01 156.01 156.01
CPU [0.082 0.084 0.079]0.358 0.359 0.348 |2.166 2.142 2.116
P-LPMHSS | IT;,, [1.03 1.03 1.03 |1.03 1.03 1.03 1.03 1.03 1.03
IT,,. |35 35 35 34 34 34 34 34 34
IT [36.03 36.03 36.03|35.03 35.03 35.03 [35.03 35.03 35.03
CPU [0.048 0.047 0.048]|0.169 0.165 0.170 |[1.171 1.169 1.172
P-TSCSP IT;,. | 1.2 1.2 1.2 1.14 1.14 1.25 1.11 1.11 1.11
IT,. |6 6 6 8 8 9 10 10 9
IT 7.2 7.2 7.2 9.14 9.14 10.25 |11.11 11.11 10.11
CPU | 0.025 0.025 0.025|0.065 0.065 0.067 |0.398 0.397 0.393
P-TTSCSP | IT;,, [1.33 1.33 1.33 |1.25 1.25 1.25 1.25 1.25 1.25
IT,, |4 4 4 5 5 5 5 5 5
IT 533 5.33 5.33 [6.25 6.25 6.25 6.25 6.25 6.25
CPU [0.024 0.024 0.024|0.057 0.057 0.056 |0.318 0.310 0.323
0.01 [P-MHSS IT;,, [1.02 1.02 1.02]1.02 1.02 1.02 1.01 1.01 1.01
IT,,. |57 57 53 84 83 79 122 122 117
IT |58.02 58.02 54.02|85.02 84.02 80.02 |123.01 123.01 118.01
CPU (0.079 0.078 0.0720.340 0.331 0.315 |[2.057 2.023 1.960
P-LPMHSS | IT;,, | 1.04 1.04 1.04 |[1.04 1.04 1.04 1.04 1.04 1.04
IT,. |27 27 27 27 27 27 27 27 28
IT |28.04 28.04 28.04(28.04 28.04 28.04 |28.04 28.04 29.04
CPU | 0.046 0.048 0.048|0.165 0.165 0.165 [1.162 1.159 1.157
PTSCSP |IT,, [1.25 1.25 1.25 |1.17 1.17 1.17 1.11 1.11 1.11
IT,.|5 5 5 7 7 7 10 10 9
IT 1625 6.25 6.25 |8.17 8.17 8.17 11.11 11.11 10.11
CPU [0.025 0.025 0.025]|0.064 0.065 0.067 |[0.402 0.397 0.393
P-TTSCSP | IT,,, [1.50 1.50 1.50 |1.33 1.33 1.33 1.20 1.20 1.25
IT,. |3 3 3 4 4 4 6 6 5
IT 1450 4.50 4.50 |[5.33 5.33 5.33 7.20 7.20 6.25
CPU [0.024 0.023 0.0240.056 0.055 0.056 |[0.330 0.330 0.324
0.001 | P-MHSS IT,.[1.02 1.02 1.03 |1.02 1.02 1.02 1.02 1.02 1.02
IT,,. |43 43 39 63 62 60 92 92 90
IT [44.02 44.02 40.03|64.02 63.02 61.02 [93.02 93.02 91.02
CPU [0.074 0.074 0.069|0.335 0.326 0.318 |[2.014 1.996 1.942
P-LPMHSS | IT;,, [1.05 1.05 1.05 |1.05 1.05 1.05 1.05 1.05 1.05
IT,.. |21 21 22 21 21 21 21 21 21
IT [22.05 22.05 23.05|22.05 22.05 22.05 [22.05 22.05 22.05
CPU [0.046 0.047 0.047]0.168 0.161 0.158 |[1.145 1.152 1.169
P-TSCSP | IT;,,. [1.25 1.25 1.25 [1.20 1.20 1.20 1.17 1.17 1.17
IT,, |5 5 5 6 6 6 7 7 7
IT [6.25 6.25 6.25 |7.20 7.20 7.20 8.17 8.17 8.17
CPU | 0.025 0.025 0.026|0.072 0.070 0.072 [0.397 0.395 0.396
P-TTSCSP | IT;,, [1.50 1.50 1.50 |1.33 1.33 1.33 1.25 1.25 1.25
IT,. |3 3 3 4 4 4 5 5 5
IT 14.50 4.50 4.50 |5.33 5.33 5.33 6.25 6.25 6.25
CPU (0.023 0.023 0.0240.055 0.055 0.056 |[0.327 0.325 0.336

16

T.S. Siahkolaei and D.K. Salkuyeh

Table 8: Numerical results for various inexact Picard iteration methods.

N =32 N =64 N =128
7 Iteration e |0.1 1 10 0.1 1 10 0.1 1 10
0.1 P-IMHSS IT,, 101 1.01 1.01 |1.01 1.01 1.01 1.00 1.00 1.00
IT,,. |86 86 81 138 137 133 214 214 208
IT |87.01 87.01 82.01|139.01 138.01 134.01(215.00 215.00 209.00
CPU |0.218 0.219 0.205|1.242 1.226 1.160 |5.663 5.611 5.337
P-ILPMHSS | IT;,, | 1.03 1.03 1.03 |1.03 1.03 1.03 1.03 1.03 1.03
IT,,. | 34 34 34 34 34 34 34 34 34
IT [35.03 35.03 35.03|35.03 35.03 35.03 |35.03 35.03 35.03
CPU [0.274 0.281 0.263|1.192 1.200 1.350 |3.976 4.261 4.219
PITSCSP | IT;,,, |1.20 1.20 1.20 |1.14 1.14 1.13 1.10 1.10 1.10
IT,, |6 6 6 8 8 9 11 11 11
IT |7.20 7.20 7.20 |9.14 9.14 10.13 |12.10 12.10 12.10
CPU [0.064 0.067 0.070]|0.430 0.421 0.472 |2.089 2.161 2.115
PITTSCSP | IT;,, |1.33 1.33 1.33 |1.25 1.25 1.25 1.20 1.20 1.17
IT,, | 4 4 4 5 5 5 6 6 8
IT [5.33 5.33 5.33 |6.25 6.25 6.25 7.20 7.20 8.17
CPU [0.055 0.055 0.055|0.213 0.209 0.201 |0.781 0.771 0.824
0.01 | P-IMHSS IT,,, [1.01 1.01 1.02 |1.01 1.01 1.01 1.01 1.01 1.01
IT,,. |70 70 65 109 109 107 168 167 163
IT (71.14 71.01 66.02]110.01 110.01 108.01|169.01 168.01 164.01
CPU (0.213 0.214 0.200|1.203 1.179 1.134 |5.224 5.189 5.113
PILPMHSS | IT;,, | 1.04 1.04 1.04 |1.04 1.04 1.04 1.04 1.04 1.04
IT,. |27 27 27 27 27 27 27 27 27
IT |28.04 28.04 28.04(28.04 28.04 28.04 |[28.04 28.04 28.04
CPU [0.248 0.263 0.2411.081 1.231 1.078 |4.066 4.275 4.235
PITSCSP |IT,, |1.25 1.25 1.20 |1.17 1.17 1.17 1.13 1.13 1.13
IT,, |5 5 6 7 7 7 9 9 9
IT 1625 6.25 7.20 |8.17 8.17 8.17 10.13 10.13 10.13
CPU [0.067 0.069 0.0700.430 0.424 0.414 |2.315 2.308 2.161
P-ITTSCSP | IT;,, | 1.33 1.33 1.33 |1.33 1.33 1.33 1.20 1.20 1.25
IT,,. |4 4 4 4 4 4 6 6 5
IT 533 5.33 5.33 |5.33 5.33 5.33 7.20 7.20 6.25
CPU | 0.059 0.062 0.059|0.207 0.201 0.196 [0.935 0.905 0.956
0.001 | P-IMHSS IT,.[1.02 1.02 1.02 |1.01 1.01 1.01 1.01 1.01 1.01
IT,,. |51 50 48 81 81 77 127 127 127
IT [52.02 51.02 49.02|82.01 82.01 78.01 |128.01 128.01 128.01
CPU (0.230 0.217 0.219(1.238 1.223 1.157 |5.428 5.437 5.192
PILPMHSS | IT;,, | 1.05 1.05 1.05 |1.05 1.05 1.05 1.05 1.05 1.05
IT,. |20 20 20 20 20 20 21 21 21
IT [21.05 21.05 21.05|21.05 21.05 21.05 |21.05 21.05 21.05
CPU (0.287 0.248 0.247|1.326 1.404 1.147 |4.162 3.922 4.179
P-ITSCSP | IT;,. | 1.25 1.25 1.25 [1.20 1.20 1.20 1.17 1.17 1.14
IT,, |5 5 5 6 6 6 7 7 8
IT [6.25 6.25 6.25 |7.20 7.20 7.20 8.17 8.17 8.14
CPU [0.075 0.078 0.0770.491 0.496 0.477 |2.718 2.696 2.967
P-ITTSCSP | IT;,, | 1.33 1.33 1.33 |1.33 1.33 1.33 1.25 1.25 1.25
IT,,. |4 4 4 4 4 4 5 5 5
IT 533 5.33 5.33 [5.33 5.33 5.33 6.25 6.25 6.25
CPU [0.059 0.059 0.058]0.233 0.223 0.226 |0.995 0.970 0.999

TTSCSP-Based Iteration Methods

Table 9: Numerical results for Picard-TTSCSP iteration method, a,,., B,,. and a*, B*.

N =32 N = 64 N =128
0 01 1 10 01 1 10 01 1 10
Appe | 117 117 117 | 117 117 117 | 117 117 1.17
Bope | 031 031 030 [030 030 030 [020 0.20 0.20
IT,, | 1.33 133 133 | 125 125 125 | 125 125 1.25
IT,, | 4 4 4 5 5 5 5 5 5
IT |533 533 533 [625 625 6.25 | 625 6.25 6.25
CPU | 0.024 0.024 0.024 | 0.057 0.057 0.056 | 0.327 0.331 0.329
a* | 156 157 165 |1.80 181 1.85 | 203 203 2.05
B* 061 064 060 |056 056 054 | 049 0.49 0.49
IT,, | 1.25 1.25 125 | 120 1.20 120 | 117 117 1.20
IT,, | 5 5 5 6 6 6 7 7 6
IT |625 625 625 720 720 720 |817 817 7.20
CPU | 0.027 0.027 0.027 | 0.071 0.071 0.073 | 0.338 0.338 0.331

17

Table 10: Numerical results for MHSS-like, LPMHSS-like, TSCSP-like, TTSCSP-Ilike iteration methods.

Iteration o 0.1 1 10
N =32 | MHSS-like Aope | 0.34 0.34 0.35
IT 82 81 78
CPU | 0.0854 0.0863 0.0859
LPMHSS-like | a,, | 3.0 3.0 3.0
IT 35 35 35
CPU | 0.0589 0.0543 0.0530
TSCSP-like Aope | 0.43 0.43 0.43
IT 7 7 7
CPU | 0.0274 0.0282 0.0286
TTSCSP-like | a,, | 1.06 1.06 1.06
Bope | 0.36 0.36 0.36
IT 4 4 4
CPU | 0.0241 0.0255 0.0236
N =64 | MHSS-like Aope | 0.2 0.2 0.2
IT 125 124 120
CPU | 0.3611 0.3574 0.3498
LPMHSS-like | a,,, | 2.7 2.7 2.7
IT 35 35 35
CPU | 0.1477 0.1500 0.1480
TSCSP-like Aope | 0.35 0.35 0.35
IT 9 9 10
CPU | 0.0726 0.0743 0.0734
TTSCSP-like | a,, | 0.94 0.94 0.94
Bope | 029 0.29 0.29
IT 5 5 5
CPU | 0.0596 0.0594 0.0614

18 T.S. Siahkolaei and D.K. Salkuyeh

N =128 | MHSS-like | a,, | 0.12 012 0.12
IT | 181 181 178
CPU | 2.1688 2.1335 2.1049
LPMHSS-like | a,, | 235 235 235
IT |35 35 35
CPU | 0.7675 0.7805 0.7681
TSCSPlike | a,, | 0.24 024 0.24
IT |13 13 13
CPU | 0.3731 0.3748 0.3796
TTSCSPlike | a,, |0.82 082 0.82
Bope | 022 022 0.22
IT |6 6 6
CPU | 0.3138 0.3094 0.3136

Table 11: Numerical results for inexact MHSS-like, LPMHSS-like, TSCSP-like, TTSCSP-like iteration
methods.

Iteration o 0.1 1 10
N =32 | IMHSS-like Qope | 0.34 0.34 0.35
IT 82 81 78
CPU | 0.4466 0.4339 0.4094
ILPMHSS-like | a,,, | 3.0 3.0 3.0
IT 35 35 35

CPU | 0.2342 0.2326 0.2252
ITSCSPlike | a,, | 0.43 043 043
IT |7 7 7
CPU | 0.0702 0.0704 0.0702
ITTSCSPlike | a,, |1.06 ~ 1.06 1.06
Bope | 036 036 0.36
IT |4 4 4
CPU | 0.0520 0.0505 0.0492
N =64 | IMHSS-like | a,, |0.20 020 0.20
IT | 125 124 120
CPU | 2.8561 2.8323 2.7401
ILPMHSS-like | o | 2.7 2.7 2.7
IT |35 35 35
CPU | 1.0628 1.0487 1.0167
ITSCSP-like | @, | 035 035 0.35
IT |9 9 10
CPU | 0.3495 0.3405 0.3473
ITTSCSPlike | @, | 0.94 094 0.94
Bope | 029 029 029
IT |5 5 5
CPU | 0.1953 0.1930 0.1845

TTSCSP-Based Iteration Methods

N =128 | IMHSS-like Qope | 0.12 0.12 0.12
IT 181 181 178
CPU | 11.7168 11.4980 11.5725
ILPMHSS-like | a,,, | 2.37 2.37 2.37
IT 35 35 35
CPU | 4.7721 4.7076 4.5706
ITSCSP-like Qope | 0.24 0.24 0.24
IT 13 13 13
CPU | 2.2445 2.2148 2.1373
ITTSCSP-like | a,,, | 0.82 0.82 0.82
Bop: | 0.22 0.22 0.22
IT 6 6 6
CPU | 0.9811 0.9842 0.9589
7. Conclusion

19

We propose Picard-TSCSB Picard-TTSCSE nonlinear TSCSP-like and TTSCSP-like itera-
tion methods and their inexact versions for a class of large sparse systems of weakly non-
linear equations. Numerical experiments show that new iteration methods are efficient,
implementable and outperform well-known Picard-MHSS, Picard-LPMHSS, Picard-TSCSP

and Picard-TTSCSP iteration methods.

Acknowledgements

The authors would like to thank anonymous referees for their comments and sugges-

tions.

The work of Davod Khojasteh Salkuyeh was partially supported by the University of

Guilan.

References

[1] H.-B. An and Z.-Z. Bai, NGLM: A globally convergent Newton-GMRES method (in Chinese),
Math. Numer. Sinica 27, 151-174 (2005).
[2] H.-B. An and Z.-Z. Bai, A globally convergent Newton-GMRES method for large sparse systems
of nonlinear equations, Appl. Numer. Math. 57, 235-252 (2007).
[3] Z.-Z. Bai, A class of two-stage iterative methods for systems of weakly nonlinear equations, Nu-

mer. Algorithms 14, 295-319 (1997).

[4] Z.-Z. Bai, On the convergence of parallel chaotic nonlinear multisplitting Newton-type methods,

J. Comput. Appl. Math. 80, 317-334 (1997).

[5] Z.-Z. Bai, Parallel multisplitting two-stage iterative methods for large sparse systems of weakly
nonlinear equations, Numer. Algorithms 15, 347-372 (1997).
[6] Z.-Z.Bai, Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear

Algebra Appl. 16 447-479 (2009).

20
(7]
(8]
(9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
(17]
(18]
[19]

[20]
[21]

[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]

[31]

T.S. Siahkolaei and D.K. Salkuyeh

Z.-Z. Bai and H.-B. An, On efficient variants and global convergence of the Newton-GMRES
method (in Chinese), J. Numer. Meth. Comput. Appl. 26, 291-300 (2005).

Z.-Z. Bai, M. Benzi and E Chen, Modified HSS iteration methods for a class of complex symmetric
linear systems, Computing 87, 93-111 (2010).

Z.-Z. Bai, G.H. Golub and M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-
Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24 603-626 (2003).
Z.-Z. Bai and X.-P Guo, On Newton-HSS methods for systems of nonlinear equations with
positive-definite Jacobian matrices, J. Comput. Math. 28, 235-260 (2010).

Z-.Z.Bai and Y.-G. Huang, Asynchronous multisplitting two-stage iterations for systems of weakly
nonlinear equations, J. Comput. Appl. Math. 93, 13-33 (1998).

Z.-Z. Bai, Y.-M. Huang and M.K. Ng, On preconditioned iterative methods for Burgers equations,
SIAM J. Sci. Comput. 29, 415-439 (2007).

Z.-Z. Bai, Y.-M. Huang and M.K. Ng, On preconditioned iterative methods for certain time-
dependent partial differential equations, SIAM J. Numer. Anal. 47 1019-1037 (2009).

Z.-Z. Bai and X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl.
Numer. Math. 59 2923-2936 (2009).

M. Benzi and M.K. Ng, Preconditioned iterative methods for weighted toeplitz least squares prob-
lems, SIAM J. Matrix Anal. Appl. 27, 1106-1124 (2006).

R.S. Dembo, S.C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal.
19 400-408 (1982).

E. Galligani, The newton-arithmetic mean method for the solution of systems of nonlinear equa-
tions, Appl. Math. Comput. 134, 9-34 (2003).

X.-P Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25, 231-242
(2007).

D. Hezari, D.K. Salkuyeh and V. Edalatpour, A new iterative method for solving a class of complex
symmetric system of linear equathions, Numer. Algorithms 73, 927-955 (2016).

C.T. Kelley, Iterative methods for linear and nonlinear equations, SIAM (1995).

C.-X. Li and S.-L. Wu, On LPMHSS-based iteration methods for a class of weakly nonlinear
systems, Comp. Appl. Math. 37, 1232-1249 (2018).

X. Li, A.-L. Yang and Y.-J. Wu, Lopsided PMHSS iteration method for a class of complex symmetric
linear systems, Numer. Algorithms 66, 555-568 (2014).

L.D. Liao and G.E Zhang, Efficient preconditioner and iterative method for large complex sym-
metric linear algebraic systems, East Asian J. Appl. Math. 7, 530-547 (2017).

J.M. Ortega and W.C. Rheinboldyt, Iterative solution of nonlinear equations in several variables,
Academic Press (1970).

D.K. Salkuyeh, Two-step scale-splitting method for solving complex symmetric system of linear
equations, arXiv:1705.02468.

D.K. Salkuyeh and T.S. Siahkolaei, Two-parameter TSCSP method for solving complex symmetric
system of linear equations, Calcolo 55, 8 (2018).

A H. Sherman, On Newton-iterative methods for the solution of systems of nonlinear equations,
SIAM J. Numer. Anal. 15, 755-771 (1978).

T. Tang, Superconvergence of numerical solutions to weakly singular volterra integro-differential
equations, Numer. Math. 61, 373-382 (1992).

J. Wang, X.-B Guo and H.-X. Zhong, Accelerated GPMHSS method for solving complex systems
of linear equations, East Asian J. Appl. Math. 7, 143-155 (2017).

Y.-M. Wang, Parallel multisplitting methods for a class of systems of weakly nonlinear equations
without isotone mapping, Appl. Math. Comput. 109, 135-150 (2000).

W. Yang, Y.-J. Wu and J. Fu, On Picard-MHSS methods for weakly nonlinear systems (in Chinese),

TTSCSP-Based Iteration Methods 21

Math. Numer. Sinica 36, 291-302 (2014).
[32] M.-Z. Zhu and G.-E Zhang, On CSCS-based iteration methods for Toeplitz system of weakly
nonlinear equations, J. Comput. Appl. Math. 235, 5095-5104 (2011).

