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Abstract. A simple post-processing technique for finite element methods with L2-super-

convergence is proposed. It provides more accurate approximations for solutions of two-

and three-dimensional systems of partial differential equations. Approximate solutions

can be constructed locally by using finite element approximations uh provided that uh

is superconvergent for a locally defined projection ePhu. The construction is based on

the least-squares fitting algorithm and local L2-projections. Error estimates are derived

and numerical examples illustrate the effectiveness of this approach for finite element

methods.
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1. Introduction

The post-processing of approximate solutions is a commonly used procedure to ob-

tain more accurate approximations for important quantities in numerical methods for par-

tial differential equations [4–6, 22, 23]. Post-processing or/and recovery techniques have

been developed for plenty of finite element methods with superconvergence [1, 7, 8, 10,

12,13,15,18,20]. In particular, for the Raviart-Thomas and Brezzi-Douglas-Marini mixed

elements methods for second order elliptic problems, the post-processed approximations

with improved accuracy are constructed via element-by-element solution of local problems

with respect to the finite element solutions of the scalar variable and the Lagrange mul-

tiplier [1, 8]. In contrast to the post-processing methods [1, 8], Stenberg [18] proposed

an approach based on solving local problems with respect to the mixed finite element ap-

proximations of the scalar variable and its gradient. Following ideas of [18], Cockburn

et al. [12, 13] developed an element-by-element post-processing of the scalar variable for

the elliptic problems and velocity variable in the Stokes problem for HDG methods.
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Bramble and Xu [7] proposed a general post-processing technique for various mixed

finite element methods with the superconvergence estimate

‖ePhu− uh‖Lp(Ω) ≤ Chk+2| logh|µ1 (1.1)

and the gradient approximation estimate

‖∇u− (∇u)h‖Lp(Ω) ≤ Chk+1| logh|µ2 ,

where u is the exact solution of a system of partial differential equations on a domain

Ω ⊂ ℜ2, C > 0 a generic constant, which depends on u but not on the mesh size h; µ1,µ2

are nonnegative constants and uh ∈Wh and (∇u)h ∈ Vh are finite element approximations

of u and ∇u, respectively. Moreover, Wh and Vh are finite-dimensional subspaces of Lp(Ω),

p ≥ 1, Wh consists of discontinuous piecewise polynomials of degree at most k ≥ 0, and ePh is

a locally defined operator, which is invariant on polynomials of degree k. Under a regularity

condition for u, the post-processed approximation u∗
h

obtained from uh and (∇u)h, satisfies

the estimate

‖u− u∗h‖Lp(Ω) ≤ C
�
‖ePhu− uh‖Lp(Ω) + h‖∇u− (∇u)h‖Lp(Ω) + hk+2

�
.

Further, Zienkiewicz and Zhu [22, 23] used the well-known gradient recovery technique,

usually referred to as superconvergence patch recovery (SPR), to post-process the gradi-

ent ∇uh of the finite element solution uh. They constructed an SPR-recovered gradient

by a local discrete least-squares fitting of polynomials of degree k to the gradient values

at sampling points on element patches. The superconvergence properties of this technique

was discussed in Refs. [14,19,21]. Zhang and Naga [20] introduced a different gradient re-

covery method called the polynomial preserving recovery (PPR). To determine a recovered

gradient, the method uses the least-squares algorithm to assign a polynomial of degree k+1

to the solution at chosen nodal points and computes the corresponding partial derivatives.

Under certain conditions, the PPR post-processed gradient Ghuh satisfies the superconver-

gence estimate

‖∇u− Ghuh‖L∞(Ω0)
≤ C
�
hk+1| logh|r̄ + hk+σ

�
,

where σ is a positive constant, Ω0 ⊂⊂ Ω, r̄ = 1 if k = 1 and r̄ = 0 if k ≥ 2.

However, to the best of authors’ knowledge, there is no post-processing technique,

which uses only uh to construct a superconvergent post-processed approximation u∗
h
. Here,

we present a general post-processing technique for direct construction of the improved

approximation of u. The method is based on the least-squares algorithm and the local

L2-projection to determine a fitting polynomial from the finite element solution uh. Our

analysis depends only on a superconvergence result similar to (1.1) and the main result

is proved in general approximation-theoretic settings. Therefore, its application is not re-

stricted to the above mentioned finite element methods.

The rest of the paper is organised as follows. Section 2 contains necessary notations.

Section 3 is devoted to the construction of the post-processed approximation, the error

estimation, and the verification of assumptions. Finally, numerical results in Section 4 are

aimed to verify the performance of the post-processing method proposed.
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2. Notations

Let Ω be a bounded domain in Rn, n= 2,3. For any bounded domain D ⊂ Rn, n = 2,3

and a nonnegative integer m, we denote by Hm(D) the usual m-order Sobolev space on D

and let ‖ · ‖m,D and | · |m,D refer to the corresponding norm and semi-norm, respectively. In

particular, H0(D) is the space of square integrable functions L2(D) with the inner product

(·, ·)D and the norm || · ||0,D. If D = Ω, we write ‖ · ‖m := ‖ · ‖m,Ω and | · |m := | · |m,Ω. By

Pm(D) we denote the set of all polynomials on D of degree at most m.

Let Th be a shape regular partition of the domain Ω, which consists of closed polygons

T— cf. [11], with the mesh size h = maxT∈Th
hT , where hT is the diameter of T . The

partition Th can be conforming or nonconforming, which allows hanging nodes. Let Nh =

{x i : i = 1,2, . . . , nh} be the set of all nodes of the partition Th. For any x i ∈ Nh, we denote

by hi the length of the longest edge attached to x i and let Mi be the patch defined by

Mi = Mi(α) :=
⋃

T∈Th ,T⊆Bαhi
(xi )

T,

where Bαhi
(x i), α > 0 is the ball

Bαhi
(x i) := {x ∈ Ω :| x − x i |≤ αhi}.

If ni = ni(α) is the number of elements in the patch Mi, we set

Mh := {Mi : i = 1,2, . . . , nh}.

For any T ∈ Th and for any integer j ≥ 0, let P
j

T : L2(T ) −→ P j(T ) be the usual L2-

orthogonal projection. Define P
j

Mi
: L2(Mi) −→ L2(Mi), such that for any v ∈ L2(Mi) the

relation �
P

j

Mi
v
���

T
= P

j

T (v|T ) for all T ∈ Mi (2.1)

holds.

Throughout this paper, the notation a ® b (a ¦ b) means that a ≤ C b (a ≥ C b) with

a constant C , which depends on u but not on the mesh size h.

3. Main Results

Let us assume that every patch Mi ∈Mh satisfies the following conditions.

Condition 3.1. For a given integer k ≥ 0, there exists a nonnegative integer j ≤ k, such

that for any q ∈ Pk+1(Mi), Mi ∈Mh, the inequality

‖ q ‖0,Mi
®


P j

Mi
q




0,Mi
(3.1)

holds.
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Condition 3.2. Any v ∈ Hk+2(Mi), i = 1,2, . . . , nh satisfies the inequality

inf
w∈Pk+1(Mi)

‖v −w‖0,Mi
® hk+2|v|k+2,Mi

.

Condition 3.1 yields that Mi has enough elements. We note that if α1 > α2, then

ni(α1) > ni(α2), where ni(αi) is the number of element patches in Mi(α j), j = 1,2. Thus

it is natural to choose the smallest α satisfying Condition 3.1. On the other hand, Condi-

tion 3.2 represents the standard approximation property.

Condition 3.1 allows us to equip Pk+1(Mi) with an inner product and a norm.

Lemma 3.1. For any Mi ∈Mh, the inner product and the norm on the space Pk+1(Mi) can

be, respectively, defined as (P
j

Mi
·,P j

Mi
·)Mi

and ‖P j

Mi
· ‖0,Mi

.

Proof. Let us show that (P
j

Mi
·, P j

Mi
·)Mi

is an inner product on Pk+1(Mi). Recalling the

relation (2.1), we only have to show that if q ∈ Pk+1(Mi) and

�
P

j

Mi
q, P

j

Mi
q
�

Mi

= 0,

then q = 0. However, the condition (3.1) yields

‖ q ‖2
0,Mi
®


P j

Mi
q


2

0,Mi
=
�
P

j

Mi
q, P

j

Mi
q
�

Mi

= 0,

and the proof is completed.

3.1. Recovery operator

Definition 3.1. For any Mi ∈Mh, the local recovery operator RMi
: L2(Mi)→Pk+1(Mi) is

defined by the relations

�
P

j

Mi
RMi

v, P
j

Mi
q
�

Mi

=
�
P

j

Mi
v, P

j

Mi
q
�

Mi

for all v ∈ L2(Mi), q ∈ Pk+1(Mi).

According to Lemma 3.1, the operator RMi
is well-defined. Moreover, the following

result holds.

Lemma 3.2. For any Mi ∈ Mh, the recovery operator RMi
is an orthogonal projection onto

Pk+1(Mi) with respect to the inner product (P
j

Mi
·,P j

Mi
·)Mi

and if v ∈ L2(Mi), then

RMi
v = arg min

q∈Pk+1(Mi)



P j

Mi
(v − q)




0,Mi
.

Other consequences of Conditions 3.1 and the inequality 3.1 are presented in Lem-

mas 3.2-3.5.



44 W. Pi, H. Wang and X. Xie

Lemma 3.3. For any v ∈ L2(Mi) and Mi ∈Mh the inequalities



RMi
v




0,Mi
®


P j

Mi
v




0,Mi
® ‖v‖0,Mi

(3.2)

hold.

Lemma 3.4. For any v ∈ Hk+2(Mi) and Mi ∈Mh, the inequality

‖v − RMi
v‖0,Mi

® hk+2|v|k+2,Mi

holds.

Proof. Since w = RMi
w for any w ∈ Pk+1(Mi), Condition 3.2 and the inequality (3.2)

lead to the estimate

‖v − RMi
v‖0,Mi

= inf
w∈Pk+1(Mi)

‖v −w− RMi
(v −w)‖0,Mi

® inf
w∈Pk+1(Mi)

‖v −w‖0,Mi
® hk+2|v|k+2,Mi

as required.

Let ePh be an operator defined on L2(Ω), such that its restriction ePh|T : L2(T ) −→ L2(T ),

T ∈ Mi satisfies the conditions

(ePhw, v)T = (w, v)T (3.3)

valid for all w ∈ L2(T ) and all v ∈ P j(T ).

Lemma 3.5. If v ∈ L2(Mi) and Mi ∈Mh, then

RMi
v = RMi
ePhv. (3.4)

Proof. It follows from the definitions of RMi
, P

j

Mi
, P

j

T and the Eq. (3.3) that for v ∈ L2(Mi)

and q ∈ Pk+1(Mi) one has

�
P

j

Mi
RMi
ePhv, P

j

Mi
q
�

Mi

=
�
P

j

Mi

ePhv, P
j

Mi
q
�

Mi

=
∑

T∈Mi

�
P

j

T
ePhv, P

j

T q
�

Mi

=
∑

T∈Mi

�
ePhv, P

j

T q
�

Mi

=
∑

T∈Mi

�
v, P

j

T q
�

Mi

=
∑

T∈Mi

�
P

j

T
v, P

j

T
q
�

Mi

=
�
P

j

Mi
v, P

j

Mi
q
�

Mi

=
�
P

j

Mi
RMi

v, P
j

Mi
q
�

Mi

,

which yields the representation (3.4).



A New Post-Processing Technique for FEM with L2-Superconvergence 45

3.2. Post-processed approximation

For any T ∈ Th, we set

MT := {Mi ∈Mh : T ∈ Mi},

where nT is the number of element patches inMT .

Let uh ∈ L2(Ω) be a finite element approximation of u, such that

‖u− uh‖0 ® hr , r ≤ k + 1.

Considering a post-processed approximation u∗
h

defined by

u∗
h
|T =
∑

Mi∈MT

1

nT

(RMi
uh)|T , T ∈ Th, (3.5)

and using Lemmas 3.3, 3.4 and 3.5, we obtain the following results.

Theorem 3.1. If ePh satisfies the projection property (3.3) and u ∈ Hk+2(Ω), then

‖u− u∗h‖0 ® ‖ePhu− uh‖0 + hk+2|u|k+2. (3.6)

Moreover, if

‖ePhu− uh‖0 ® hk+2|u|k+2, (3.7)

then the superconvergence estimate

‖u− u∗
h
‖0 ® hk+2|u|k+2 (3.8)

holds.

Proof. It follows from (3.5) that



u− u∗h



2
0
=
∑

T∈Th



u− u∗h



2
0,T
≤
∑

Mi∈Mh

∑

T∈Mi





u−
∑

M j∈MT

1

nT

RM j
uh






2

0,T

=
∑

Mi∈Mh

∑

T∈Mi






∑

M j∈MT

1

nT

�
u− RM j

uh

�




2

0,T

®
∑

Mi∈Mh



u− RMi
uh



2
0,Mi

. (3.9)

Using triangle inequality and Lemmas 3.3 , 3.4 and 3.5, we obtain

‖u− RMi
uh‖0,Mi

® ‖u− RMi
u‖0,Mi

+ ‖RMi
u− RMi

uh‖0,Mi

® ‖u− RMi
u‖0,Mi

+ ‖RMi
(ePhu− uh)‖0,Mi

® hk+2|u|k+2,Mi
+ ‖ePhu− uh‖0,Mi

.

This and (3.9) first yield (3.6) and consequently (3.8).
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Remark 3.1. Theorem 3.1 can be applied to various finite element methods, including the

Raviart-Thomas triangular elements RTk and rectangular elements RT[k] with k ≥ 0, the

Brezzi-Douglas-Marini triangular elements BDMk and rectangular elements BDM[k] with

k ≥ 2, the PEERS elements, the mixed elements by Stenberg, the hybridised Discontinu-

ous Galerkin triangular elements HDGk and rectangular elements HDG[k] with k ≥ 1 —

cf. Refs. [1, 2, 8, 9, 12, 17]. Let us note the following properties of the above listed 2D-

elements:

(1) RTk elements (k ≥ 0): uh|T ∈ Pk(T ) and ePh|T : L2(T ) −→Pk(T ) is the L2-orthogonal

projection satisfying the projection property (3.3) for any j ≤ k and the superconver-

gence estimate (3.7).

(2) RT[k] elements (k ≥ 0): uh|T ∈ Qk(T ) and ePh|T : L2(T ) −→ Qk(T ) is the L2-

orthogonal projection satisfying (3.3) (with any j ≤ k) and (3.7). Here Qk(T ) de-

notes the set of all polynomials on T of degree at most k in each variable.

(3) BDMk and BDM[k] elements (k ≥ 2): uh|T ∈ Pk−1(T ) and ePh|T : L2(T ) −→ Pk−1(T )

is the L2-orthogonal projection satisfying (3.3) for any j ≤ k− 1 and (3.7).

(4) PEERS elements: uh|T ∈ P0(T ) and ePh|T : L2(T ) −→ P0(T ) is the L2-orthogonal

projection satisfying (3.3) for j = 0 and (3.7) with k = 0.

(5) The mixed elements by Stenberg (k ≥ 1): uh|T ∈ Pk−1(T ) and ePh|T : L2(T ) −→
Pk−1(T ) is the L2-orthogonal projection satisfying (3.3) for any j ≤ k− 1 and (3.7).

(6) HDGk and HDG[k] elements (k ≥ 1): uh|T ∈ Pk(T ) and ePh|T : L2(T ) −→ Pk(T ) is

an operator satisfying (3.3) for j = k− 1 and (3.7).

3.3. Discussion on Condition 3.1

As shown in Subsection 3.2, Condition 3.1 is crucial for the construction and evaluation

of the post-processed approximation u∗
h
. However, for a given j, Condition 3.1 requires the

availability of sufficiently large number of elements ni in Mi .

Theorem 3.2. If the inequality (3.1) holds for any q ∈ Pk+1(Mi), Mi ∈Mh, then

ni ≥
Cn

k+1+n

Cn
j+n

,

where n= 2 or n= 3 is the space dimension and Cn
l+n
= (l + n)!/(l!n!).

Proof. Since

Pl(Mi) = span
�
1, x1, x2, . . . , xn, x2

1 , x1 x2, . . . , x2
n, x l

1, x l−1
1 x2, . . . , x l

n

	
,

we can represent any q ∈ Pk+1(Mi) in the form

q = Pa,
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where

P :=
�
1, x1, x2, . . . , xn, x2

1
, x1 x2, . . . , x2

n
, x k+1

1
, x k

1
x2, . . . , x k+1

n

�
,

a= (a1, a2, . . . , aγ)
T , γ= dim(Pk+1) = Cn

k+1+n
.

It follows from (3.1) that if P
j

T q = 0 for all T ∈ Mi , then q = 0. Along with the definition

of the projection P
j

T
, this means that if the relation

(q, v)T =
�
P

j

T q, v
�

T
= 0 (3.10)

holds for any v ∈ Pj(T ), T ∈ Mi , then q = 0. Setting Mi = {Tl : l = 1,2, . . . , ni}, we obtain

that if (3.10) holds, then the condition

Aa= 0,

where A= (A1,A2, . . . ,Ani
)T and

Al =




(1,1)Tl
(1, x1)Tl

. . . (1, xn)Tl
(1, x2

1)Tl
. . . (1, x k+1

n )Tl

(x1, 1)Tl
(x1, x1)Tl

. . . (x1, xn)Tl
(x1, x2

1)Tl
. . . (x1, x k+1

n )Tl

...
...

...
...

...
...

...

(xn, 1)Tl
(xn, x1)Tl

. . . (xn, xn)Tl
(xn, x2

1)Tl
. . . (xn, x k+1

n )Tl

(x2
1 , 1)Tl

(x2
1 , x1)Tl

. . . (x2
1 , xn)Tl

(x2
1 , x2

1)Tl
. . . (x2

1 , x k+1
n )Tl

...
...

...
...

...
...

(x
j
n, 1)Tl

(x
j
n, x1)Tl

. . . (x
j
n, xn)Tl

(x
j
n, x2

1)Tl
. . . (x

j
n, x k+1

n )Tl




C
j

j+n
×Cn

k+1+n

yields a= 0.

It is easily seen that a necessary condition for this claim is

ni × Cn
j+n ≥ Cn

k+1+n
.

In other words, the number of equations in the system Aa = 0 is greater than or equal to

the number of variables.

Remark 3.2. This theorem states that for a given j, each patch Mi has to contain at least

Cn
k+1+n

/Cn
j+n

elements. On the other hand, for larger j, the number Cn
k+1+n

/Cn
j+n

becomes

smaller. Therefore, it would be natural to choose the largest j such that Condition 3.1 and

the projection property (3.3) hold. We refer the reader to Remark 3.1 for the range of j in

the case of specific elements.

Since Condition 3.1 depends on the choice of Mi ∈ Mh, it is not easy to provide gen-

eral recommendations for its verification. However, for certain structured meshes with

all patches M1, M2, . . . , Mnh
having the same number of elements, the verification of this

condition on each Mi can be done on a reference patch M̂ . To this end, we assume that

Mi =

ni⋃

l=1

Tl , M̂ =

ni⋃

l=1

T̂l , (3.11)
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where Tl = Ψl(T̂l), the function Ψl : Rn→ Rn is defined by

Ψ(x̂) := Bl x̂+ bl ,

the matrix Bl ∈ Rn×n is invertible and b ∈ Rn. For any v ∈ L2(Mi), we define v̂(x̂) :=

v(Ψ(x̂)).

Theorem 3.3. Assume that the conditions (3.11) hold and

‖q̂‖2
0,M̂
®


P j

M̂
q̂


2

0,M̂
for any q̂ ∈ Pk+1(M̂). (3.12)

Then

‖q‖20,Mi
®


P j

Mi
q


2

0,Mi
for any q ∈ Pk+1(Mi). (3.13)

Proof. It follows from the definitions of the projections P
j

T̂
and
c
P

j

T that for any T =

Tl , T̂ = T̂l , v ∈ L2(T ) we have

�
P

j

T̂
v̂, ŵ
�

T̂
= (v̂, ŵ)T̂ = (v, w)T =

�
P

j

T v, w
�

T
=
�d
P

j

T v, ŵ
�

T̂
for all w ∈ P j(T ).

Therefore,

P
j

T̂
v̂ =
d
P

j

T v.

This and the condition (3.12) yield that for any q ∈ Pk+1(Mi), we have

‖q‖20,Mi
=

ni∑

l=1

‖q‖20,Tl
=

ni∑

l=1

‖q̂‖2
0,T̂l
= ‖q̂‖2

0,M̂

®


P j

M̂
q̂


2

0,M̂
=

ni∑

l=1



P j

T̂l

q̂


2

0,T̂l
=

ni∑

l=1



ÔP j

Tl
q


2

0,T̂l

=

ni∑

l=1



P j

Tl
q


2

0,Tl
=


P j

Mi
q


2

0,Mi
,

and (3.13) is proved.

Remark 3.3. Since Tl = Ψl(T̂l), l = 1,2, . . . , ni, this theorem can be used in the case of

structured simplicial meshes or parallelogram/parallelepiped meshes.

As an example, we verify the condition (3.12) with k = 1 and j = 1 for rectangular

meshes — i.e.

‖q̂‖2
0,M̂
®


P1

M̂
q̂


2

0,M̂
for all q̂ ∈ P2(M̂),

where the reference patch M̂ is the square [−1,1]× [−1,1]— cf. Fig. 1, which consists of

four reference rectangles T̂i, i = 1,2,3,4 — cf. Fig. 2. For q̂ ∈ P2(M̂), we assume that

q̂ = a1 x̂2 + a2 ŷ2 + a3 x̂ + a4 ŷ + a5 x̂ ŷ + a6,

P1

T̂i

q̂ =Ai x̂ +Bi ŷ +Ci ,
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Figure 1: Re
tangular mesh, k = 1, j = 1. Left: pat
h M with respe
t to node z. Right: referen
e pat
h

M̂ .

Figure 2: Subelements T̂i, i = 1, 2, 3, 4 in referen
e pat
h M̂ .

where al ,Ai,Bi, Ci, l = 1,2, . . . , 6 and i = 1,2, . . . , 4 are constants.

According to the definition of the projection P1

M̂
, we have

(q̂, x̂)T̂i
=
�
P1

T̂i

q̂, x̂
�

T̂i
, (q̂, ŷ)T̂i

=
�
P1

T̂i

q̂, ŷ
�

T̂i
, (q̂, 1)T̂i

=
�
P1

T̂i

q̂, 1
�

T̂i
, i = 1,2, . . . , 4,

and simple calculations show that

A1 =a1 + a3 +
1

2
a5, B1 = a2 + a4 +

1

2
a5, C1 = −

1

6
a1 −

1

6
a2 −

1

4
a5 + a6,

A2 =a1 + a3 −
1

2
a5, B2 = −a2 + a4 +

1

2
a5, C2 = −

1

6
a1 −

1

6
a2 −

1

4
a5 + a6,

A3 =− a1 + a3 +
1

2
a5, B3 = a2 + a4 −

1

2
a5, C3 = −

1

6
a1 −

1

6
a2 −

1

4
a5 + a6,

A4 =− a1 + a3 −
1

2
a5, B4 = −a2 + a4 −

1

2
a5, C4 = −

1

6
a1 −

1

6
a2 −

1

4
a5 + a6.
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Therefore,



P1

M̂
q̂


2

0,M̂
=

4∑

i=1

‖P1

T̂i
q̂‖2

0,T̂i
=

1

3
A 2

1 +
1

3
B2

1 +C
2
1 +

1

2
A1B1 +B1C1 +A1C1

+
1

3
A 2

2 +
1

3
B2

2 +C
2
2 −

1

2
A2B2 −B2C2 +A2C2

+
1

3
A 2

3 +
1

3
B2

3 +C
2
3 −

1

2
A3B3 +B3C3 −A3C3

+
1

3
A 2

4 +
1

3
B2

4 +C
2
4 +

1

2
A4B4 −B4C4 −A4C4

=
1

3
a2

1 +
1

3
a2

2 +
4

3
a2

3 +
4

3
a2

4 +
5

12
a2

5 +

�
1

3
a1 +

1

3
a2 − a5 + a6

�2

+
1

3
(a1 + a2 + 3a6)

2.

On the other hand,

‖ŵ‖2
0,M̂
=

16

45
a2

1 +
16

45
a2

2 +
4

3
a2

3 +
4

3
a2

4 +
4

9
a2

5 +
4

9
(a1 + a2 + 3a6)

2,

so that

‖q̂‖2
M̂
≤ 2


P j

T q̂


2

M̂
.

4. Numerical Results

In this section, we apply the proposed post-processing method to the triangular ele-

ments RTk, BDMk, HDGk and to the rectangular elements RT[k], BDM[k], HDG[k]. To this

end, we consider the following second order elliptic equations:

q+∇u= 0 in Ω,

∇ · q= f in Ω,

u = g on ∂Ω,

(4.1)

where Ω ⊂ R2 is a bounded polyhedral domain, f ∈ L2(Ω) and g ∈ H1/2(∂Ω).

For simplicity, we follow the HDG framework of [12] to describe the finite element

schemes considered. Let Th :=
⋃
{T} be a conforming and shape regular partition of Ω,

where each T is a polyhedral element. Denote by bh :=
⋃
{F} the set of all edges/faces of

all T ∈ Th, and let ∂Th := {∂ T : T ∈ Th}. We consider the local finite dimensional spaces

V(T ), W (T ) and fW (F) and set

Vh :=
�
v ∈ L2(Th) : v|T ∈ V(T ) for any T ∈ Th

	
,

Wh :=
�

w ∈ L2(Th) : w|T ∈W (T ) for any T ∈ Th

	
,

fWh(g) :=
�
µ ∈ L2(Th) : µ|F ∈fW (F), (µ, µ̃)F∩∂Ω = (g, µ̃)F∩∂Ω

for any F ∈ bh,∀µ̃ ∈fW (F)
	

.
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Notice that

fWh(0) =
�
µ ∈ L2(Th) : µ|F ∈fW (F) for all F ∈ bh and µ|∂Ω = 0

	
.

The HDG method for the problem (4.1) consists in finding (uh,qh, ûh) ∈Wh×Vh×fWh(g)

such that

(qh,v)Th
− (uh,∇ · v)Th

+ 〈ûh,v · n〉∂ Th
= 0 for any v ∈ Vh, (4.2a)

(w,∇ · qh)Th
+ 〈α(uh − ûh), w〉∂ Th

= ( f , w)∂ Th
for any w ∈Wh, (4.2b)

〈qh · n+α(uh − ûh),µ〉∂ Th
= 0 for any µ ∈fWh(0), (4.2c)

where

(·, ·)Th
:=
∑

T∈Th

(·, ·)T , 〈·, ·〉∂ Th
:=
∑

T∈Th

(·, ·)∂ T

and α is a nonnegative penalty function defined on ∂Th.

Within the framework (4.2), there are elements of six types — viz. the hybridised ver-

sions of RTk, RT[k], BDMk, BDM[k] and the hybridised discontinuous Galerkin elements

HDGk, HDG[k], which respectively correspond to the following choices of local spaces

V(T ), W (T ) and fW (F) and penalty functions α:

• Hybridised RTk triangular elements: k ≥ 0, V(T ) = Pk(T )
2 + Pk(T )x , W (T ) =

Pk(T ), fW (F) =Pk(F) and α= 0. Here and in the following x = (x , y)t .

• Hybridised RT[k] rectangular elements: k ≥ 0, V(T ) = Pk(T )
2 +Pk(T )x , W (T ) =

Qk(T ), fW (F) =Pk(F) and α = 0.

• Hybridised BDMk triangular elements: k ≥ 2, V(T ) = Pk(T )
2, W (T ) = Pk−1(T ),

fW (F) =Pk(F) and α= 0.

• Hybridised BDM[k] rectangular elements: k ≥ 2, V(T ) =Pk(T )
2+∇× (x y x k)+∇×

(x y yk), W (T ) =Pk−1(T ), fW (F) =Pk(F) and α = 0.

• HDGk triangular elements: k ≥ 1, V(T ) = Pk(T )
2, W (T ) = Pk(T ), fW (F) = Pk(F)

and α= 1/hT .

• HDG[k] rectangular elements: k ≥ 1, V(T ) = Pk(T )
2 +∇ × (x yP̄k(T )), W (T ) =

Pk(T ), fW (F) = Pk(F), and α = 1/hT . Here P̄k(T ) is the set of all homogeneous

polynomials on T of the degree at most k.

We recall that the hybridised RT elements and hybridised BDM elements are equivalent to

the corresponding RT and BDM mixed elements, respectively [1,8].

Let Ω= (0,1)× (0,1) and f and g be functions such that the function

u = sin(πx) · sin(πy)

is the solution of the model problem (4.1).
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We compute the hybridised RTk and RT[k] elements for k = 0,1,2, the hybridised BDMk

and BDM[k] elements for k = 2,3, and the HDGk and HDG[k] elements for k = 1,2 on the

N × N uniform meshes with N = 4,8,16,32 — cf. Fig. 3.

Figure 3: 8× 8 uniform triangular and re
tangular meshes.

Fig. 4 demonstrates the patch choice for an interior or a boundary node z = x i with the

corresponding Mi consisting of shadow elements. If j = k and j = k − 1, we choose Mi as

in Figs. 4(a)-4(c) for triangular meshes and as in Figs. 4(g)-4(h) for rectangular meshes.

Although it was recommended in Theorem 3.2 and Remark 3.2 to choose the largest j such

that for a given k Condition 3.1 and the projection property (3.3) hold, a smaller j also

works well in the post-processing method proposed. To show this, we also consider RTk for

k = 2, j = 0. Figs. 4(d)-4(e) show possible choices of Mi in this situation.

a) b) c)

d) e) f)

g) h) i)

Figure 4: Element sele
tion for Mi.
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Tables 1-7 provide numerical relative errors ‖u−uh‖0,‖ePhu−uh‖0, and ‖u−u∗
h
‖0 for the

elements RTk, RT[k], BDMk, BDM[k], HDGk, and HDG[k]. In particular, we want to point

out the following features:

• ‖ePhu−uh‖0 has the convergence order k+2 for all elements, which satisfy the super-

convergence estimate (3.7).

• The corresponding post-processing solution u∗
h

is of higher accuracy than the finite

element solution uh. More precisely, ‖u−u∗
h
‖0 has the same convergence order k+2

as ‖ePhu− uh‖0, consistent with Theorem 3.1.

Table 1: Convergen
e history for RTk triangular elements, j = k.

Degree k Mesh
‖u− uh‖0
‖u‖0

‖ePhu− uh‖0
‖u‖0

‖u− u∗
h
‖0

‖u‖0
Error Order Error Order Error Order

0 4× 4 2.57E-01 - 1.66E-02 - 8.24E-02 -

8× 8 1.30E-01 0.98 4.50E-03 1.88 1.92E-02 2.10

16× 16 6.54E-02 0.99 1.18E-03 1.93 4.00E-03 2.26

32× 32 3.27E-02 1.00 2.85E-04 2.04 8.75E-04 2.19

1 4× 4 3.91E-02 - 1.80E-03 - 2.08E-02 -

8× 8 9.90E-03 1.98 2.12E-04 3.08 2.40E-03 3.11

16× 16 2.50E-03 1.99 2.61E-05 3.02 3.19E-04 2.90

32× 32 6.21E-04 2.00 3.26E-06 3.00 3.77E-05 2.94

2 4× 4 4.30E-03 - 7.01E-04 - 3.50E-03 -

8× 8 5.49E-04 2.97 4.53E-05 3.94 2.56E-04 3.77

16× 16 6.89E-05 2.99 2.87E-06 3.98 1.72E-05 3.90

32× 32 8.63E-06 3.00 1.85E-07 3.96 1.01E-06 3.95

Table 2: Convergen
e history for RTk triangular elements, j ≤ k− 1.

Degree k Mesh
‖u− uh‖0
‖u‖0

‖u− u∗
h
‖0

‖u‖0
( j = 0)

‖u− u∗
h
‖0

‖u‖0
( j = 1)

Error Order Error Order Error Order

1 4× 4 3.91E-02 - 4.27E-02 - -

8× 8 9.90E-03 1.98 5.81E-03 2.91 -

16× 16 2.50E-03 1.99 7.48E-04 2.96 -

32× 32 6.21E-04 2.00 9.56E-05 2.97 -

2 4× 4 4.30E-03 - 4.48E-03 - 3.80E-03 -

8× 8 5.49E-04 2.97 3.25E-04 3.78 2.70E-04 3.81

16× 16 6.89E-05 2.99 2.27E-05 3.84 1.83E-05 3.89

32× 32 8.63E-06 3.00 1.54E-06 3.88 1.18E-06 3.95
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Table 3: Convergen
e history for BDMk triangular elements, j = k− 1.

Degree k Mesh
‖u− uh‖0
‖u‖0

‖ePhu− uh‖0
‖u‖0

‖u− u∗
h
‖0

‖u‖0
Error Order Error Order Error Order

2 4× 4 3.91E-02 - 1.70E-03 - 1.44E-02 -

8× 8 9.90E-03 1.98 1.10E-04 3.95 8.52E-04 4.07

16× 16 2.50E-03 1.99 6.94E-06 3.98 4.00E-05 4.41

32× 32 6.21E-04 2.00 4.13E-07 4.07 1.92E-06 4.38

3 4× 4 4.30E-03 - 4.68E-05 - 7.70E-03 -

8× 8 5.49E-04 2.97 1.67E-06 4.80 3.21E-04 4.58

16× 16 6.89E-05 2.99 5.57E-08 4.91 1.15E-05 4.81

32× 32 8.63E-06 3.00 1.79E-09 4.96 3.70E-07 4.95

Table 4: Convergen
e history for HDGk triangular elements, j = k− 1.

Degree k Mesh
‖u− uh‖0
‖u‖0

‖ePhu− uh‖0
‖u‖0

‖u− u∗
h
‖0

‖u‖0
Error Order Error Order Error Order

1 4× 4 4.55E-02 - 2.30E-03 - 3.84E-02 -

8× 8 1.09E-02 2.06 3.10E-04 2.89 4.93E-03 2.96

16× 16 2.70E-03 2.01 3.86E-05 3.00 6.18E-04 2.99

32× 32 6.70E-04 2.01 4.83E-06 3.00 7.76E-05 3.00

2 4× 4 5.39E-03 - 8.36E-04 - 4.76E-03 -

8× 8 6.81E-04 2.98 5.37E-05 3.96 3.12E-04 3.93

16× 16 8.60E-05 2.98 3.42E-06 3.97 2.02E-05 3.94

32× 32 1.08E-06 2.99 2.13E-07 4.00 1.24E-06 4.02

Table 5: Convergen
e history for RT[k] re
tangular elements, j = k.

Degree k Mesh
‖u− uh‖0
‖u‖0

‖ePhu− uh‖0
‖u‖0

‖u− u∗
h
‖0

‖u‖0
Error Order Error Order Error Order

0 4× 4 3.17E-01 - 4.73E-02 - 1.06E-01 -

8× 8 1.59E-01 0.99 1.26E-02 1.90 1.79E-02 2.57

16× 16 8.01E-02 0.99 3.20E-03 1.97 3.90E-03 2.19

32× 32 4.01E-02 1.00 8.02E-04 1.99 9.57E-04 2.02

1 4× 4 3.22E-02 - 5.33E-04 - 1.49E-02 -

8× 8 8.10E-03 1.99 5.61E-05 3.25 1.9E-03 2.97

16× 16 2.00E-03 2.02 6.30E-06 3.15 2.30E-04 3.05

32× 32 5.08E-04 1.98 7.60E-07 3.06 2.75E-05 3.06

2 4× 4 2.10E-03 - 1.41E-05 - 1.70E-03 -

8× 8 2.69E-04 2.96 7.42E-07 4.24 9.68E-05 4.13

16× 16 3.41E-05 2.98 4.12E-08 4.17 5.98E-06 4.02

32× 32 4.20E-06 3.02 2.50E-9 4.04 3.74E-07 4.00
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Table 6: Convergen
e history for BDM[k] re
tangular elements, j = k− 1.

Degree k Mesh
‖u− uh‖0
‖u‖0

‖ePhu− uh‖0
‖u‖0

‖u− u∗
h
‖0

‖u‖0
Error Order Error Order Error Order

2 4× 4 5.94E-02 - 1.70E-03 - 6.30E-03 -

8× 8 1.51E-02 1.97 1.10E-04 3.95 4.32E-04 3.86

16× 16 3.80E-03 1.99 6.94E-06 3.98 2.57E-05 4.07

32× 32 9.50E-04 2.00 4.13E-07 4.07 1.53E-06 4.07

3 4× 4 7.50E-03 - 6.68E-05 - 1.30E-03 -

8× 8 9.55E-04 2.97 1.85E-06 5.16 2.88E-05 5.49

16× 16 1.20E-04 2.99 5.14E-08 5.17 7.45E-07 5.27

32× 32 1.50E-05 3.00 1.56E-09 5.04 2.33E-08 5.00

Table 7: Convergen
e history for HDG[k] re
tangular elements, j = k− 1.

Degree k Mesh
‖u− uh‖0
‖u‖0

‖ePhu− uh‖0
‖u‖0

‖u− u∗
h
‖0

‖u‖0
Error Order Error Order Error Order

1 4× 4 6.29E-02 - 2.52E-03 - 3.94E-02 -

8× 8 1.59E-02 1.98 3.23E-04 2.96 5.03E-03 2.97

16× 16 4.01E-03 1.99 4.08E-05 2.98 6.31E-04 2.99

32× 32 1.01E-04 1.99 5.13E-06 2.99 7.89E-05 3.00

2 4× 4 8.67E-03 - 9.53E-04 - 6.76E-03 -

8× 8 1.10E-03 2.97 6.25E-05 3.93 4.43E-04 3.93

16× 16 1.39E-04 2.99 3.92E-06 3.99 2.83E-05 3.97

32× 32 1.74E-05 2.99 2.45E-07 4.00 1.78E-06 3.99
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