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THE PROPERTY OF THE BRANCH OF NONSINGULAR

FINITE ELEMENT/FINITE VOLUME SOLUTIONS TO THE

STATIONARY NAVIER-STOKES EQUATIONS AND ITS

APPLICATION

JIAN LI AND YINNIAN HE

Abstract. In this paper, a branch of nonsingular solutions of the stationary Navier-Stokes
equations are investigated, which are unique on a neighborhood, and mostly isolated without
relying on very stringent requirement on the small data. We summarize and develop an equivalent
definition of nonsingular solutions of finite element/finite volume methods in the same framework.
Furthermore, we establish the equivalent definition of a branch of singular solutions of finite
element methods for the coupled Navier-Stokes/Darcy equations.

Key words. Stationary Navier-Stokes equations, finite element methods, finite volume methods,
the branch of nonsingular solutions, inf-sup condition, large data.

1. Introduction

The Navier-Stokes equations usually have more than one solution unless the da-
ta satisfy the stringent requirement of uniqueness condition of the solutions, which
required that the data be small enough in certain norms [17, 33]. However, this
uniqueness condition is rarely satisfied in the real world. In many practical exam-
ples, the solutions are mostly isolated, and depend continuously on the viscosity. As
the viscosity varies along an interval, each solution of the Navier-Stokes equation-
s describes an isolated branch, which means the bifurcation phenomenon is rare.
This situation is expressed mathematically by the notion of branches of nonsingular
solutions.

Finite element approximations of nonsingular solutions have been investigated in
[4, 17, 18], where optimal order error estimates have been obtained for the stationary
Navier-Stokes equations with large data. Also, an analysis of the nonsingular finite
volume solutions to the Navier-Stokes equations is not direct to establish where the
whole system lacks symmetry in the context of a petrov-Galerkin method [2, 6, 7,
8, 14, 15, 16, 19, 25, 34].

For both finite element/finite volume approximations of the stationary Navier-
Stokes equations, the original definition of nonsingular solutions is difficult to be
applied and developed for the further research in this field. Here, we apply the
definition of an isomorphism between two spaces to obtain the equivalent definition
of discrete nonsingular solutions to the stationary Navier-Stokes equations and its
coupled system.

This paper is organized as follows: In the next section, we introduce notations of
a branch of nonsingular solutions to the stationary Navier-Stokes equations. Then,
in the third section, the property of a branch of nonsingular finite element solu-
tions to the stationary Navier-Stokes equations is derived. Also, the corresponding
property of nonsingular finite volume solutions is investigated in the fourth sec-
tion. Finally, we investigate the property of a branch of nonsingular finite element
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solutions to the coupled Navier-Stokes/Darcy model with heterogeneous porous
medium.

2. A branch of nonsingular solutions to the stationary Navier-Stokes
equations

Let Ω be a bounded domain in ℜd, d = 2, 3, assumed that Γ is of C2 or if Ω is a
two-dimensional convex polygon. The stationary Navier-Stokes equations are

−∆u+ λ∇p = λf − λ((u · ∇)u+
1

2
(divu)u), in Ω,(1)

div u = 0, in Ω,(2)

u|Γ = 0, on Γ,(3)

where u = u(x) represents the velocity vector, p = p(x) the pressure, f = f(x) the
prescribed body force, λ = µ−1, and µ > 0 the viscosity.

For simplicity, some useful Sobolev spaces can be defined by:

X = [H1
0 (Ω)]

d, M = L2
0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω

qdx = 0

}

, Z = [L3/2(Ω)]d,

X̄ = X ×M, Y = [H−1(Ω)]d, V = {v ∈ X : div v = 0} ,

H =
{

v ∈ [L2(Ω)]d : div v = 0
}

, D(A) = [H2(Ω)]d ∩ V,

where the Stokes operator A : D(A)→H is defined by A = −P∆ and P : [L2(Ω)]d

→ H is the standard L2-orthogonal projection. The spaces [L2(Ω)]m, m = 1, 2,
or 4, are endowed with the L2-scalar product (·, ·) and the L2-norm ‖ · ‖L2 , as
appropriate. In addition, ‖ · ‖Lr , 1 ≤ r ≤ ∞, denotes the norm of the space Lr(Ω).
The space X is equipped with the usual scalar product (∇u,∇v) and the norm
‖u‖H1 (or equivalently ‖∇u‖L2), u, v ∈ X . In particular, define the norm on X̄:

|||(v, q)||| = (‖∇v‖2L2 + λ2‖q‖2L2)1/2, (v, q) ∈ X̄.

In this paper standard definitions are used for the Sobolev spacesWm,r(Ω) [1], with
the norm ‖ · ‖Wm,r and the seminorm | · |Wm,r , m, r ≥ 0. We will write Hm(Ω) for
Wm,2(Ω) and ‖ · ‖Hm for ‖ · ‖Wm,2(Ω).

First, we consider the linear Stokes equations in order to introduce some math-
ematical theory of the nonsingular solutions of the stationary Navier-Stokes equa-
tions. A linear operator T : Y → X̄ is defined as follows: Given g ∈ Y , the solution
of the Stokes problem

−∆v + λ∇q = g, in Ω,

div v = 0, in Ω,

v|Γ = 0, on Γ,(4)

is denoted by ṽ(λ) = (v, λq) = Tg ∈ X̄. Furthermore, a C2-mapping G : R+× X̄ →
Y is defined by

G(λ, ṽ(λ)) = λ

(

(v · ∇)v +
1

2
(div v)v − f

)

since the term divu = 0. Finally, we define

F (λ, ṽ(λ)) = ṽ(λ) + TG(λ, ṽ(λ)), λ ∈ R+, ṽ(λ) ∈ X̄.

In this section, a branch of nonsingular solutions of the stationary Navier-Stokes
equations, as introduced in [4, 17, 18, 22, 23], are studied.
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Definition 2.1. Let Λ be a compact interval in R+; {(λ, ũ(λ))}, with ũ(λ) =
(u, λp), is a branch of nonsingular solutions to the equation

F (λ, ũ(λ)) = 0,(5)

if DuF (λ, ũ(λ)) is an isomorphism from X̄ onto Y for all λ ∈ Λ.
Remark. As mentioned above, the further results on Ω can be obtained for the

unique solution ṽ(λ) = (v, λq) = Tg ∈ X̄ of the stationary Stokes problem for a
prescribed g ∈ [Lr(Ω)]d exists and satisfies

‖v‖W 2,r + λ‖q‖W 1,r ≤ C‖g‖Lr ,(6)

where C > 0 is a constant depending on Ω. As usual, the letter C represents any
constants independent of h and of all the functions appearing in a given inequali-
ty. Here and later, C0, C1, . . . are positive constants depending only on the data
(λ,Ω, f).

Using integration by parts, the weak formulation of the stationary Navier-Stokes
equations (1)-(3) is: Find (u, p) ∈ X̄ such that

a(u, v)− λd(v, p) + λd(u, q) + λb(u, u, v) = λ(f, v), ∀(v, q) ∈ X̄,(7)

where the bilinear forms a(·, ·) and d(·, ·) are defined as follows:

a(u, v) = µ(∇u,∇v) ∀u, v ∈ X, d(v, q) = (div v, q) ∀(v, q) ∈ X̄.

Obviously, the bilinear form a(·, ·) is continuous and coercive on the space pair
X × X ; the bilinear form d(·, ·) is continuous and satisfies the inf-sup condition:
There exists a positive constant β1 > 0 such that, for all q ∈M ,

sup
v∈X

d(v, q)

‖∇v‖L2

≥ β1‖q‖L2 .(8)

Moreover, the trilinear form b(·, ·, ·) is continuous on the space triplet X ×X ×X

b(u, v, w) = (B(u, v), w)

= ((u · ∇)v, w) +
1

2
((div u)v, w)

=
1

2
((u · ∇)v, w) −

1

2
((u · ∇)w, v) ∀u, v, w ∈ X,

and satisfies

b(u, v, w) =− b(u,w, v), ∀u, v, w ∈ X,(9)

|b(u, v, w)| ≤C0‖∇u‖L2‖∇v‖L2‖∇w‖L2 , ∀u, v, w ∈ X.(10)

Furthermore, the existence and uniqueness results of (5) can be referred in [17,
18, 22, 23].

Lemma 2.1. ([17, 18, 22, 23]) If λ satisfies the following uniqueness condition:

λ < λ0 =
1

√

C0‖f‖−1

,

then (5) admits a unique solution (u, p). Moreover, the pair (u, p) ∈ X̄ is a solution

of the problem (7) if and only if ũ(λ) ∈ X̄ is a solution of (5).
Similarly, we can apply the same approach as in [18] to obtain the following

stability of (5):

Lemma 2.2. Assume that f ∈ [L2(Ω)]d, and the pair ũ(λ) = (u, λp) ∈ X̄ is

a solution to problem (5). Then ũ(λ) ∈ D(A) × [H1(Ω) ∩M ] and G(λ, ũ(λ)) ∈ Y
satisfies

‖u‖H2 + λ‖p‖H1 ≤ C,(11)
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where the positive constant C depends on the data (λ,Ω, f).

3. A branch of nonsingular finite element solutions to the stationary
Navier-Stokes equations

Let us now return to the finite element approximation of the problem presented.
We shall consider the families of finite element spaces (Xh,Mh), for which we shall
need the following assumptions: LetKh be a regular, quasi-uniform triangulation of
the polygonal domain Ω [5, 10]. Associated with Kh, we consider the finite element
spaces for the velocity and pressure: Xh ⊂ X and Mh ⊂M .

Usually, we assume that the finite element spaces satisfy the discrete inf-sup

condition:

sup
vh∈Xh

d(vh, qh)

‖∇vh‖L2

≥ β2‖qh‖L2 , ∀qh ∈Mh,(12)

where the constant β2 > 0 is independent of h. Examples of the spaces that satisfy
these assumptions include the following examples in 2d case [17, 32, 33]: Macro-
element pairs P1 − Pi, i = 0, 1 with a way [30] to approximate the P2 velocity field
defined on a macro-element mesh by refining Kh uniformly to obtain the mesh
Kh/2, famous Taylor-Hood element, Mini element pair P1b − P1, and the popular
lowest equal-order or lowest order finite element spaces P1−Pi, which do not satisfy
the inf-sup condition and can be stabilized by a symmetric and semidefinite term
G(ph, qh) [11, 12, 24].

Then, a bilinear form on X̄h × X̄h for the finite element methods introduced is
defined by

Bh((ūh, λp̄h), (vh, λqh)) = a(ūh, vh)− λd(vh, p̄h) + λd(ūh, qh) + λχiG(p̄h, qh)(13)

for ∀(ūh, p̄h), (vh, qh) ∈ X̄h, where the characteristic constant

χi =

{

0, finite element methods(i=0),

1, stabilized finite element methods(i=1).

Furthermore, this bilinear form satisfies the continuity and weak coercivity proper-
ties [11, 12, 17, 18, 24, 33]:

|Bh((ūh, λp̄h), (vh, λqh))| ≤ C|||(ūh, p̄h)||||||(vh, qh)|||,(14)

sup
(vh,qh)∈X̄h

|Bh((uh, λph), (vh, λqh))|

|||(vh, qh)|||
≥ β3|||(ūh, p̄h)|||,(15)

where the constant β3 > 0 is independent of h.
Using the above notations, the corresponding finite element formulation of sys-

tem (1)-(3) reads: Find (ūh, p̄h) ∈ X̄h, such that, for all (vh, qh) ∈ X̄h,

Bh((ūh, λp̄h), (vh, λqh)) + λb(ūh, ūh, vh) = λ(f, vh);(16)

i.e.,

F (λ, ˜̄uh(λ)) ≡ ˜̄uh(λ) + ThG(λ, ˜̄uh(λ)) = 0,(17)

where Th is the discrete counterpart of the operator T .
Similar to the continuous case, {(λ, ˜̄uh(λ))} with ˜̄uh(λ) = (ūh, λp̄h) is a branch

of nonsingular solutions to (17) if

Dūh
F (λ, ˜̄uh(λ)) is an isomorphism from X̄h onto Y for all λ ∈ Λ.(18)

Recall that Th : Y→X̄h is the solution operator of the discrete Stokes equations.
This operator yields the solution ˜̄uh(λ) = (ūh, λp̄h) to problem (17). Apparently,
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this solution is also a solution of the discrete Navier-Stokes equation (16) if and
only if it is a solution of (17).

For convenience, set

B̄λ((w̄h, λχ̄h); (vh, λqh)) =: Aλ(ūh; w̄h, vh)−λd(vh, χ̄h)+λd(w̄h, qh)+λχiG(χ̄h, qh),

and Aλ(ūh;wh, vh) = a(wh, vh) + λb(ūh, wh, vh) + λb(wh, ūh, vh).
Furthermore, based on the results in [4, 17, 18, 36], we obtain the following

result.
Theorem 3.1. ˜̄uh(λ) ∈ X̄h is a branch of non-singular solutions to equation

(16) or (17) if and only if there exists a constant γ > 0 dependent of the data

(λ, f,Ω), such that

sup
(vh,qh)∈X̄h

|B̄λ((w̄h, λχ̄h); (vh, λqh))|

|||(vh, qh)|||
≥ γ|||(w̄h, χ̄h)|||, ∀(w̄h, χ̄h) ∈ X̄h,(19)

where the parameter γ is determined by the following

γ =
min{ 3γ0

4 , 3λσ4

(

1−
4C2

1
(1+2C0λ

2‖f‖
−1)σ

3λγ0

)

}

max{1, C1σ+λ
λ }

.

Proof. Since Dūh
F (λ, ˜̄uh(λ)) is an isomorphism from X̄h onto Y for all λ ∈ Λ,

it first is a surjective linear mapping, thus for each ˜̄w1 =: (w̄1, λχ̄1) ∈ X̄h ⊂ X̄
there exists a unique ˜̄wh =: (w̄h, λχ̄h) ∈ X̄h ⊂ X̄ such that

Dūh
Fh(λ, ˜̄uh) ˜̄wh = ˜̄w1.(20)

Thus, ˜̄wh = (w̄h, λχ̄h) satisfies

˜̄wh − ˜̄w1 = (w̄h − w̄1, λ(χ̄h − χ̄1)) = −Th(Dūh
G(λ, ˜̄uh)w̄h).

where

Dūh
G(λ, ˜̄uh)w̄h = λ

(

((ūh · ∇)w̄h + (w̄h · ∇)ūh) +
1

2
((divūh)w̄h + (divw̄h)ūh)

)

= λ(B(ūh, w̄h) +B(w̄h, ūh)).

Then we obtain by a direct calculation

a(w̄h − w̄1, vh)− λd(vh, χ̄h − χ̄1) + λd(w̄h − w̄1, qh) + λχiG(χ̄h − χ̄1, qh)

= −λb(ūh, w̄h, vh)− λb(w̄h, ūh, vh).

Setting λ(f̃ , vh) = a(w̄1, vh)−λd(vh, χ̄1)+λd(w̄1, qh)+λχiG(χ̄1, qh), the following
equation holds

a(w̄h, vh) + λb(ūh, w̄h, vh) + λb(w̄h, ūh, vh)

−λd(vh, χ̄h) + λd(w̄h, qh) + λχiG(χ̄h, qh) = λ(f̃ , vh)

has a unique solution (w̄h, χ̄h) ∈ X̄h for any given ˜̄w1 = (w̄1, λχ̄1) ∈ X̄h ⊂ X̄ .
In addition, Dūh

Fh(λ, ˜̄uh(λ)) is an injective mapping from X̄h onto Y for each
λ ∈ Λ. Then there exists a constant γ0 > 0 such that

||Dūh
F (λ, ˜̄uh(λ))w̄h||Z ≥ γ0‖∇w̄h‖0 ∀w̄h ∈ X̄h,(21)

where ||Dūh
F (λ, ˜̄uh(λ))w̄h||Z = sup

vh∈Xh

〈Dūh
F (λ, ˜̄uh(λ))w̄h, vh〉/‖∇vh‖0.

In the following, we mainly determine the parameter γ > 0. First, taking vh = uh
in (16) or (17), we obtain

‖∇ūh‖
2
0 ≤ λ(f, ūh) ≤ λ‖f‖−1‖∇ūh‖0,
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which implies that ‖∇ūh‖0 ≤ λ‖f‖−1. Using the definition of Aλ(·, ·, ·) and (21),
we get

Aλ(ūh;wh, wh) = a(wh, wh) + λb(ūh, wh, wh) + λb(wh, ūh, wh)

≥ γ0‖∇wh‖
2
0.(22)

Obviously, there holds

Aλ(ūh, w̄h, vh) ≤ γ1‖∇w̄h‖0‖∇v̄h‖0,(23)

where γ1 = (1 + 2C0λ
2‖f‖−1). Taking (vh, qh) = (w̄h, χ̄h) in Bλ((·, ·); (·, ·)), we

obtain

Bλ((w̄h, λχ̄h); (w̄h, λχ̄h)) = Aλ(ūh, w̄h, w̄h) + λG(χ̄h, χ̄h)

≥ γ0‖∇w̄h‖
2
0 + λχiG(χ̄h, χ̄h).

Note that for any χ̄h ∈ Mh ⊂ M , there exists ξ ∈ X and a positive constant C1

such that

d(ξ, χ̄h) = ‖χ̄h‖
2
0, ‖∇ξh‖0 ≤ C‖ξ‖1 ≤ C1‖χ̄h‖0,(24)

where ξh = Ihξ satisfies

d(ξ − ξh, qh) = 0,(25)

and

‖ξ − ξh‖0 ≤ Ch‖ξ‖1.(26)

Setting Πhpdx = 1
K

∫

K
pdx, ∀q ∈ L2(Ω), using (25)-(26), the inverse inequality,

and the Young inequality it follows that

d(ξh, χ̄h) = d(ξ, χ̄h)− d(ξ − ξh, χ̄h)

≥ ‖χ̄h‖
2
0 − Cχih‖ξ‖1‖∇(χ̄h −Πhχ̄h)‖0

≥ ‖χ̄h‖
2
0 − C1χih‖χ̄h‖0‖∇(χ̄h −Πhχ̄h)‖0,

≥
3

4
‖χ̄h‖

2
0 − C2χiG(χ̄h, χ̄h).

Also, using the Young inequality, (23) and (24) yields that

Bλ((w̄h, λχ̄h); (−ξh, 0)) = −Aλ(ūh, w̄h, ξh) + λd(ξh, χ̄h)

≥ −γ1‖∇w̄h‖0‖∇ξh‖0 +
3

4
λ‖χ̄h‖

2
0 − C2χiλG(χ̄h, χ̄h)

≥ −C1γ1‖∇w̄h‖0‖χ̄h‖0 +
3

4
λ‖χ̄h‖

2
0 − C2χiλG(χ̄h, χ̄h)

≥ −
γ0
4
‖∇w̄h‖

2
0 −

C2
1γ

2
1

γ0
‖χ̄h‖

2
0 +

3

4
λ‖χ̄h‖

2
0 − C2χiλG(χ̄h, χ̄h).

Therefore, combining these two inequalities and setting the positive constant

σ = min

{

1

C2
,
3λγ0
4C2

1γ
2
1

}

,

we obtain

Bλ((w̄h, λχ̄h); (w̄h − σξh, λχ̄h))

≥
3γ0
4

‖∇w̄h‖
2
0 +

3

4
λσ

(

1−
4C2

1γ
2
1σ

3λγ0

)

‖χh‖
2
0 + λχi(1− C2σ)G(χ̄h, χ̄h)

≥ C3

(

‖∇w̄h‖
2
0 + λ2‖χh‖

2
0

)

,
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where C3 = min
{

3γ0
4 , 3λσ4

(

1−
4C2

1
(1+2C0λ

2‖f‖
−1)

2σ
3λγ0

)

}

> 0 is independent of the

mesh scale h. Using the triangle inequality, we can easily see that

‖|(w̄h − σξh, χ̄h)‖|X̄ ≤ C4(‖∇w̄h‖0 + λ‖χh‖0),

where C4 = max{1, C1σ+λ
λ }. Finally, setting γ = C3/C4 and using a straightforward

computation, we complete the proof of (19). []

4. A branch of nonsingular stabilized finite volume solutions to the sta-
tionary Navier-Stokes equations

In the coming purpose, the finite volume methods are developed and presented.
Let Nh be the set containing all the interior nodes associated with the triangulation
Kh, and N be the total number of the nodes. A dual mesh K̃h is introduced based
on Kh; the elements in K̃h are called control volumes. The dual mesh can be
constructed by the following rule: For each element K ∈ Kh with vertices Pj ,
j = 1, 2, · · ·N , select its barycenter Qj and the midpoint Mj on each of the edges

of K, and construct the control volumes in K̃h by connecting Qj to Mj . Then, the
dual finite element space is defined by

X̃h =
{

v ∈ [L2(Ω)]d : v|K̃ ∈ [P0(K̃)]d ∀K̃ ∈ K̃h; v|∂Ω = 0
}

,

which has the same dimensions as the corresponding finite element space Xh. Here,
we only consider the popular lower order and lower equal-order finite element spaces
[20, 21, 22, 30, 32, 34, 35] in order to analyze a branch of nonsingular finite volume
solutions to the stationary Navier-Stokes equations.

Now, the (stabilized) finite volume variational formulation for the stationary
Navier-Stokes equations (1)-(3) is: Find ũh(λ) = (uh, λph) ∈ X̄h ⊂ X̄ such that

Fh(λ, ũh(λ)) =: ũh(λ) + ThG(λ, ũh(λ)) = 0;(27)

i.e.,

Ch((uh, λph), (vh, λqh)) + λb(uh, uh,Γhvh) = λ(f,Γhvh), ∀(vh, qh) ∈ X̄h,(28)

where the liner mapping Γh : Xh→X̃h introduced in [27] satisfies the following
properties:

Γhvh(x) =
N
∑

j=1

vh(Pj)χj(x), x ∈ Ω, vh ∈ Xh,(29)

and χi(x)|Kj
= δij is the characteristic function associated with x ∈ K̃j ∈ K̃h.

Here, these bilinear terms and the trilinear term are defined as follows:

A(uh,Γhvh) = −
N
∑

j=1

vh(Pj) ·

∫

∂K̃j

∂uh
∂~n

ds, uh, vh ∈ Xh,

D(Γhvh, ph) = −

N
∑

j=1

vh(Pj) ·

∫

∂K̃j

ph~n ds, ph ∈Mh,

Ch((uh, λph), (vh, λqh)) = A(uh,Γhvh) + λD(Γhvh, ph) + λd(uh, qh),

(f,Γhvh) =

N
∑

j=1

vh(Pj) ·

∫

K̃j

f dx, vh ∈ Xh,

where ~n is the unit normal outward to ∂K̃j.
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The same theory is valid for the stabilized finite volume methods approximated
by the lower order finite element pairs because of the equivalence [9, 21, 26, 35]
between the finite element methods and the finite volume methods for the bilinear
terms A(uh,Γhvh) = a(uh, vh) and D(Γhvh, qh) = −d(vh, qh). Then, we directly
verify the corresponding continuity and weak coercivity of the bilinear form Ch(·, ·):

|Ch((uh, λph), (vh, λqh))| ≤ C|||(uh, ph)||||||(vh, qh)|||, ∀(uh, ph), (vh, qh) ∈ X̄h,

(30)

and

sup
(vh,qh)∈X̄h

|Ch((uh, λph), (vh, λqh))|

|||(vh, qh)|||
≥ β4|||(uh, ph)|||, ∀(uh, ph) ∈ X̄h,(31)

where the constant β4 > 0 is independent of h.
Furthermore, using the same approach as for Theorem 3.1, we can obtain the

following property.
Theorem 4.1. ũh(λ) ∈ X̄h is a branch of non-singular solutions to equation

(27) if and only if there exists a constant γ∗ > 0 dependent of the data (λ, f,Ω),
such that

sup
(vh,qh)∈X̄h

Bλ((wh, λχh); (vh, λqh))

|||(vh, qh)|||
≥ γ∗|||(wh, χh)|||, (wh, χh) ∈ X̄h.(32)

where

Bλ((wh, λχh); (vh, λqh)) =: Aλ(uh;wh,Γhvh) + λD(Γhvh, χh) + λd(wh, qh)

+λχiG(χh, qh),

with Aλ(uh;wh,Γhvh) = A(wh,Γhvh) + λb(uh, wh,Γhvh) + λb(wh, uh,Γhvh).
Proof. Using the same process as for the corresponding non-singular finite

element solutions to the Navier-Stokes equations, and applying the equivalence of
these bilinear terms between two different methods, the desired result follows.

Remark. γ∗ is different from the previous constant γ because of the definition
and boundness of the trilinear term.

5. A branch of nonsingular solutions of finite element methods for the
coupled Navier-Stokes/Darcy model

In this section we will introduce the branch of the nonsingular finite element
solutions to the stationary Navier-Stokes/Darcy equations and then utilize it to
show the well-posedness of the coupled weak formulation.

To specify the problem considered, we try to use the corresponding mathematical
symbol of the Navier-Stokes equations defined above. Let the two domains be
denoted by Ωp and Ωf and lie across an interface Γ from each other. The Darcy
problem is stated as follows:

−∇ · (K(x)∇φ) = fp, in Ωp,(33)

where (33) implies up = −K(x)∇φ; up is the fluid velocity discharge rate; fp is the
sink/source term; the hydraulic head φ = z + pD

ρg is determined by the dynamic

pressure pD, the height z, the density ρ, and the gravity constant g. Especially,
K(x) is the hydraulic conductivity tensor and the coefficient has the property K ∈
W 1,∞(Dj) with respect to a nonoverlapping partitioning of Ωf into open, connected
Lipschitz polytopes D := {Dj : j = 1, · · ·n}, that is, Ω̄f = ∪nj=1D̄j . Moreover, we

assume that |K(x)|1,∞,Dj
≤ C for j = 1, · · ·n and that K0 < |e|2Kij(x)eiej < K∗

0

for some positive constants K0 and K∗
0 [29].
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In the free-flow region Ωf , the Navier-Stokes equations is modeled by

−∇ · S(u, p) + (u · ∇)u = f, ∇ · u = 0, in Ωf ,(34)

where u and p respectively denote the fluid velocity and pressure; S(u, p) = 2µD(u)−
pI denotes the stress tensor, D(u) = 1

2 (∇u +∇Tu) the rate of deformation tensor,
I the identity tensor, f the external body force, and µ the kinematic viscosity of
the fluid.

Assume homogeneous Dirichlet boundary conditions for the hydraulic head and
fluid velocity on the outer boundaries ∂Ωp and ∂Ωf , respectively, i.e., we have
φ = 0 on ∂ΩD\Γ, and u = 0 on ∂ΩS\Γ. Along the interface Γ, we impose the the
Beavers-Joseph-Saffmn-Jones (BJSJ) interface conditions [3, 20, 31]

u · nf = up · nf = −K(x)∇φ · nf ,(35)

−τj · (S(u, p) · nf ) = αBJSJτj · uf , j = 1, · · · , d− 1,(36)

−nf · (S(u, p) · nf ) = g(φ− z),(37)

where αBJSJ is the BJSJ coefficient; nf denotes the unit outer normal from the
fluid to the porous media regions at the interface Γ; τj (j = 1, . . . , d − 1) denotes
mutually orthogonal unit tangential vectors to the interface Γ. For simplicity, we
usually set z = 0.

For the mathematical setting of problem (33)-(37), the following Hilbert spaces
are introduced [1]:

Xf = {v ∈ [H1(Ωf )]
d : v = 0 on ∂Ωf\Γ}, Xp = {ψ ∈ [H1(Ωp)]

d : ψ = 0 on ∂Ωf\Γ},

Ȳ = [H−1(Ωf )]
d ×H−1(Ωp), Mf = L2(Ωf ), N = Xf ×M ×Xp.

For the domain D, (·, ·)D denotes the L2 inner product and < ·, · > denotes the L2

inner product on the interface Γ.
Multiplying (33) and (34), by gψ ∈ Xp, v ∈ Xf and q ∈ Mf , integrating

over the corresponding domains and applying the divergence theorem, is to find
Ū(λ) = (u, λp, λφ) ∈ N̄ for given F = (f, fp) ∈ Ȳ such that

D((u, φ); (v, ψ)) − λd(v, p) + λd(u, q)

=λ(F, (v, ψ)) − λ(B(u, u), v), ∀ (v, q, ψ) ∈ N̄ ,(38)

where

D((u, φ); (v, ψ)) = a(u, v) + aΓ(u, v) + λgap(φ, ψ) + g < φ, v · nf >

−λg < u · nf , ψ >,

(F, (v, ψ)) = (f, v)Ωf
+ g(fp, ψ)Ωp

+ < gz, v · nf > .

Here, the same definition of the bilinear terms a(·, ·) and d(·, ·) in previous section
is used. Moreover, the additional bilinear terms is defined by

a(u, v) = µ(∇u,∇v) = 2µ(D(u), D(v)),

ap(φ, ψ) = g(K(x)∇φ,∇ψ)Ωp
,

aΓ(u, v) = αBJSJ < u · τ, v · τ > .

Taking (v, ψ) = (u, φ) in the definition of D((u, φ); (v, ψ)), we obtain [13]

D((u, φ); (u, φ)) = a(u, u) + aΓ(u, u) + λgap(φ, φ)

≥ µ‖∇u‖20 + λgK0‖∇φ‖
2
0 + αBSJS‖u · τ‖2Γ

≥ Ca(‖∇u‖
2 + ‖∇φ‖0),(39)

where Ca = min(µ, λgK0, αBJSJ ) > 0. Thus, the system of (38) is well-posed.
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Furthermore, from a point of view of nonsingular solutions of the coupled Navier-
Stokes/Darcy system, a C2-mapping G : R+ × N̄ → Ȳ is introduced as follows:

G(λ, Ū (λ)) = λ

[(

B(u, u)
0

)

− F

]

.

Then we define a linear operator T ∈ L(Ȳ ; N̄) such that the above equation (38) is
denoted by

Ū(λ) = −TG(λ, Ū (λ)).(40)

Then, the system (38) can be presented as follows:

F(λ, Ū (λ)) =: Ū(λ) + TG(λ, Ū (λ)) = 0.(41)

That is, Ū(λ) = (u, λp, λφ) is a solution of the problem (41) if and only if it is a
solution of (38). Furthermore, {λ, Ū(λ)} is called a branch of nonsingular solutions
if DŪF(λ, Ū(λ)) is an isomorphism between N̄ and Ȳ for all λ ∈ R+. Then for the
branch of nonsingular solutions {λ, Ū(λ)}, given any w̄1 = (w1, r1, χ1) ∈ N̄ , there
exists a unique w̄ = (w, r, χ) ∈ N̄ satisfying

DŪF(λ, Ū(λ))w̄ = w̄1.(42)

Thanks to (41) and (42), we obtain

w̄ − w̄1 = −TDŪG(λ, Ū (λ))w̄.(43)

Hence

D((w − w1, χ− χ1); (v, ψ)) − λd(v, r − r1) + λd(w − w1, q)

= −λb(u,w, v)− λb(w, u, v), ∀ (v, q, ψ) ∈ N̄ .(44)

Define

λ(F̃ , (v, ψ, q)) = D((w1, χ1); (v, ψ)) + λd(v, r1)− λd(w1, q),(45)

and

Dλ((w, r, χ); (v, q, ψ)) =D((w, χ); (v, ψ)) + λd(v, r) − λd(w, q) + λb(u,w, v)

+ λb(w, u, v).(46)

Then, for any F̃ , there exists a unique w̄ = (w, r, χ) ∈ N̄ such that

Dλ((w, r, χ); (v, q, ψ)) = λ(F̃ , (v, q, ψ)), ∀ (v, q, ψ) ∈ N̄.(47)

In addition, DŪF(λ, Ū (λ)) is an injective mapping from N̄ onto Ȳ for each λ ∈ R+.
Then there exists a positive constant η0 > 0 depending on Ω such that

||DŪF(λ, Ū(λ))w̄||Ȳ ≥ η0‖∇w̄‖0, ∀w ∈ Xf ,(48)

where ||DŪF(λ, Ū(λ))w̄||Z = sup
v∈Xf

〈

DŪF(λ, Ū(λ))w̄, v
〉

/‖∇v‖0.

Following [4, 17, 18], we can obtain the following theorem.
Theorem 5.1. {λ, Ū(λ)} is a branch of nonsingular solutions to equation (41)

if and only if there exists a constant η > 0 such that

sup
(v,q,ψ)∈N̄

Dλ((w, r, χ); (v, q, ψ))

|||(v, q, ψ)|||
≥ η|||(w, r, χ)|||, ∀(w, r, χ) ∈ N̄ ,(49)

where η > 0 is dependent of the data (λ, f, fD, g, αBSJS,Ω).
Then, we can apply the same approach of finite element discretization as above

for the coupled Navier-Stokes/Darcy system to derive the following theorem.
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Theorem 5.2. {λ, Ūh(λ)} with Ūh(λ) = (uh, λph, λφh) is a branch of nonsin-
gular solutions to the corresponding finite element approximation of equation (41)
if and only if there exists a constant η > 0 such that

sup
(vh,qh,ψh)∈N̄h

Dλ((wh, rh, χh); (vh, qh, ψh))

|||(vh, qh, ψh)|||
≥ η|||(wh, rh, χh)|||, ∀(wh, rh, χh) ∈ N̄h,

(50)

where N̄h = Xh
f ×Mh ×Xh

p is the corresponding finite element space of N̄ .
Remark. In this paper, we only consider the stationary coupled Navier-Stokes

/Darcy equations. In fact, the property of a branch of nonsingular finite element so-
lutions can also been extent to the other coupled problems related to the stationary
Navier-Stokes equations.
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