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LONG TIME STABILITY OF A LINEARLY EXTRAPOLATED

BLENDED BDF SCHEME FOR MULTIPHYSICS FLOWS

AYTEKIN ÇIBIK, FATMA G. EROGLU, AND SONGUL KAYA∗

Abstract. This paper investigates the long time stability behavior of multiphysics flow problems,
namely the Navier-Stokes equations, natural convection and double-diffusive convection equations
with an extrapolated blended BDF time-stepping scheme. This scheme combines the two-step
BDF and three-step BDF time stepping schemes. We prove unconditional long time stability

theorems for each of these flow systems. Various numerical tests are given for large time step sizes
in long time intervals in order to support theoretical results.
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1. Introduction

Most of the engineering and applied science problem involves the combination
of some different physical problems such as fluid flow, heat transfer, mass trans-
fer, and electromagnetic effect. These kinds of problems are mostly referred as
multiphysics problems. From a mathematical point of view, these problems yield
systems of coupled single physics equations. In our case, many important appli-
cations require the accurate solution of multiphysics coupling with Navier-Stokes
equations. Since the simulation of Navier-Stokes equations has its own difficulties,
the coupling among involved equations yield more complex problems. One possibil-
ity of improving numerical simulations is to develop algorithms which are reliable
and robust. In addition, designed numerical schemes should capture the long time
dynamics of the system in a right way. Thus, it is of practical interest to have an
algorithm which is stable over the required long time intervals.

In recent years, considerable amount of effort has been spent to understand
the long time behavior of the numerical schemes for multiphysics problems. For
such works, we refer to [3, 6, 19, 20, 22, 24]. In particular, for Navier-Stokes
equations, the Crank-Nicholson in [11, 12, 19], the implicit Euler in [22], two-step
Backward Differentiation (BDF2) in [2] and fractional step/projection methods in
[18] are chosen as temporal discretization in order to show the long time stability.
In this respect, an extrapolated two step BDF scheme for a velocity-vorticity form
of Navier-Stokes equations has been investigated in [10]. The long time stability
of partitioned methods for the fully evolutionary Stokes-Darcy problem in [13], for
the time dependent MHD system in [14, 20] and for the double-diffusive convection
in [21] were also established based on implicit-explicit and backward differentiation
schemes.

This study concerns the behavior of the solutions of multiphysics problems for
longer time simulations and time step restrictions on these solutions. In order
to solve the systems numerically, a finite element in space discretization is em-
ployed along with a rather new time stepping approach so called an extrapolated
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blended Backward Differentiation (BLEBDF) temporal discretization. Such kind
of a scheme combines BDF2 and a three-step BDF method in order to not only
preserve A-stability and second order accuracy but also have a smaller constant
in truncation error terms, [23]. Along with the mentioned time-stepping strategy,
the three-step extrapolation is used in order to linearize the convective terms in
the system of PDE’s. Thus, the solution of only one linear system of equations
is encountered at each time step which reduces the compilation time and memory
cost in simulations.

In [17], Ravindran considers the stability and convergence of a double diffusive
convection system with the blended BDF scheme in short time intervals. The
current study attempts to extend the works above to study the notion of long time
stability by combining the BLEBDF idea and its effects on several multiphysics
flows such as Navier-Stokes, natural convection and double-diffusive convection.
In this work, we will provide the unconditonal long time L2 stability property of
BLEBDF method for each of flow systems, when they are discretized spatially with
finite element method. To the best of authors’ knowledge, this is the first study that
investigates the long time stability of the finite element solutions of multiphysics
flows involving a blended BDF time-stepping approach along with a third order
linear extrapolation idea.

The plan of the paper is as follows. In Section 2, we state the notations with
some mathematical preliminaries. Section 3 is reserved for proving the uncon-
ditional long time stability of Navier-Stokes equations under the employment of
extrapolated blended BDF temporal discretization along with numerical experi-
ments. Similar results are established for natural convection and double-diffusive
convection equations in Section 4 and Section 5, respectively. Finally, we state
some conclusion remarks in the last section.

2. Notations and Preliminaries

Let Ω ⊂ R
d, d ∈ {2, 3}, be open, connected domain bounded by Lipschitz bound-

ary ∂Ω. Throughout the paper standard notations for Sobolev spaces and their
norms will be used, c.f. Adams [1]. The norm in (Hk(Ω))d is denoted by ‖ · ‖k and
the norm in Lebesgue spaces (Lp(Ω))d, 1 ≤ p < ∞, p 6= 2 by ‖ · ‖Lp and p = ∞ by
‖ · ‖∞ . The space L2(Ω) is equipped with the norm and inner product ‖ · ‖ and
(·, ·), respectively, and for these we drop the subscripts. Vector-valued functions
will be identified by bold face. The norm in dual space H−1 of H1

0 (Ω) is denoted
by ‖·‖−1. The continuous velocity, pressure, temperature and concentration spaces
are denoted by

X := (H1
0(Ω))

d, Q := L2
0(Ω), W := H1

0 (Ω), Ψ := H1
0 (Ω),

and the divergence free space

V = {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q}.
We recall also the Poincaré-Friedrichs inequality as

‖v‖ ≤ CP ‖∇v‖, ∀v ∈ X.

For each multiphysics flow problems, we consider a regular, conforming family Πh

of triangulations of domain with maximum diameter h for spatial discretization.
Assume Xh ⊂ X, Qh ⊂ Q,Wh ⊂ W and Ψh ⊂ Ψ be finite element spaces such
that the spaces (Xh, Qh) satisfy the discrete inf-sup condition needed for stability
of the discrete pressure, [5]. The discretely divergence free space for (Xh, Qh) pair
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is given by

(1) Vh = {vh ∈ Xh : (∇ · vh, qh) = 0, ∀qh ∈ Qh}.
The dual spaces of Vh, Wh and Ψh are given by V∗

h, W
∗
h and Ψ∗

h, and their norms
are denoted by ‖·‖

V∗

h
, ‖·‖W∗

h
and ‖·‖Ψ∗

h
respectively. We also need the following

space in the analysis

(2) L∞(R+,V
∗
h) := {f : Ωd × R+ → R

d, ∃K < ∞, a.e. t > 0, ‖f(t)‖V∗

h
< K}.

Similar spaces for W ∗
h and Ψ∗

h will be used throughout the analysis. To simplify the
analysis, we utilize the G-stability framework as in [8]. For third order backward
differentiation, the positive definite matrix G-matrix and the associated norm can
be obtained as

G =
1

12





19 −12 3
−12 10 −3
3 −3 1



 , ‖W‖2G = (W , GW). W ∈ R
3n.

The following relations are well-known and required for the analysis.

Lemma 2.1. G-norm and L2 norm are equivalent in the sense that there exist
0 < Cl < Cu positive constants such that

Cl‖W‖2G ≤ ‖W‖2 ≤ Cu‖W‖2G.(3)

Proof. See reference [8]. �

Lemma 2.2. The following estimates hold:
∥

∥

∥

∥

∥

∥





u

v

w





∥

∥

∥

∥

∥

∥

2

G

≥ 1

3
‖u‖2 − 5

12
‖v‖2 − 5

12
‖w‖2,(4)

∥

∥

∥

∥

∥

∥





u

v

w





∥

∥

∥

∥

∥

∥

2

G

≤ 19

12
‖u‖2 + 10

12
‖v‖2 + 1

12
‖w‖2.(5)

Proof. Using the properties of inner product and norm, we have
∥

∥

∥

∥

∥

∥





u

v

w





∥

∥

∥

∥

∥

∥

2

G

=

(





u

v

w



 , G





u

v

w





)

=
1

3
‖u‖2 − 5

12
‖v‖2 − 5

12
‖w‖2 + ‖u− v‖2

+
3

12
‖u+w‖2 + 3

12
‖v−w‖2.(6)

Dropping last three non-negative terms yields (4). In a similar manner, deleting
non-positive terms in (6) and using the triangle inequality gives (5). �

Lemma 2.3. The symmetric matrix G ∈ R
3n×3n which is given above satisfies the

following equality ∀{wj
h}Nj=0 ⊂ L2(Ω):

(

5

3
wn+1

h − 5

2
wn

h +wn−1
h − 1

6
wn−2

h ,wn+1
h

)

= ‖Wn+1‖2G − ‖Wn‖2G +
1

12
‖wn+1

h − 3wn
h + 3wn−1

h −wn−2
h ‖2,(7)

where Wn+1 = [wn+1
h wn

h wn−1
h ]> and Wn = [wn

h wn−1
h wn−2

h ]>.
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Proof. To prove this, we use a well-known identity (see [17]) to obtain
(

5

3
wn+1

h − 5

2
wn

h +wn−1
h − 1

6
wn−2

h ,wn+1
h

)

=
(

‖wn+1
h ‖2 + ‖3wn+1

h −wn
h‖2 + ‖3wn+1

h − 3wn
h +wn−1

h ‖2
)

−(‖wn
h‖2 + ‖3wn

h −wn−1
h ‖2 + ‖3wn

h − 3wn−1
h +wn−2

h ‖2)

+
1

12
‖wn+1

h − 3wn
h + 3wn−1

h −wn−2
h ‖2.(8)

Using the properties of G-norm and inner product, one gets

‖wn+1
h ‖2 + ‖3wn+1

h −wn
h‖2 + ‖3wn+1

h − 3wn
h +wn−1

h ‖2

=

(





wn+1
h

wn
h

wn−1
h



 , G





wn+1
h

wn
h

wn−1
h





)

=

∥

∥

∥

∥

∥

∥





wn+1
h

wn
h

wn−1
h





∥

∥

∥

∥

∥

∥

2

G

= ‖Wn+1‖2G.(9)

Obtaining ‖Wn‖2G similar with (9) and inserting them in (8) yields (7). �

3. Long time stability of Navier-Stokes equations with BLEBDF

The goal of this section is to show that our scheme is unconditionally long-time
stable. That is, the solutions remain bounded without any time step restriction. We
first study an extrapolated blended BDF method for discretizing the incompressible
NSE:

(10)

ut − ν∆u+ (u · ∇)u+∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω,
u(0,x) = u0 in Ω,
∫

Ω

p dx = 0.

where u is the velocity field, p is the fluid pressure, ν is the kinematic viscosity
and f denotes the body force. The variational formulation of (10) reads as follows:
Find (u, p) ∈ (X, Q) satisfying

(11)
(ut,v) + ν(∇u,∇v) + b1(u,u,v)− (p,∇ · v) = (f ,v) ∀v ∈ X,

(∇ · u, q) = 0 ∀ q ∈ Q,

where

b1(u,v,w) :=
1

2
(((u · ∇)v,w) − ((u · ∇)w,v)) ,(12)

represents the skew-symmetric form of the convective term. Note that the convec-
tive term has the well known property

(13) b1(u,v,v) = 0

for all u,v ∈ X, which simplifies the analysis.
The studied time discretization method uses different time discretizations for

different terms. The scheme discretizes in time via a BDF2 and a BDF3 scheme
whereas the nonlinear terms are treated via a third-order extrapolation formula.
One consequence of lagging the nonlinear term to previous time levels is to avoid
solving nonlinear equations. A class of this type of blending BDF schemes which
are also known as a class of optimized second-order BDF schemes are proposed in
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[15, 23]. We now consider one of the special case of this family proposed in [23],
with an error constant half as large as BDF2 scheme.

Based on the weak formulation (10), the fully discrete approximation of it reads
as follows. Given f , u0

h = u−1
h = u−2

h = u0, for any time step ∆t > 0, find

(un+1
h , pn+1

h ) ∈ (Xh, Qh) such that for n ≥ 0

(

5
3u

n+1
h − 5

2u
n
h + un−1

h − 1
6u

n−2
h

∆t
,vh

)

+ ν(∇un+1
h ,∇vh)

+b1(3u
n
h − 3un−1

h + un−2
h ,un+1

h ,vh)− (pn+1
h ,∇ · vh) = (fn+1,vh),(14)

(∇ · un+1
h , qh) = 0(15)

for all (vh, qh) ∈ (Xh, Qh).
We now analyze the long time stability over 0 ≤ tn < ∞ and show that the

scheme is uniformly bounded in time in L2 norm. Our proof is based on a G-norm
and the associated estimation (7).

Theorem 3.1. (Unconditional long time stability of NSE in L2) Assume f ∈
L∞(R+,V

∗
h), then the approximation (14)-(15) is long time stable in the follow-

ing sense: for any ∆t > 0,

‖Un+1‖2G +
ν∆t

4
‖∇un+1

h ‖2 + ν∆t

16
‖∇un

h‖2 ≤ (1 + α)−(n+1)(‖U0‖2G

+
ν∆t

4
‖∇u0

h‖2 +
ν∆t

16
‖∇u−1

h ‖2) + max{ 8C2
p

Clν2
,
2ν−1∆t

3
}‖f‖2L∞(R+;V∗

h
).(16)

where U0 = [u0
h u−1

h u−2
h ] and α = min{Clν∆t

16C2
p

,
3

4
}.

Remark 3.1. Theorem implies that the result holds for any large n, since the
constants are independent of n.

Proof. Setting vh = un+1
h in (14) and qh = pn+1

h in (15) the BLEBDF scheme and
using the skew-symmetry property (13), we obtain

(

5
3u

n+1
h − 5

2u
n
h + un−1

h − 1
6u

n−2
h

∆t
,un+1

h

)

+ ν(∇un+1
h ,∇un+1

h )

= (fn+1,un+1
h ).(17)

From (7), we get

‖Un+1‖2G − ‖Un‖2G +
1

12
‖un+1

h − 3un
h + 3un−1

h − un−2
h ‖2 + ν∆t‖∇un+1

h ‖2

= ∆t(fn+1,un+1
h ).(18)

where Un+1 = [un+1
h un

h un−1
h ]> and Un = [un

h un−1
h un−2

h ]>. Applying the
Cauchy-Schwarz and Young’s inequalities for the right hand side of (18) gives

‖Un+1‖2G − ‖Un‖2G +
1

12
‖un+1

h − 3un
h + 3un−1

h − un−2
h ‖2 + ν∆t

2
‖∇un+1

h ‖2

≤ ν−1∆t

2
‖fn+1‖2V∗

h
.(19)
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Adding
ν∆t

4
‖∇un

h‖2 +
ν∆t

16
‖∇un−1

h ‖2 to the both sides and discarding the third

positive term in the left hand side of (19) yield
(

‖Un+1‖2G +
ν∆t

4
‖∇un+1

h ‖2 + ν∆t

16
‖∇un

h‖2
)

+
ν∆t

16

(

‖∇un+1
h ‖2

+‖∇un
h‖2 + ‖∇un−1

h ‖2
)

+
3ν∆t

16
‖∇un+1

h ‖2 + ν∆t

8
‖∇un

h‖2

≤ ‖Un‖2G +
ν∆t

4
‖∇un

h‖2 +
ν∆t

16
‖∇un−1

h ‖2 + ν−1∆t

2
‖fn+1‖2

V∗

h
.(20)

The terms in the left hand side of (20) can be rearranged by applying the Poincaré-
Friedrichs and the equivalent norm property (3):

ν∆t

16

(

‖∇un+1
h ‖2 + ‖∇un

h‖2 + ‖∇un−1
h ‖2

)

+
3ν∆t

16
‖∇un+1

h ‖2

+
ν∆t

8
‖∇un

h‖2

≥ Clν∆t

16C2
p

‖Un+1‖2G +
3ν∆t

16
‖∇un+1

h ‖2 + ν∆t

8
‖∇un

h‖2

≥ α(‖Un+1‖2G +
ν∆t

4
‖∇un+1

h ‖2 + ν∆t

16
‖∇un

h‖2),(21)

where α = min{Clν∆t

16C2
p

,
3

4
}. Inserting (21) in (20) and using induction along with

‖f i‖2
V∗

h
≤ ‖f‖2

L∞(R+;V∗

h
), ∀i = 1, . . . , n+ 1 gives

(‖Un+1‖2G +
ν∆t

4
‖∇un+1

h ‖2 + ν∆t

16
‖∇un

h‖2)

≤ (1 + α)−(n+1)(‖U0‖2G +
ν∆t

4
‖∇u0

h‖2 +
ν∆t

16
‖∇u−1

h ‖2)

+
(1 + α)−1ν−1∆t

2
‖f‖2L∞(R+;V∗

h
)

(

(1 + α)−n

+(1 + α)−(n−1) + · · ·+ 1
)

.(22)

Since | 1

1 + α
| < 1, then we get

(‖Un+1‖2G +
ν∆t

4
‖∇un+1

h ‖2 + ν∆t

16
‖∇un

h‖2)

≤ (1 + α)−(n+1)(‖U0‖2G +
ν∆t

4
‖∇u0

h‖2 +
ν∆t

16
‖∇u−1

h ‖2)

+max{
8C2

p

Clν2
,
2ν−1∆t

3
}‖f‖2L∞(R+;V∗

h
)(23)

which is the required result.
�

3.1. Numerical experiment for Navier-Stokes equations. Throughout this
paper, we carry out tests for each flow problem separately. We expose the evolution
of the L2 norm of solution variables in long time intervals for each variable accord-
ing to related problems. After each numerical test, we provide a table showing
the CPU-times of relevant simulations according to varying ∆t and compare these
CPU-times with classical BDF2 methods’ CPU-times in order to reveal the com-
putational advantage of the method. We choose the inf-sup stable Scott-Vogelious
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finite element pair for velocity-pressure couple, which is known to be discretely
divergence free. We refer [4], for the details of this selection. Throughout all our
simulations, we use public license finite element software package FreeFem++, [9].

We now perform a numerical test in order to verify theoretical long time stability
result obtained in Theorem 3.1. We set Ω = (0, 1)2 with a coarse mesh resolution
of 16 × 16. We calculate the approximate solution in time interval [0, 400] and
calculate the L2 norms for different ∆t and varying ν. We pick the initial velocity
and the forcing term for this test problem as :

u =

(

sin(πx) sin(πy)
cos(πx) cos(πy)

)

, f =

(

y2cos(xy2) + sin(x) sin(y)
2xycos(xy2) + cos(x) cos(y)

)

.(24)

In Figure 1, we present the evolution of ‖un+1‖ in long time interval [0, 400]. We
give the stability results for two large time step instances for each case. As could be
easily deduced from the figure, the solutions we obtain from the proposed scheme
are long time stable even by using large time step sizes. Although slight deviations
seem to occur due to small viscosity for the case ν = 0.001, still the solution is
within an interval of stability. Notice that, these solutions are obtained for a very
coarse mesh resolution of 16× 16. Hence, small oscillations inside a narrow interval
does not degrade the stability of the solution.
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Figure 1. Evolution of the L2 norm of the velocity solution
for varying ν. ν = 1, ν = 0.004 (upper left to right) and ν =
0.002, ν = 0.001 (lower left to right).

We also compare the CPU times of the scheme (14)-(15) and run the same
problem in a shorter time interval [0, 150]. As could be observed from Table 1,
the BLEBDF scheme has an advantage in terms of simulation CPU times when
compared with a classical BDF2 scheme. When ∆t becomes smaller, the difference
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between the CPU times are increasing. This shows the promise of the method,
especially when smaller time step sizes are used.

Table 1. Comparison of the CPU-times (seconds) of classical
BDF2 scheme and BLEBDF for the Navier-Stokes equations with
ν = 0.001 on a time interval [0, 150].

∆t BDF2 BLEBDF

1 1.37 0.87
0.1 12 8
0.01 131.5 78.7

4. Long time stability of natural convection equations with BLEBDF

In this section, we prove that the BLEBDF scheme for natural convection equa-
tions is also long time stable. The unsteady natural convection system in Ω with
partitioned boundary ∂Ω = ΓT ∪ ΓB with ΓT ∩ ΓB = ∅, the so called Boussinesq
equations are given by

(25)

ut − ν∆u+ (u · ∇)u+∇p = Ri Te2 + f in Ω,
∇ · u = 0 in Ω,

Tt −∇ · (κ∇T ) + (u · ∇)T = γ in Ω,
u(0,x) = u0, T (0,x) = T0 in Ω,

u = 0 on ∂Ω, T = 0 on ΓT ,
∂T

∂n
= 0 on ΓB,

where u, p, T are the fluid velocity, the pressure and the temperature, respectively.
The parameters in (25) are the kinematic viscosity ν, the thermal conductivity
parameter κ > 0 and the Richardson number Ri and the unit vector is given by e2.
The prescribed body forces are f and γ. The initial velocity and temperature are
u0 and T0, respectively.

By using similar notations as in Section 3, given f , γ, u0
h = u−1

h = u−2
h = u0 and

T 0
h = T−1

h = T−2
h = T0 find (un+1

h , pn+1
h , T n+1

h ) ∈ (Xh, Qh,Wh) for n ≥ 1 satisfying
(

5
3u

n+1
h − 5

2u
n
h + un−1

h − 1
6u

n−2
h

∆t
,vh

)

+ ν(∇un+1
h ,∇vh)

+b1(u
∗,un+1

h ,vh)− (ph,∇ · un+1
h ) = Ri (T ∗e2,vh) + (fn+1,vh),(26)

(qh,∇ · vn+1
h ) = 0(27)

(

5
3T

n+1
h − 5

2T
n
h + T n−1

h − 1
6T

n−2
h

∆t
, Sh

)

+ κ(∇T n+1
h ,∇Sh)

+b2(u
∗, T n+1

h , Sh) = (γn+1, Sh),(28)

for all (vh, qh, Sh) ∈ (Xh, Qh,Wh) where u∗ = 3un
h − 3un−1

h + un−2
h and T ∗ =

3T n
h − 3T n−1

h + T n−2
h . Herein the related skew-symmetric form is given by

b2(u, T, S) :=
1

2
(((u · ∇)T, S)− ((u · ∇)S, T ))(29)

for all u ∈ X, T, S ∈ W.
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Theorem 4.1. (Unconditional long time stability of natural convection in L2) As-
sume f ∈ L∞(R+,V

∗
h) and γ ∈ L∞(R+,W

∗
h ), then the approximation (26)-(28) is

long time stable in the following sense: for any ∆t > 0,

‖Un+1‖2G + ‖Tn+1‖2G +
ν∆t

4
‖∇un+1

h ‖2 + κ∆t

4
‖∇T n+1

h ‖2

≤ (1 + α)−(n+1)
(

‖U0‖2G +
ν∆t

4
‖∇u0

h‖2 +
ν∆t

16
‖∇u−1

h ‖2
)

+(Kα + (1 + β)−1)
(

(1 + β)−n(‖T0‖2G +
κ∆t

4
‖∇T 0

h‖2 +
κ∆t

16
‖∇T−1

h ‖2)
)

+(Kα + 1)max{ 8C2
p

Clκ2
,
2κ−1∆t

3
}‖γ‖2L∞(R+,W∗

h
)

+max{16C
2
p

Clν2
,
4ν−1∆t

3
}‖f‖L∞(R+,V∗

h
)(30)

where Kα =
49CuC

2
pν

−1Ri2∆t

α
, U0 = [u0

h u−1
h u−2

h ], T0 = [T 0
h T−1

h T−2
h ],

α = min{Clν∆t

16C2
p

,
3

4
}, β = min{Clκ∆t

16C2
p

,
3

4
},

Proof. The proof starts with a stability bound for temperature. Letting Sh = T n+1
h

in (28) and using the skew symmetry property b2(u
∗, T n+1

h , T n+1
h ) = 0. Along with

(7) and multiplying with ∆t yields

‖Tn+1‖2G − ‖Tn‖2G +
1

12
‖T n+1

h − 3T n
h + 3T n−1

h − T n−2
h ‖2 + κ∆t‖∇T n+1

h ‖2

= ∆t(γn+1, T n+1
h ).(31)

where Tn+1 = [T n+1
h T n

h T n−1
h ]> and Tn = [T n

h T n−1
h T n−2

h ]>. Applying the
Cauchy-Schwarz and Young’s inequalities lead to

‖Tn+1‖2G − ‖Tn‖2G +
1

12
‖T n+1

h − 3T n
h + 3T n−1

h − T n−2
h ‖2 + κ∆t

2
‖∇T n+1

h ‖2

≤ κ−1∆t

2
‖γn+1‖2W∗

h
.(32)

Adding
κ∆t

4
‖∇T n

h ‖2 +
κ∆t

16
‖∇T n−1

h ‖2 to the both sides and dropping the nonneg-

ative terms produce

(‖Tn+1‖2G +
κ∆t

4
‖∇T n+1

h ‖2 + κ∆t

16
‖∇T n

h ‖2) +
κ∆t

16

(

‖∇T n+1
h ‖2

+‖∇T n
h ‖2 + ‖∇T n−1

h ‖2
)

+
3κ∆t

16
‖∇T n+1

h ‖2 + κ∆t

8
‖∇T n

h ‖2

≤ ‖Tn‖2G +
κ∆t

4
‖∇T n

h ‖2 +
κ∆t

16
‖∇T n−1

h ‖2 + κ−1∆t

2
‖γn+1‖2W∗

h
.(33)

The estimation of (33) follows closely that of (21). Again, the last five terms of the
left hand side of (33) can be rearranged by the applying the Poincaré-Friedrichs
and the equivalent norm property (3) as

κ∆t

16
(‖∇T n+1

h ‖2 + ‖∇T n
h ‖2 + ‖∇T n−1

h ‖2)

+
3κ∆t

16
‖∇T n+1

h ‖2 + κ∆t

8
‖∇T n

h ‖2

≥ β(‖Tn+1‖2G +
κ∆t

4
‖∇T n+1

h ‖2 + κ∆t

16
‖∇T n

h ‖2),(34)
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where β = min{Clκ∆t

16C2
p

,
3

4
}. Arguing as before and inserting (34) in (33) and using

induction leads to

‖Tn+1‖2G +
κ∆t

4
‖∇T n+1

h ‖2 + κ∆t

16
‖∇T n

h ‖2

≤ (1 + β)−(n+1)(‖T0‖2G +
κ∆t

4
‖∇T 0

h‖2 +
κ∆t

16
‖∇T−1

h ‖2)

+
κ−1∆t

2β
‖γ‖2L∞(R+,W∗

h
),(35)

which is the result for long the time stability for the temperature. Letting vh =
un+1
h in (26), and qh = pn+1

h in (27), one obtains
(

5
3u

n+1
h − 5

2u
n
h + un−1

h − 1
6u

n−2
h

∆t
,un+1

h

)

+ ν‖∇un+1
h ‖2

= Ri (T ∗e2,u
n+1
h ) + (fn+1,un+1

h ).(36)

Repeating the arguments used for obtaining (19) yields

‖Un+1‖2G − ‖Un‖2G +
1

12
‖un+1

h − 3un
h + 3un−1

h − un−2
h ‖2

+
ν∆t

2
‖∇un+1

h ‖2

≤ C2
pν

−1Ri2∆t‖T ∗‖2‖e2‖2 + ν−1∆t‖fn+1‖V∗

h
.(37)

Note that e2 is a unit vector, i.e., ‖e2‖ = 1 and using the definition of T ∗ and (3),
we get ‖T ∗‖ ≤ 7‖Tn‖ ≤ 7

√
Cu‖Tn‖G. Then, one has

‖Un+1‖2G − ‖Un‖2G +
1

12
‖un+1

h − 3un
h + 3un−1

h − un−2
h ‖2 + ν∆t

2
‖∇un+1

h ‖2

≤ 49CuC
2
pν

−1Ri2∆t‖Tn‖2G + ν−1∆t‖fn+1‖V∗

h
.(38)

Arguing as in (20), one gets the following estimation for (38)

(1 + α)(‖Un+1‖2G +
ν∆t

4
‖∇un+1

h ‖2 + ν∆t

16
‖∇un

h‖2)

≤ (‖Un‖2G +
ν∆t

4
‖∇un

h‖2 +
ν∆t

16
‖∇un−1

h ‖2)

+49CuC
2
pν

−1Ri2∆t‖Tn‖2G + ν−1∆t‖fn+1‖V∗

h
(39)

where α = min{Clν∆t

16C2
p

,
3

4
}. Putting n instead of (n+1) in (35) and inserting it in

(39) yields

(1 + α)(‖Un+1‖2G +
ν∆t

4
‖∇un+1

h ‖2 + ν∆t

16
‖∇un

h‖2)

≤ (‖Un‖2G +
ν∆t

4
‖∇un

h‖2 +
ν∆t

16
‖∇un−1

h ‖2)

+49CuC
2
pν

−1Ri2∆t
(

(1 + β)−n(‖T0‖2G +
κ∆t

4
‖∇T 0

h‖2

+
κ∆t

16
‖∇T−1

h ‖2) + κ−1∆t

2β
‖γ‖2L∞(R+,W∗

h
)

)

+ ν−1∆t‖fn+1‖V∗

h
.(40)

Applying induction and adding (35) to (40) completes the proof of the theorem.
�
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4.1. Numerical experiment for natural convection equations. In this sub-
section, we present the long time numerical simulation results of a coupled Navier-
Stokes system given by the scheme (26)-(28). We consider natural convection equa-
tions in Ω = (0, 1)2 with a coarse mesh resolution of 16 × 16. For this problem,
we solve a buoyancy driven cavity test in which, upper and lower boundaries of
the square domain are kept adiabatic and vertical boundaries are kept at different
temperatures imposed as Dirichlet boundary conditions. The flow initiates natu-
rally by density differences due to the temperature variations at opposing vertical
boundaries along with the gravitational force. The domain presented in Figure 2
is used in the numerical test. Velocity boundary conditions are no-slip everywhere.
We set the Richardson number, Ri = 1 and perform the computation in the time
interval [0, 150]. The results for different viscosities and time step sizes are pro-
vided. We examine the time evolution of the computed solutions in discrete norms
‖un

h‖ and ‖T n
h ‖.

Figure 2. The computational domain for the natural convection
test example.

A clear observation from Figure 3, both velocity and temperature solutions are
globally in time bounded for varying viscosity instances. As we expect, due to the
nature of these flows, narrow oscillation intervals could be observed for smaller ν

values but still we can conclude that the solutions are all long time stable as theory
predicts.

Similar to the Navier-Stokes case, we present the comparison table of CPU times
in order to feel the computational advantage of the BLEBDF in Table 2. Since the
degree of freedom of overall system has been increased in natural convection case,
we observe more visible CPU time differences in our comparison with the classical
BDF2 scheme. Also we have used a rather short time interval for this test case.
One could conclude from this comparison that, using the BLEBDF scheme instead
of BDF2 scheme will yield a computational time advantage when smaller time step
sizes are used on longer time intervals.

5. Long time stability of double-diffusive convection with BLEBDF

Under the assumption of Boussinesq approximation, we consider a fluid flow in
Ω with a polygonal boundary ∂Ω = ΓT ∪ ΓB with ΓT ∩ ΓB = ∅. The governing
equations of double-diffusive convection known as also Darcy-Brinkman system are
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Figure 3. Evolution of the L2 norm of the solution for varying
viscosities. Velocity for ν = 0.01, ν = 0.001 (upper left to right)
and temperature for ν = 0.01, ν = 0.001 (lower left to right).

Table 2. Comparison of the CPU-times (seconds) of classical
BDF2 scheme and BLEBDF for natural convection with ν = 0.001
on a time interval [0, 10].

∆t BDF2 BLEBDF

1 6.71 6.27
0.1 61.8 59
0.01 628 610

given by (see e.g. [7]),

ut − ν∆u+ (u · ∇)u+Da−1u+∇p = (βTT + βCC)g + f in Ω,
∇ · u = 0 in Ω,

Tt − γ∆T + u · ∇T = κ in Ω,
Ct −Dc∆C + u · ∇C = ζ in Ω,

u(0,x) = u0, T (0,x) = T0, C(0,x) = C0 in Ω,
u = 0 on ∂Ω, T, C = 0 on ΓT ,

∂T

∂n
= 0,

∂C

∂n
= 0 on ΓB.

(41)

Besides the parameters defined earlier, C is the concentration, C0 the initial fluid
concentration and ζ the body force for concentration equation. We also have the
Darcy number Da, the thermal conductivity κ, the mass diffusivity Dc > 0, g

the gravitational acceleration vector, the thermal and solutal expansion coefficients
are βT , βC , respectively. The dimensionless parameters are the buoyancy ratio
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N =
βC∆C

βT∆T
, the Schmidt number Sc =

ν

Dc

, Prandtl number Pr =
ν

γ
, the Darcy

number Da =
K

H2
, the Lewis number Le =

Sc

Pr
and the thermal Rayleigh number

Ra =
gβT∆TH3

νγ
. Here the cavity height is H and permeability is K. ∆T and ∆C

are the temperature and concentration differences, respectively.
The fully discrete approximation of (41) based on the BLEBDF scheme reads as;

for each time level, we look for approximations (un+1
h , T n+1

h , Cn+1
h ) ∈ (Xh,Wh,Ψh),

satisfying
(

5
3u

n+1
h − 5

2u
n
h + un−1

h − 1
6u

n−2
h

∆t
,vh

)

+ ν(∇un+1
h ,∇vh)

+b1(u
∗,un+1

h ,vh) +Da−1(un+1
h ,vh)

=
(

(βTT
∗ + βCC

∗)g,vh

)

+ (fn+1,vh),(42)

(

5
3T

n+1
h − 5

2T
n
h + T n−1

h − 1
6T

n−2
h

∆t
, Sh

)

+ κ(∇T n+1
h ,∇Sh)

+b2(u
∗, T n+1

h , Sh) = (γn+1, Sh),(43)

(

5
3C

n+1
h − 5

2C
n
h + Cn−1

h − 1
6C

n−2
h

∆t
, φh

)

+ b3(u
∗, Cn+1

h , φh)

+Dc(∇Cn+1
h ,∇φh) = (ζn+1, φh).(44)

for all (vn+1
h , Sn+1

h , φn+1
h ) ∈ (Xh,Wh,Ψh) where u

∗ = un+1
h = 3un

h−3un−1
h +un−2

h ,

T ∗ = T n+1
h = 3T n

h − 3T n−1
h + T n−2

h and C∗ = Cn+1
h = 3Cn

h − 3Cn−1
h + Cn−2

h

This section is devoted to prove the long time stability of the solutions of (42)-
(44).

Theorem 5.1. (Unconditional long time stability of double-diffusive convection in
L2) Assume f ∈ L∞(R+,V

∗
h), γ ∈ L∞(R+,W

∗
h ) and ζ ∈ L∞(R+,Ψ

∗
h), then the

approximation (42)-(44) is long time stable in the following sense: for any ∆t > 0,

‖Un+1‖2G + ‖Tn+1‖2G + ‖Cn+1‖2G +
ν∆t

4
‖∇un+1

h ‖2 + κ∆t

4
‖∇T n+1

h ‖2

+
Dc∆t

4
‖∇Cn+1

h ‖2 + Da−1∆t

4
‖un+1

h ‖2

≤ (1 + α)−(n+1)
(

‖U0‖2G +
ν∆t

4
‖∇u0

h‖2 +
ν∆t

16
‖∇u−1

h ‖2 + Da−1∆t

4
‖u0

h‖2

+
Da−1∆t

16
‖u−1

h ‖2
)

+
(

KT,α + (1 + β)−1
)(

(1 + β)−n(‖T0‖2G +
κ∆t

4
‖∇T 0

h‖2

+
κ∆t

16
‖∇T−1

h ‖2)
)

+
(

KC,α + (1 + δ)−1
)(

(1 + δ)−n(‖C0‖2G +
Dc∆t

4
‖∇C0

h‖2

+
Dc∆t

16
‖∇C−1

h ‖2)
)

+ (KT,α + 1)max{ 8C2
p

Clκ2
,
2κ−1∆t

3
}‖γ‖2L∞(R+,W∗

h
)

+(KC,α + 1)max{ 8C2
p

ClD2
c

,
2D−1

c ∆t

3
}‖ζ‖2L∞(R+,Ψ∗

h
)
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+max{ 8C2
p

Clν(ν + C2
pDa−1)

,
2ν−1∆t

3
}‖f‖2L∞(R+,V∗

h
),(45)

where KT,α =
49CuDa∆t‖g‖2∞β2

T

α
, KC,α =

49CuDa∆t‖g‖2∞β2
C

α
,

U0 = [u0
h u−1

h u−2
h ], T0 = [T 0

h T−1
h T−2

h ], C0 = [C0
h C−1

h C−2
h ],

α = min{
Cl(ν + C2

pDa−1)∆t

16C2
p

,
3

4
}, β = min{Clκ∆t

16C2
p

,
3

4
}, δ = min{ClDc∆t

16C2
p

,
3

4
}.

Proof. Arguing in the same way as for (35), letting Sh = T n+1
h in (43) and φh =

Cn+1
h in (44) gives

‖Tn+1‖2G +
κ∆t

4
‖∇T n+1

h ‖2 + κ∆t

16
‖∇T n

h ‖2

≤ (1 + β)−(n+1)(‖T0‖2G +
κ∆t

4
‖∇T 0

h‖2 +
κ∆t

16
‖∇T−1

h ‖2)

+
κ−1∆t

2β
‖γ‖2L∞(R+,W∗

h
)(46)

for the temperature where β = min{Clκ∆t

16C2
p

,
3

4
} and

‖Cn+1‖2G +
Dc∆t

4
‖∇Cn+1

h ‖2 + Dc∆t

16
‖∇Cn

h‖2

≤ (1 + δ)−(n+1)(‖C0‖2G +
Dc∆t

4
‖∇C0

h‖2 +
Dc∆t

16
‖∇C−1

h ‖2)

+
D−1

c ∆t

2δ
‖ζ‖2L∞(R+,Ψ∗

h
)(47)

for the concentration where δ = min{ClDc∆t

16C2
p

,
3

4
} and Cn+1 = [Cn+1

h Cn
h Cn−1

h ]>

and Cn = [Cn
h Cn−1

h Cn−2
h ]>. Next, a bound for the velocity begins with letting

vh = un+1
h in (42), utilizing the similar ideas, one finds

‖Un+1‖2G − ‖Un‖2G +
1

12
‖un+1

h − 3un
h + 3un−1

h − un−2
h ‖2

+
ν∆t

2
‖∇un+1

h ‖2 + Da−1∆t

2
‖un+1

h ‖2

≤ Da∆t‖g‖2∞(β2
T ‖T ∗‖2 + β2

C‖C∗‖2) + ν−1∆t

2
‖fn+1‖2

V∗

h
.(48)

As for (39), adding
ν∆t

4
‖∇un

h‖2+
ν∆t

16
‖∇un−1

h ‖2+Da−1∆t

4
‖un

h‖2+
Da−1∆t

16
‖un−1

h ‖2
to the both sides and arguing exactly in the same way, (48) yields

(1 + α)(‖Un+1‖2G +
ν∆t

4
‖∇un+1

h ‖2 + ν∆t

16
‖∇un

h‖2

+
Da−1∆t

4
‖un+1

h ‖2 + Da−1∆t

16
‖un

h‖2)

≤ (‖Un‖2G +
ν∆t

4
‖∇un

h‖2 +
ν∆t

16
‖∇un−1

h ‖2 + Da−1∆t

4
‖un

h‖2

+
Da−1∆t

16
‖un−1

h ‖2) +Da∆t‖g‖2∞(β2
T ‖T ∗‖2 + β2

C‖C∗‖2) + ν−1∆t

2
‖fn+1‖2

V∗

h
(49)

where α = min{∆tCl

16
(
ν

C2
p

+Da−1),
3

4
}.
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Utilizing (3), and the definitions of T ∗, C∗, we get ‖T ∗‖ ≤ 7‖Tn‖ ≤ 7
√
Cu‖Tn‖G

and ‖C∗‖ ≤ 7‖Cn‖ ≤ 7
√
Cu‖Cn‖G. Putting n instead of (n + 1) in (46) and (47)

and inserting them in (49) yields

(1 + α)(‖Un+1‖2G +
ν∆t

4
‖∇un+1

h ‖2 + ν∆t

16
‖∇un

h‖2

+
Da−1∆t

4
‖un+1

h ‖2 + Da−1∆t

16
‖un

h‖2)

≤ (‖Un‖2G +
ν∆t

4
‖∇un

h‖2 +
ν∆t

16
‖∇un−1

h ‖2 + Da−1∆t

4
‖un

h‖2

+
Da−1∆t

16
‖un−1

h ‖2) + 49CuDa∆t‖g‖2∞
(

β2
T

(

(1 + β)−n(‖T0‖2G

+
κ∆t

4
‖∇T 0

h‖2 +
κ∆t

16
‖∇T−1

h ‖2) + κ−1∆t

2β
‖γ‖2L∞(R+,W∗

h
)

)

+β2
C

(

(1 + δ)−n(‖C0‖2G +
Dc∆t

4
‖∇C0

h‖2 +
Dc∆t

16
‖∇C−1

h ‖2)

+
D−1

c ∆t

2δ
‖ζ‖2L∞(R+,Ψ∗

h
)

)

)

+
ν−1∆t

2
‖fn+1‖2

V∗

h
.(50)

Applying induction and summing up (50) with (46) and (47) gives the stated result
(45).

�

5.1. Numerical experiment for double-diffusive convection. Among all the
multiphysics flow examples issued in this study, the most challenging kind of flow
is the double-diffusive convection case due to the highly oscillatory nature of its
solutions [7, 16, 17]. As the Rayleigh number increases, complex behavior of the
solutions becomes more visible. However, we could still show the long time stability
of the solutions of this system with the moderate Rayleigh number of 1000 in a
cavity convection case with the problem parameters, N = 0.8, Le = 2, P r = 1. We
study in a rectangular domain Ω = (0, 1)× (0, 2) with a coarse mesh resolution of
10× 20. We note that, in the test, the Darcy number Da is taken to be infinity for
convenience.

Similar to the the previous test, vertical boundaries are kept at different temper-
ature and concentration values imposed as Dirichlet boundary conditions whereas,
the velocity boundary conditions are still no-slip all over the boundary. For a better
understanding, we illustrate the details of the computational domain in Figure 4
as in previous case.

In Figure 5, the evolutions of the norms of each variable are illustrated. It can be
observed that for larger ∆t values, solutions are stable inside an interval due to the
complex attitude of the solution as explained earlier. However, the unconditional
stability property of the solutions have been presented through this example.

In Table 3, we present the CPU time comparison table for the test problem. The
most visible CPU time differences are occurred in this case due to the increment
in the degrees of freedom. As one more equation has been coupled to the system
compared with the previous test case, we feel the superiority of the BLEBDF scheme
when compared to the classical BDF2 scheme especially for smaller ∆t. So the
BLEBDF is clearly preferable when solving coupling systems with small time step
sizes on longer time intervals.
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Figure 4. The computational domain for the double-diffusive
convection test example.
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Figure 5. Evolution of the L2 norm of the solution for Ra =
103, Le = 2, P r = 1, N = 0.8.

Table 3. Comparison of the CPU-times (seconds) of classical
BDF2 scheme and BLEBDF scheme for the double-diffusive con-
vection test problem with Ra = 103 on a time interval [0, 150].

∆t BDF2 BLEBDF

1 9.41 9
0.1 92 88
0.01 1075 860

6. Conclusion

This study deals with the long time stability of multiphysics flow problems in-
cluding the Navier-Stokes equations, natural convection and double-diffusive con-
vection systems with BLEBDF temporal discretization along with the finite ele-
ment method in spatial discretization. Unconditional stability of the schemes have
been proven and theoretical results are supported with various numerical examples.
Computed CPU times suggest that this method noticeably saves time compared
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with the classical BDF2 scheme for small time step sizes. These numerical experi-
ments establish the strong evidence of the long time stability results of multiphysics
flows presented in this study.
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