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Abstract. An STPG spectral method for TFFP equations with nonsmooth solutions is

developed. The numerical scheme is based on generalised Jacobi functions in time

and Legendre polynomials in space. The generalised Jacobi functions match the lead-

ing singularity of the corresponding problem. Therefore, the method performs better

than methods with polynomial bases. The stability and convergence of the method are

proved. Numerical experiments confirm the theoretical error estimates.

AMS subject classifications: 35R11, 35Q84, 65M70, 65M60, 65M12

Key words: Time fractional Fokker-Planck equation, nonsmooth solution, generalised Jacobi func-

tions, space-time Petrov-Galerkin spectral method, error estimate.

1. Introduction

We consider the time fractional Fokker-Planck (TFFP) equation [22,23]

∂tu =
R
0
D1−α

t

�

∂x[p(x)u(x , t)] + Kα∂x xu(x , t) + f (x , t)
	

,

(x , t) ∈ (a, b)× (0, T ]
(1.1)

with the initial and boundary conditions

u(x , 0) = u0(x), x ∈ (a, b),

u(a, t) = ua(t), u(b, t) = ub(t), t ∈ I := [0, T ],
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where u(x , t) is a probability density function, p(x) a nonpositive and monotonically de-

creasing function in the interval [a, b], Kα > 0 a diffusion constant and R
0 D1−α

t , 0 < α ≤ 1

the left Riemann-Liouville fractional derivative defined by

R
0
D1−α

t
u(t) :=

1

Γ (α)

d

d t

∫ t

0

u(s)

(t − s)1−α
ds, t ∈ I .

If α = 1, the Eq. (1.1) becomes the classical Fokker-Planck (FP) equation. However, clas-

sical FP equations do not properly describe anomalous diffusion processes in highly non-

homogeneous medium spaces [3, 24]. Instead, fractional Fokker-Planck (FFP) equations

should be used. For example, space fractional Fokker-Planck equations are adopted to

describe Lévy flights, TFFP equations to characterise the traps, and the space and time frac-

tional Fokker-Planck (STFFP) equations handle competition between Lévy flights and traps

— [1,2,9,11,15,16,19,24,25].

Lately, numerical methods for the Eq. (1.1) attracted considerable attention. Thus finite

difference methods are discussed in [4,5,7,13,31,32] and finite element methods and fi-

nite volume methods in [8,14,17,18,36]. Recently Zheng et al. [35] proposed a space-time

spectral method based on Jacobi polynomials for temporal discretisation and on Fourier-

like basis functions for spatial discretisation, whereas Yang et al. [33] suggested a spectral

collocation method based on both temporal and spatial discretisations with a spectral ex-

pansion of Jacobi interpolation polynomials. For the STFFP equation, Zhang et al. [34]

employed a time-space spectral method with Jacobi polynomials for temporal discretisa-

tion and Legendre polynomials for spatial discretisation. A pseudospectral method was

discussed in [12,30].

It is worth noting that polynomial approximations are not efficient in the case of Caputo

or Riemann-Liouville fractional differential equations because of initial or endpoint singu-

larities in the solutions. As is shown in [33–35], the methods using Jacobi polynomials

in the discretisation of time fractional derivatives, may not be of the highest accuracy —

viz. these methods fail to achieve spectral accuracy when solutions are not smooth. Nev-

ertheless, Chen et al. [6] showed that the Petrov-Galerkin method using generalised Jacobi

functions (GJFs) is efficient for a class of prototypical fractional initial value problems and

fractional boundary value problems of general order.

The aim of this work is to study a space-time Petrov-Galerkin (STPG) spectral method

for TFFP equations with nonsmooth solutions. In order to match the singularities in the

corresponding solutions, time fractional derivatives can be approximated by suitable GJFs

[6,28,29], while Legendre polynomials are employed for space approximations [26]. More-

over, we also analyse the errors of the method proposed.

The remainder of this paper is organised as follows. In Section 2, equivalent equations

for the Eq. (1.1) are provided and some functional spaces as well as projection operators

are defined. In Section 3, we consider a Petrov-Galerkin method for the TFFP equation.

Section 4 deals with error estimates for the STPG spectral scheme. Numerical results, pre-

sented in Section 5, support theoretical findings and show the effectiveness of the scheme.

Our conclusions are in the last section.
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2. Preliminaries

In this section we introduce necessary operators and spaces and rewrite the Eq. (1.1)

in different forms. Besides, we recall properties of shifted GJFs and shifted Legendre poly-

nomials. Note that in what follows, the notation A® B means that A≤ cB with a positive

constant c independent of functions and discretisation parameters.

2.1. Equivalent Equations

According to [35], the Eq. (1.1) can be represented in the form

C
0

Dα
t
u(x , t) = ∂x[p(x)u(x , t)] + Kα∂x xu(x , t) + f (x , t). (2.1)

Noting that

R
0
Dα

t
u(t) = C

0
Dα

t
u(t) +

u(0)

Γ (1−α) t
−α, t ∈ I

and using the representation u(x , t) = uh(x , t) + u0(x) with uh(x , 0) := 0, we write the

Eq. (2.1) as

R
0 Dαt uh(x , t) = ∂x[p(x)u

h(x , t)] + Kα∂x xuh(x , t) + g(x , t), (x , t) ∈ Ω, (2.2)

where

g(x , t) = f (x , t) + Kα∂x xu0(x) + ∂x[p(x)u0(x)].

In what follows, we consider the Eq. (2.2) and, for simplicity, we set Λ := (a, b) = (−1,1),

so that the homogeneous initial and boundary conditions are

uh(x , 0) = 0, x ∈ Λ, (2.3)

uh(±1, t) = 0, t ∈ I . (2.4)

2.2. Functional spaces and their properties

For the bounded domain I , we define the space

Hs(I) =
�

v ∈ L2(I)|∃ ṽ ∈ Hs(R) such that ṽ|I = v
	

with the norm:

‖v‖s,I = inf
ṽ∈Hs(R), ṽ|I=v

‖ṽ‖s,R.

Let C∞0 (I) be the set of smooth functions with compact support in I . Following [20], we

denote by Hs
0(I) the closure of C∞0 (I) in the norm ‖ · ‖s,I . Moreover, we consider the

following spaces

0C∞(I) =
�

v|v ∈ C∞(I) with compact support in (0,1]
	

,

r
0
C∞(I) =
�

v|v ∈ C∞(I) with compact support in [0,1)
	

.
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By 0Hs(I) we denote the closure of 0C∞(I) in the norm ‖ ·‖s,I . If X is a Sobolev space with

the norm ‖ · ‖X , then we consider the set

Hs(I; X ) :=
�

v|‖v(·, t)‖X ∈ Hs(I)
	

, 0Hs(I; X ) :=
�

v|‖v(·, t)‖X ∈ 0Hs(I)
	

,

and equip it with the norm

‖v‖Hs(I ;X ) := ‖‖v(·, t)‖X ‖s,I , s ≥ 0.

We also consider the set

Bs(Ω) := Hs(I , L2(Λ)) ∩ L2(I , H1
0
(Λ))

and equip it with the norm

‖v‖Bs(Ω) :=

�

‖v‖2
Hs(I ,L2(Λ))

+ ‖v‖2
L2(I ,H1

0
(Λ))

�1/2

.

It is easily seen that Bs(Ω) is a Banach space.

We recall some definitions from [20]. Let s > 0. By Hs
l
(I) we denote the closure of

0C∞(I) with respect to the semi-norm |v|Hs
l
(I) := ‖R0 Ds

t v‖L2(I) and the norm ‖v‖Hs
l
(I) :=

(‖v‖L2(I) + |v|Hs
l
(I))

1/2. And by Hs
r(I) the closure of r

0C∞(I) with respect to the semi-norm

|v|Hs
r(I)

:= ‖Rt Ds
T v‖L2(I) and the norm ‖v‖Hs

r(I)
:= (‖v‖L2(I) + |v|Hs

r(I)
)1/2. Besides, if s 6=

n+1/2, then Hs
c
(I) refers to the closure of C∞

0
(I) with respect to the semi-norm |v|Hs

c(I)
:=

|(R0 Ds
t v, R

t Ds
T v)I |1/2 and the norm ‖v‖Hs

c(I)
:= (‖v‖L2(I)+ |v|Hs

c(I)
)1/2.

Lemma 2.1 (cf. Refs. [20,21,29]). For s > 0 and s 6= n+1/2, the spaces Hs
l
(I), Hs

r(I), Hs
c(I)

and Hs
0(I) are equal in the sense that their seminorms and also the norms are equivalent. In

particular, if s = α/2, 0< α < 1, then

H
α/2
0
(I) = Hα/2(I) = 0Hα/2(I).

In addition, if v ∈ Hs
l
(I), then ‖v‖L2(I) ® |v|Hs

l
(I), if v ∈ Hs

r(I), then ‖v‖L2(I) ® |v|Hs
r(I)

, and if

ω ∈ 0H1(I) and v ∈ 0Hα/2(I), then

�

R
0
Dα

t
v,ω
�

I
=
�

R
0
D
α/2
t v, R

t
D
α/2
T
ω
�

I
.

2.3. Trial and test functions in time

Let α,β > −1 and χ(α,β)(x) := (1− x)α(1+ x)β . We consider the set of standard Jacobi

polynomials P
(α,β)
n (x), x ∈ Λ of degree n. This is a complete L2

χ(α,β)(Λ)-orthogonal set —

i.e.
∫ 1

−1

P
(α,β)

l
(x)P(α,β)

m
(x)χ(α,β)(x)d x = γ

(α,β)

l
δl ,m, (2.5)
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where δl ,m is the Kronecker function and

γ
(α,β)

l
=

2α+β+1

2l +α+ β + 1

Γ (l +α+ 1)Γ (l + β + 1)

l!Γ (l +α+ β + 1)
.

The shifted Jacobi polynomials of degree n are defined by

P̃(α,β)
n (t) = P(α,β)

n

�

2t − T

T

�

, t ∈ I , n≥ 0. (2.6)

It is easily seen that the polynomials P̃
(α,β)
n (t) form a complete L2

ω(α,β)(I)-orthogonal system

with respect to the weight function ω(α,β)(t) = (T − t)α tβ . It follows from (2.5) and (2.6)

that
∫

I

P̃
(α,β)

l
(t)P̃(α,β)

m
(t)ω(α,β)(t)d t =

�

T

2

�α+β+1

γ
(α,β)

l
δl ,m.

For any α,β > −1, the shifted generalised Jacobi functions J
(α,β)
n and the corresponding

approximation space F
(α)
N (I) are defined by

J (α,β)
n (t) = tβ P̃(α,β)

n (t), t ∈ I , n≥ 0, (2.7)

F
(α)
N (I) :=
�

tαψ(t) :ψ(t) ∈ PN (I)
	

= span
�

J (−α,α)
n (t) = tα P̃(−α,α)

n (t)
	

. (2.8)

In particular, the shifted Legendre polynomials Ln(t), t ∈ I have the form

Ln(t) = P0,0
n

�

2t

T
− 1

�

, (2.9)

and the set of all polynomials Ln(t), n = 0,1, . . . is a complete L2(I)-orthogonal system

with ∫

I

Ll(t)Lm(t)d t =
T

2l + 1
δl ,m. (2.10)

The relations (2.7)-(2.9) and straightforward calculations in [6] show that

R
0 Dαt J (−α,α)

n (t) =
Γ (n+α+ 1)

n!
Ln(t). (2.11)

2.4. Projection operators

Let us consider two projection operators needed in what follows.

The operator Π
1,0
M : H1

0
(Λ)→ VM is defined by

�

(Π
1,0
M v − v)′,φ′
�

Λ
= 0 for all φ ∈ VM . (2.12)

In order to characterise the regularity of a function u in time variable t, we consider a non-

uniformly weighted space — viz.

Bs
α,β
(I) :=
¦

v ∈ L2
ω(α,−β)(I) : R

0
D
β+r
t v ∈ L2

ω(α+β+r,r)(I), 0≤ r ≤ s, s ∈ N0

©

.
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The other projection operator π
(−α,α)
N

: L2
ω(−α,α)(I)→ Fα

N
(I) is defined by

�

π
(−α,α)
N v − v,ψ
�

ω(−α,α)
= 0 for all ψ ∈ F(α)N (I).

We recall [6] that
�

R
0
Dα

t
(π
(−α,α)
N

v − v), p
�

= 0 for all p ∈ PN (I). (2.13)

We also need the approximation results below.

Lemma 2.2 (cf. Refs. [10,27]). If v ∈ H1
0
(Λ) and ∂ k

x
v ∈ L2

χk−1(Λ) for any 1≤ k ≤ r , then





∂ µx (Π
1,0
M v − v)






Λ
® Mµ−r




∂ r
x v






Λ,χ r−1 , µ ≤ r, µ = 0,1.

Lemma 2.3 (cf. Refs. [10, 27]). If α ∈ (0,1) and v ∈ Bs
−α,α(I) for an integer 0 ≤ s ≤ N,

then




π
(−α,α)
N v − v






ω(−α,α) ® N−(α+s)




R
0 Dα+s

t v






ω(s,s)
,





R
0 Dαt (π

(−α,α)
N v − v)






I
® N−s




R
0 Dα+s

t v






ω(s,s)
.

3. STPG Spectral Method for TFFP Equation

Let SM := span{L0(x), L1(x), . . . , LM (x)} be the set of Legendre polynomials. We con-

sider the standard polynomial space

VM := {u ∈ SM (Λ) : u(±1) = 0}
and the fractional polynomial space F

(α)
N (I) defined in (2.8). In the STPG spectral method

for the Eq. (2.2), we are looking for an element uh
L(x , t) := uh

MN ∈ VM ⊗ F(α)N , such that

�

R
0 Dαt uh

L , v
�

Ω
+ Kα
�

∂x uh
L,∂x v
�

Ω
− �∂x(puh

L), v
�

Ω
= (g, v)Ω for all v ∈ VM ⊗PN . (3.1)

The next task is to construct an appropriate basis using the functions from VM and F
(α)
N (I)

in order to efficiently solve the Eq. (3.1).

Lemma 3.1 (cf. Shen [26]). If

ck =
1p

4k+ 6
, φk(x) = ck(Lk(x)− Lk+2(x)),

a jk = (∂xφk(x),∂xφ j(x)), b jk = (φk(x),φ j(x)), c jk = (∂xφk(x),φ j(x)),

then

a jk =

¨

1, k = j,

0, k 6= j,
, b jk = bk j =













ckc j

�

2

2 j + 1
+

2

2 j + 5

�

, k = j,

−ckc j

2

2k+ 1
, k = j + 2,

0, otherwise,
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c jk = −ck j =

¨

2ckc j , k = j + 1,

0, otherwise,

and

VM = span{φ0(x),φ1(x), . . . ,φM−2(x)}.
Note that in what follows we use the notation

B := (b jk)0≤ j,k≤M−2, C := (c jk)0≤ j,k≤M−2.

Moreover, let J (−α,α)
n

(t) be the functions defined in (2.7). As a test space, we use the space

of scaled Legendre polynomials

PN (I) = span
�

L(α)n (t) := Cn,αLn(t) : 0≤ n≤ N
	

, (3.2)

where Cn,α = (n!(2n+ 1))/(T · Γ (n+α+ 1)), and we consider the Eq. (3.1) with the set of

basis functions above. Thus the numerical solution is sought in the form

uh
L(x , t) =

M−2
∑

m=0

N
∑

n=0

ũh
nmφm(x)J

(−α,α)
n (t). (3.3)

Substituting (3.3) into (3.1) and using the functions vL = φp(x)L
(α)
q (t) yields

M−2
∑

m=0

N
∑

n=0

ũh
nm

¦�

φm,φp

��

R
0
Dα

t
J (−α,α)

n
, L(α)

q

�

− Kα

�

φ
′′
m

,φp

��

J (−α,α)
n

, L(α)
q

�

−
�

∂x (pφm),φp

��

J (−α,α)
n , L(α)q

�©

=
�

g,φp L(α)q

�

Ω
.

Set

gnm =
�

g,φm(x)L
(α)
n (t)
�

Ω
, F = (gnm)0≤n≤N ,0≤m≤M−2,

cx
pm =
�

p(x)∂xφm,φp

�

Λ
, C x =

�

cx
pm

�

0≤p≤M−2,0≤m≤M−2
,

bx
pm =
�

∂x p(x)φm,φp

�

Λ
, Bx =

�

bx
pm

�

0≤p≤M−2,0≤m≤M−2
,

st
qn =

∫

I

R
0 Dαt J (−α,α)

n (t)L(α)q (t)d t, mt
qn =

∫

I

J (−α,α)
n (t)L(α)q (t)d t,

St =
�

st
qn

�

0≤q,n≤N
, Mt =
�

mt
qn

�

0≤q,n≤N
, U =
�

ũh
nm

�

0≤n≤N ,0≤m≤M−2
.

(3.4)

It follows from (2.10), (2.11) and (3.2) that St = I, where I is an identity matrix. Al-

though matrix Mt is not sparse, Sheng and Shen [29] show that it can be accurately

computed by Jacobi-Gauss quadrature with (0,α). The scalar products (p(x)∂xφm,φp)Λ,

(∂x p(x)φm,φp)Λ and (g, v)Ω are computed by the Legendre-Gauss quadrature.

Lemma 3.1 and the representations (3.4) yield that the Eq. (3.1) is equivalent to the

linear system

St UB + KαMt UI−Mt UC x −Mt UBx = F. (3.5)



96 W. Zeng, A. Xiao, W. Bu, J. Wang and S. Li

In particular, for p(x) = p = constant, the system (3.5) takes the form

St UB + KαMt UI− pMt UC = F.

Finally, the numerical solution of (2.2) is obtained by uL = uh
L
+ u0.

4. Stability and Convergence of STPG Method

We start with the stability analysis.

Lemma 4.1. Assume that u0 ∈ H1
0(Λ). If uh

L is the solution of (3.1), then





uh
L






2

Ω
+




∂xuh
L






2

Ω
®




R
0 D

α/2
t uh

L






2

Ω
+




∂xuh
L






2

Ω
®




u0






2

Λ
+




∂x u0






2

Λ
+




 f





2

Ω
. (4.1)

Proof. Substituting v = uh
L
+ u0 into the Eq. (3.1), using Lemma 2.1 and the relation

�

∂x

�

uh
L + u0

�

,uh
L + u0

�

Ω
= 0,

we obtain

�

R
0 Dαt uh

L,uh
L

�

Ω
+ Kα
�

∂xuh
L,∂x uh

L

�

Ω

=− �R0 Dαt uh
L,u0

�

Ω
− Kα
�

∂xuh
L,∂x u0

�

Ω
+ p
�

∂x uh
L,uh

L + u0

�

Ω

+
�

f + Kα∆u0 + p∂x u0,uh
L + u0

�

Ω

=− �R0 Dαt uh
L,u0

�

Ω
− Kα
�

∂xuh
L,∂x u0

�

Ω
+
�

f + Kα∆u0,uh
L + u0

�

Ω

≤−
�

R
0 D

α/2
t uh

L , R
t D
α/2
T u0

�

Ω
+ Kα




∂xuh
L







Ω





∂xu0







Λ

+




 f






Ω





uh
L + u0







Ω
+ Kα




∂xu0







Λ

�



∂x uh
L







Ω
+ T




∂xu0







Λ

�

≤




R
0
D
α/2
t uh

L







Ω





R
t
D
α/2
T

u0







Ω
+ 2Kα




∂xuh
L







Ω





∂x u0







Λ

+ KαT




∂x u0






2

Λ
+




 f






Ω

�



uh
L







Ω
+ T




u0







Λ

�

=




R
0 D

α/2
t uh

L







Ω

∫

I

t−α/2d t




u0







Λ
+ 2Kα




∂xuh
L







Ω





∂xu0







Λ

+ KαT




∂x u0






2

Λ
+




 f






Ω

�



uh
L







Ω
+ T




u0







Λ

�

=
Tα/2

1−α/2




R
0 D

α/2
t uh

L







Ω





u0







Λ
+ 2Kα




∂xuh
L







Ω





∂xu0







Λ

+ KαT




∂x u0






2

Λ
+




 f






Ω

�



uh
L







Ω
+ T




u0







Λ

�

≤1

2





R
0 D

α/2
t uh

L






2

Ω
+

Tα

2(1−α/2)2




u0






2

Λ
+ 2Kα




∂xuh
L







Ω





∂x u0







Λ

+ KαT




∂x u0






2

Λ
+




 f






Ω

�



uh
L







Ω
+ T




u0







Λ

�

.
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Moreover, Lemma 2.1 and the Young’s inequality yield





R
0 D

α/2
t uh

L






2

Ω
+ Kα




∂x uh
L






2

Ω

=
�

R
0
D
α/2
t uh

L
, R

t
D
α/2
T

uh
L

�

Ω
+ Kα




∂xuh
L






2

Ω

≤1

2





R
0 D

α/2
t uh

L






2

Ω
+

Tα

2(1−α/2)2




u0






2

Λ
+

Kα

2





∂xuh
L






2

Ω

+ (2+ T )Kα




∂xu0






2

Λ
+




 f






Ω

�



uh
L







Ω
+ T




u0







Λ

�

≤1

2





R
0 D
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2
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Thus
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and using Lemma 2.1 once more, we arrive at the estimate (4.1).

In order to study the convergence of the method, we introduce suitable functional

spaces for the space-time approximation.

Assumption 4.1. The solution uh of the Eq. (2.2) belongs to the space Hα(I; H1
0 (Λ)) ∩

E r(Ω)∩K s(Ω), where E r(Ω), r ≥ 2 and K s(Ω), s ≥ 0 are the spaces of measurable functions

such that

‖u‖E r (Ω) =

�




∂ r
x u





2

L2

χ r−1(Λ,L2(I))
+




∂ r−1
x

�

R
0 Dαt u
�




2

L2

χ r−2(Λ,L2(I))

�1/2

<∞,

‖u‖Ks(Ω) =

�





∂x
R
0
Dα+s

t
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�

Λ,L2
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∂ 2
x

�

R
0
Dα+s

t
u
�




2

L2

�

Λ,L2

ω(s,s)
(I)

�

�1/2

<∞.

Theorem 4.1. Assume that the solution uh of the Eq. (2.2) satisfies Assumption 4.1. If uh
L

is

the solution of the Eq. (3.1), then





uh − uh
L







Bα(Ω)
:=




R
0 Dαt (u

h − uh
L)






Ω
+




∂x (u
h − uh

L)






Ω

® M1−r




uh






E r (Ω)
+ N−(α+s)




uh






Ks(Ω)
. (4.2)

Proof. Setting

ũh
L

:= π
(−α,α)
N

Π
1,0
M

uh =Π
1,0
M
π
(−α,α)
N

uh, eL := ũh
L
− uh

L
,
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we obtain from (3.1) that

A (eL, v) =
�

R
0 Dαt eL, v
�

Ω
+ Kα
�

∂x eL,∂x v
�

Ω

=
�

R
0
Dα

t
(ũh

L
− uh), v
�

Ω
+ Kα
�

∂x (ũ
h
L
− uh),∂x v
�

Ω

− �∂x(puh
L
)− ∂x (pũh

L
), v
�

Ω
− �∂x(pũh

L
)− ∂x(puh), v
�

Ω
for all v ∈ VM ⊗PN .

The Eqs. (2.12), (2.13) yield

A (eL, v) =
�

R
0 Dαt (Π

(1,0)
M uh − uh), v
�

Ω
+ Kα

�

∂x (π
(−α,α)
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�
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L
)− ∂x (pũh

L
), v
�

Ω
− �∂x(pũh

L
)− ∂x(puh), v
�

Ω
for all v ∈ VM ⊗PN ,

and for v = R
0 Dαt eL we obtain

�

R
0 Dαt eL, R
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�
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+ Kα
�
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�

Ω

=
�

R
0 Dαt (Π

(1,0)
M uh − uh), R

0 Dαt eL

�

Ω
+ Kα

�

∂x(π
(−α,α)
N uh − uh),∂x (

R
0 Dαt eL)
�

Ω

− �∂x(puh
L)− ∂x(pũh
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�
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.

The inequality (4.11a) from [29] shows that
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,

and recalling the definition of the norm ‖ · ‖Bs(Ω), we arrive at the estimate

‖eL‖Bα(Ω) ®




R
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(1,0)
M uh − uh)
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. (4.3)

The terms in the right-hand side of (4.3) can be estimated by Lemmas 2.2-2.3, viz.
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The estimates (4.3) and (4.4) yield

‖eL‖Bα(Ω) ®M1−r




∂ r−1
x
(R
0
Dα

t
uh)






L2

χ r−2
(Λ,L2(I))
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∂ 2
x
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0
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t
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∂ r
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. (4.5)

Since uh−uh
L
= u− ũh

L
+eL, the estimate (4.5) and the triangle inequality leads to (4.2).

5. Numerical Experiments

We want to demonstrate by numerical experiments that the STPG spectral method for

TFFP equation is spectrally accurate.

Example 5.1. Consider the TFFP equation

∂tu=
R
0 D1−α

t

�

∂x[p(x)u(x , t)] + ∂x xu(x , t) + f (x , t)
	

, (x , t) ∈ (−1,1)× (0,2],

f (x , t) = Γ (α+ 1) sin(πx) +π2 sin(πx)tα +π cos(πx)(x + 1)tα + sin(πx)tα,

p(x) = −x − 1

(5.1)

with the initial and boundary conditions (2.3)-(2.4).

The Eq. (5.1) has the solution u(x , t) = sin(πx)tα. Table 1 shows that numerical errors

in time reach machine accuracy very fast — viz. for N = 4,6,8. This happens because the

GJFs basis almost matches the singularities of the solution. Besides, the numerical error in

space decays exponentially as M grows — cf. Fig. 1.

Table 1: L∞- and L2
-errors versus N , M = 30.

α = 0.1 α= 0.5 α = 0.9

N ‖uh − uh
L
‖L∞ ‖uh − uh

L
‖0 ‖uh − uh

L
‖L∞ ‖uh − uh

L
‖0 ‖uh − uh

L
‖L∞ ‖uh − uh

L
‖0

4 1.2879e-14 3.9747e-14 1.6875e-14 5.1282e-14 2.2204e-14 6.6004e-14

6 1.2879e-14 3.9562e-14 1.7319e-14 5.2605e-14 2.2649e-14 6.8144e-14

8 1.3101e-14 3.9188e-14 1.6875e-14 5.0652e-14 2.2649e-14 6.6528e-14

Example 5.2. Consider the TFFP equation (5.1) with p = −1 and

f (x , t) =
Γ (7+ 9/17)

Γ (7+ 9/17−α) sin(πx)t6+9/17−α +π2 sin(πx)t6+9/17 +π cos(πx)t6+9/17.

It has the solution is u(x , t) = sin(πx)t6+9/17 and Figs. 2-3 show that numerical errors

decay exponentially as M or N increase — i.e. the method is spectrally accurate in both

time and space.
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Figure 1: Example 5.1. L∞- and L2
-errors in semi-log s
ale versus M and di�erent α, N = 30.
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Figure 2: Example 5.2. L∞- and L2
-errors in semi-log s
ale versus M and di�erent α, N = 30.
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Figure 3: Example 5.2. L∞- and L2
-errors in semi-log s
ale versus N and di�erent α, M = 30.

Example 5.3. Consider the TFFP equation (5.1) with the source function

f (x , t) = sin(πx) sin(πt)

and homogeneous initial conditions. The exact solution is not known but it is expected to

have singularity at t = 0.

First, we determine the numerical solution for M = 40, N = 80 and set it as the refer-

ence solution. Fig. 4 shows the exponential decay of L2- and L∞-errors in space in semi-log

scale for different α. For time errors, the error accuracy is not as high as in Example 5.1-5.2,

and higher degree polynomial functions are needed to achieve better accuracy in Fig. 5. But

the accuracy improves for α close to 1.

Example 5.4. Consider the TFFP equation (5.1) with p = −1 and

f (x , t) = Γ (α+ 2) sin(πx)t +π2 sin(πx)t1+α +π cos(πx)t1+α.

It has solution u(x , t) = sin(πx)t1+α.

Table 2 provides L2- and L∞-errors of the STPG spectral method and Zheng’s method

for N = 4,6,8, α = 0.5 and M = 30. The numerical errors of the method reach the machine

accuracy for N = 4,6,8. On the other hand, the accuracy of Zheng’s method is low. Even for

N = 90, the L2- and L∞-errors still do not approach 4 as Fig. 6 shows. Thus for equations

with nonsmooth solutions, the method above is superior to Zheng’s method.
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Figure 4: Example 5.3. L∞- and L2
-errors in semi-log s
ale versus M and di�erent α, N = 80.
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Figure 5: Example 5.3. L∞- and L2
-errors in semi-log s
ale versus N and di�erent α, M = 40.
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Figure 6: Example 5.4. L∞- and L2
-errors in semi-log s
ale versus N , α = 0.5, M = 100.

Table 2: L∞- and L2
-errors of STPG spe
tral method and Zheng's method, α = 0.5, M = 30.

STPG spectral method Zheng’s method

N ‖uh − uh
L
‖L∞ ‖uh − uh

L
‖0 ‖uh − uh

L
‖L∞ ‖uh − uh

L
‖0

4 3.5527e-14 1.1400e-13 3.9668e-02 1.3304e-01

6 5.7732e-14 1.8958e-13 2.9136e-02 9.8337e-02

8 1.9096e-14 5.6652e-14 1.9432e-02 6.5405e-02

6. Conclusions

We developed an STPG spectral method for TFFP equations with nonsmooth solutions.

The numerical scheme is based on GJFs in time and Legendre polynomials in space. The

GJFs match the leading singularity of the corresponding problem. Therefore, the method

performs better than ones with polynomial bases. Moreover, the employment of GJFs pro-

duces the identity stiffness matrix in calculation. We also discuss the errors of the method,

and numerical results are consistent with theoretical error estimates.

However, if the singularity is complicated or unknown, the method does not achieve

the spectral accuracy.
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