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Abstract. This paper deals with the study of transient waves in a homogeneous
isotropic, solid halfspace with a permeating substance in the context of the theory of
generalized elasto-thermodiffusion. The halfspace is assumed to be disturbed due
to mechanical loads acting on its boundary. The model comprising of basic govern-
ing differential equations and boundary conditions has been solved by employing
Laplace transform technique. Noting that the second sound effects are short lived,
the small time approximations of solution for various physical quantities have been
obtained and the results are discussed on the possible wave fronts. In case of con-
tinuous and periodic loads acting at the boundary, the displacement is found to be
continuous at each wave front while it is discontinuous in case of impulsive load.
The temperature and concentration fields are found to be discontinuous at all the
wave fronts. The displacement, temperature change and concentration deviation
due to impulsive, continuous and periodic mechanical loads have also been eval-
uated in the physical domain at all times by employing numerical inversion tech-
nique of integral transform. The computer simulated numerical results have been
presented graphically in respect of displacement, temperature change and concen-
tration deviation for brass. A significant effect of mass diffusion has been observed
on the behaviour of mechanical and thermal waves.
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1 Introduction

In integrated circuit fabrication, the diffusion is used to introduce dopants in con-
trolled amount into semiconductor substrate. It is used to form base and emitter in
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bipolar transistors, integrated resistors and source/drain in metal oxide semiconduc-
tor (MOS) transistor. Thermal diffusion utilizes transfer of heat across a thin liquid
or gas to accomplish the process of isotope separation. Mechanical load allows us to
estimate the strength of materials because it indicates where the limit of strength prop-
erties lie and can be taken to improve the practical properties. The phenomena find
application in geophysics as most part of earth is solid and at elevated temperature
atomic diffusion occur in many chemical and physical processes. Keeping in view
the wide use of materials under high temperature in microelectronic industry, nuclear
reactors, etc. the theoretical study of elasto-thermodiffusive material is an important
task in solid mechanics.

The theory of thermoelasticity deals with effect of mechanical and thermal dis-
turbance in an elastic body. Duhamel [1] and Neumann [2] introduced the theory
of uncoupled thermoelasticity which inherited two defects namely (i) the mechanical
state of elastic body have no effect on temperature and (ii) the heat equation being
parabolic that predicts infinite speed of wave propagation which again contradict the
physical facts. Biot [3] developed the coupled theory of thermoelasticity to eliminate
the paradox inherent in classical uncoupled theory that elastic changes have no effect
on the temperature and the heat equation, however, is of diffusion type predicting in-
finite speed of propagation. To account for the finite speed of wave propagation Lord
and Shulman [4] introduced the theory of generalized thermoelasticity with one re-
laxation time in classical Fourier law of heat conduction ensuring finite speed of wave
propagation of heat and elastic waves. The governing equation of motion and con-
stitutive relations remain the same as those for coupled and uncoupled theories. This
fact was further supported by the theory given by Green and Lindsay [5], who devel-
oped a temperature rate dependent thermoelasticity with entropy inequality of Green
and Laws [6] by including temperature rate among the constitutive variables, with-
out violating the classical Fourier law when body under consideration has a center of
symmetry and it allows heat wave to travel with finite speed.

Nowacki [7–10] developed the theory of thermoelastic diffusion by using coupled
thermoelastic model. Dudziak and Kowalski [11], Olesiak and Pyryev [12] respec-
tively discussed the theory of thermodiffusion and influence of cross effect arising
due to coupling in the field of temperature, mass diffusion and strain in an elastic
cylinder. Sherief et al. [13] derived the basic governing equations namely, equations
of motion, heat conduction and mass diffusion for generalized elasto-thermodiffusive
solid. Danilovskaya [14, 15] treated the problems of thermal shock on the surface of
halfspace for the first time and obtained its analytical solution in dynamic uncoupled
thermoelasticity. Sherief et al. [16] has studied problem of halfspace whose surface
is rigidly fixed and subjected to effects of thermal shock in the context of general-
ized theory of thermoelasticity. Sherief et al. [17] has also studied halfspace problem
in theory of generalized thermoelastic diffusion when surface of the halfspace is as-
sumed traction free and subjected to time dependent thermal shock. Singh [18, 19]
has investigated reflection of P and SV waves from free surface of elastic solid in con-
text of generalized thermoelastic diffusion. Sharma [20] considered propagation of
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plane harmonic waves and studied their behaviour both at low and high frequency.
Sharma et al. [21] studied the propagation of surface waves in a generalized elasto-
thermodiffusive halfspace. Sharma et al. [22] have also obtained a general solution
to the field equations of homogeneous isotropic, generalized thermoelastic diffusion
with two relaxation times by using Fourier transform assuming that disturbance is
harmonically time dependent.

As per knowledge of the authors, no systematic study of elasto-thermodiffusive
waves in a one dimensional solid under loading environment; where thermal and
mass concentration fields are allowed to change simultaneously is available in the lit-
erature. In order to explore the effects of various interacting fields on each other and
keeping in view the applications of mass and thermal diffusion processes in industry,
an attempt has been made to study the instant problem. The solutions for displace-
ment, temperature change and mass concentration fields have been obtained in a gen-
eralized thermodiffusive solid subjected to impulsive, continuous and periodic loads
by using Laplace transform technique. It has been noticed that the change of mass
concentration field significantly affects the characteristics of mechanical and thermal
waves in such materials. The model is solved numerically for brass and computer
simulated results have been presented graphically.

2 Basic equations

The geometric and constitutive relations as well as basic governing equations for gen-
eralized thermodiffusive interaction in a homogeneous isotropic, elastic solid [13] are
outlined below.

Strain-displacement relation

eij =
1
2
(ui,j + uj,i), i, j = 1, 2, 3, (2.1)

where ui are the components of displacement vector and eij is strain tensor.

Stress-Strain-Temperature-Concentration relations

σij = λekkδij + 2µeij − β1Tδij − β2Cδij, (2.2a)

ρT0S = ρCeT + β1T0ekk + aT0C, (2.2b)
P = −β2ekk + bC − aT, i, j, k = 1, 2, 3, (2.2c)

where
β1 = (3λ + 2µ)αT, β2 = (3λ + 2µ)αC,

are the material parameters. Here σij is stress tensor, ekk is dilatation; λ, µ are Lames
parameters, αT is coefficient of linear thermal expansion, αC is coefficient of linear dif-
fusion expansion, ρ is the density, Ce is the specific heat at constant strain, S is entropy
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per unit mass, a is thermodiffusive constant, b is diffusive constant, P is chemical po-
tential per unit mass, T0 is the temperature of the medium in its natural state,

T(xi, t) = T1(xi, t)− T0,

is the temperature change, such that∣∣∣T1 − T0

T0

∣∣∣ ≪ 1,

and
C(xi, t) = C1(xi, t)− C0,

is the concentration change, C0 being initial uniform concentration in the natural state
and C1 is the changed concentration. Eqs. (2.2a)-(2.2c) are also known as constitutive
relations.

Equation of motion

µui,jj + (λ + µ)uj,ij − β1T,i − β2C,i + ρFi = ρüi, i, j = 1, 2, 3. (2.3)

Equation of heat conduction

KT,ii − ρCe(Ṫ + t0T̈) = β1T0(ė + t0ë) + aT0(Ċ + t0C̈), i = 1, 2, 3, (2.4)

where K is the thermal conductivity.

Equation of mass diffusion

C,ii −
1

Db
(Ċ + t1C̈) =

β2

b
e,ii +

a
b

T,ii, i = 1, 2, 3, (2.5)

t0, t1 are thermal relaxation time parameters.
We assume that material parameters satisfy the inequalities

K > 0, D > 0, λ > 0, ρ > 0, Ce > 0, (2.6a)
µ > 0, T0 > 0, t0 > 0, t1 > 0, C0 > 0. (2.6b)

3 Formulation of the problem

We shall consider a homogeneous isotropic, thermodiffusive, elastic solid occupying
the halfspace at uniform initial temperature T0 and initial concentration C0 in the
undisturbed state. We take any point on the surface of solid as origin of the Carte-
sian coordinate system O-xyz. Choose the plane perpendicular to x-direction. Hence
from symmetry we have considered one dimensional case, in the x-direction where all
physical quantities are functions of x and t. The surface of the halfspace is subjected
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to time dependent mechanical loads and also temperature as well as mass concentra-
tion are assumed to be known functions of time on it. All the considered functions
are assumed to be bounded and vanish as x→∞. The basic governing Eqs. (2.3)-(2.5)
of linear generalized elasto-thermodiffusion, in the absence of body forces and heat
sources, become

(λ + 2µ)
∂2u
∂x2 − β1

∂T
∂x

− β2
∂C
∂x

= ρ
∂2u
∂t2 , (3.1a)

K
∂2T
∂x2 − ρCe

(∂T
∂t

+ t0
∂T
∂t2

)
= β1T0

( ∂2u
∂x∂t

+ t0
∂3u

∂x∂t2

)
+ aT0

(∂C
∂t

+ t0
∂2C
∂t2

)
, (3.1b)

∂2C
∂x2 − 1

Db

(∂C
∂t

+ t1
∂2C
∂t2

)
=

β2

b
∂3u
∂x3 +

a
b

∂2T
∂x2 , (3.1c)

where
u⃗(x, t) = (u, 0, 0),

T(x, t) and C(x, t) are the displacement vector, temperature deviation and concen-
tration change in the material respectively. To facilitate the solution we define the
following dimensionless quantities

x′ =
ω∗x
cL

, t′ = ω∗t, u′
i =

ρω∗cLui

β1T0
, T′ =

T
T0

, c2
s =

µ

ρ
, (3.2a)

t′0 = ω∗t0, t1 = ω∗t1, ω∗ =
Ce(λ + 2µ)

K
, εT =

T0β2
1

ρCe(λ + 2µ)
, (3.2b)

ā =
aC0

ρCe
, β̄ =

β2C0

β1T0
, b̄ =

aT0

bC0
, εc =

β1β2T0

C0b(λ + 2µ)
, (3.2c)

C′ =
C
C0

, σ′
xx =

σxx

β1T0
, ω̄b =

c2
l

ω∗Db
, c2

L =
(λ + 2µ)

ρ
. (3.2d)

Using non-dimensional quantities from Eq. (3.2) in Eqs. (3.1a)-(3.1c) and suppressing
the primes for convenience, we obtain

u,xx − T,x − β̄C,x = ü, (3.3a)

T,xx − (Ṫ + t0T̈)− εT(u̇,x + t0ü,x)− ā(Ċ + t0C̈) = 0, (3.3b)

C,xx − ω̄b(Ċ + t1C̈)− εcu,xxx − b̄T,xx = 0. (3.3c)

3.1 Initial regularity and boundary conditions

The halfspace is assumed to be undeformed and at rest as well as at uniform temper-
ature T0 initially. This leads to the initial and regularity conditions

u(x, 0) = 0 = u̇(x, 0), T(x, 0) = 0 = Ṫ(x, 0), (3.4a)

C(x, 0) = 0 = Ċ(x, 0), for all x, (3.4b)
u(x, t), T(x, t)C(x, t) → 0, as x → ∞ for all t. (3.4c)
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The surface x = 0 of the halfspace is subjected to a time dependent mechanical load
and hence, the non-dimensional boundary conditions assumed to be satisfied are

σxx = −σ0 f (t), T,x + hT = 0, C,x + HC = 0, (3.5)

where

σ′
xx =

σxx

β1T0
, σxx =

∂u
∂x

− β̄C − T,

is the non-dimensional stress (primes have been suppressed for convenience), f (t) is
a well behaved function of time, h and H are the surface heat and mass transfer co-
efficients respectively. Here h→0 refers to thermally insulated boundary and h→∞
corresponds to isothermal surface of the halfspace. Also H→0 pertains to imperme-
able surface and H→∞ refers to isoconcentrated boundary of the halfspace.

4 Formal solution of the problem

Applying the Laplace transform defined by

ḡ(x, p) =
∫ ∞

0
g(x, t)e−ptdt, (4.1)

wrt. time to Eqs. (3.3a)-(3.3c), we obtain

(D2 − p2)ū − DT̄ − β̄DC̄ = 0, (4.2a)

(D2 − τ0 p2)T̄ − εTτ0 p2Dū − āτ0 p2C̄ = 0, (4.2b)

(D2 − ω̄b p2τ1)C̄ − εcD3ū − b̄D2T̄ = 0, (4.2c)

where
τ0 = t0 + p−1, τ1 = t1 + p−1.

Solving the system of Eqs. (4.2) and using the regularity conditions (3.4c), we get

ū(x, p) =
3

∑
i=1

Bie−λi px, (4.3a)

T̄ =
3

∑
i=1

p
λi

S̄iBie−λi px, (4.3b)

C̄ =
3

∑
i=1

pλiW̄iBie−λi px, (4.3c)

where

W̄i =
b̄{1 − λ2

i (1 + εa)}
λ2

i (1 + β̄b̄)− ω̄bτ1
, S̄i = {1 − λ2

i (1 + β̄W̄i)}, (4.4)
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with i = 1, 2, 3. Here the quantities λ2
i (i = 1, 2, 3) are given by the cubic equation

λ6 − p2 A∗λ4 + p4B∗λ2 − p6C∗ = 0, (4.5)

where

εa =
εC

b̄
, (4.6a)

∑ λ2
1 =A∗ =

1 + ω̄bτ1 + τ0{(1 + āb̄)(1 + εa) + (1 + β̄b̄)(εT − εa)}
1 − β̄εC

, (4.6b)

∑ λ2
1λ2

2 = B∗ =
τ0(1 + āb̄) + ω̄bτ1{1 + t0(1 + εT)}

1 − β̄εC
, (4.6c)

∑ λ2
1λ2

2λ2
3 = C∗ =

ω̄bτ1τ0

1 − β̄εC
. (4.6d)

The Eq. (4.5) provides us three real roots for non zero values of t0, t1 correspond to
three modes of wave propagation namely, thermal diffusive, mass diffusive and elas-
todiffusive mode. Upon applying integral transform to the boundary conditions (3.5)
and using formal solutions (4.3) and solving the resulting equations, we obtain a sys-
tem of three coupled Equations in three unknowns Bi (i = 1, 2, 3) as follows

B1λ2λ3 + B2λ1λ3 + B3λ1λ2 = −σ0 f̄ (p)
p

λ1λ2λ3, (4.7a)

S̄1B1λ2λ3 + S̄2λ1λ3B2 + S̄3λ1λ2B3 = 0, (4.7b)
W̄1λ1B1 + W̄2λ2B2 + W̄3λ3B3 = 0. (4.7c)

Solving the above system of Eqs. (4.7), we obtain

Bi =
σ0 f̄ (p)∆i

p∆
, i = 1, 2, 3, (4.8)

where

∆1 = λ1(λ
2
2S̄3W̄2 − λ2

3S̄2W̄3), (4.9a)

∆2 = λ2(λ
2
3S̄1W̄3 − λ2

1S̄3W̄1), (4.9b)

∆3 = λ3(λ
2
1S̄2W̄1 − λ2

2S̄1W̄2), (4.9c)

∆ =
{

W̄3λ2
3(S̄2 − S̄1) + W̄1λ2

1(S̄3 − S̄2) + W̄2λ2
2(S̄1 − S̄3)

}
. (4.9d)

Here

f̄ (p) =
∫ ∞

0
f (t)e−ptdt,

is the Laplace transformation of the function f (t).
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Substituting the values of Bi (i = 1, 2, 3) from (4.8) in Eqs. (4.3), we get

ū(x, p) = σ0 f̄ (p)
3

∑
i=1

∆i

p∆
exp(−λi px), (4.10)

T̄(x, p) = σ0 f̄ (p)
3

∑
i=1

S̄i∆i

λi∆
exp(−λi px), (4.11)

C̄(x, p) = σ0 f̄ (p)
3

∑
i=1

W̄i∆iλi

∆
exp(−λi px). (4.12)

We take

f (t) =


δ(t), for impulsive load,
H(t), for continuous load,
cos ωt, for periodic load.

(4.13)

Taking Laplace transform of function (4.13), we obtain

f̄ (p) =


1, for impulsive load,
1
p

, for continuous load,

p
p2 + ω2 , for periodic load.

(4.14)

4.1 Thermoelastic halfspace

In the absence of mass diffusion (a = 0 = β2 ⇒ εC = 0 = b̄), we have

W̄i =

{
1, i = 3,
0, i = 1, 2,

S̄i =

{
S∗

i , i = 1, 2,
0, i = 3,

(4.15)

so the Eq. (4.5) leads to

λ∗2
1 + λ∗2

2 = 1 + τ0(1 + εT), λ∗2
1 λ∗2

2 = τ0, λ∗2
3 = ϖbτ1. (4.16)

The displacement and temperature fields in the transformed domain are given by

ū(x, p) =
σ0 f̄ (p)

(S̄∗
2 − S̄∗

1)p

(
λ∗

2 S̄∗
1e−pλ∗

2 x − λ∗
1 S̄∗

2e−pλ∗
1 x
)

, (4.17a)

T̄(x, p) =
σ0S̄∗

1 S̄∗
2 f̄ (p)(

S̄∗
2 − S̄∗

1

)
p

(
e−pλx

1 x + e−pλ∗
2 x
)

, (4.17b)

where
S̄∗

i = 1 − λ∗2
i , i = 1, 2.
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5 Numerical inversion of Laplace transforms

Numerical integration is used to find answers for definite integrals that cannot be
solved analytically. The function assumed to satisfy initial and regularity condition in
addition to boundary conditions in order to obtain the solution of various problems,

ḡ(x, p) =
∫ ∞

0
g(x, t)e−ptdt. (5.1)

The inversion formula for Laplace transform is

g(t) =
1

2πi

∫ γ+i∞

γ−i∞
ḡ(p)eptdp, (5.2)

where γ is arbitrary real number greater than all real parts of all the singularities of
ḡ(p). The above integral can be solved by setting

p = γ + iy,

we get

g(t) =
eγt

2π

∫ +∞

−∞
ḡ(γ + iy)eitydy. (5.3)

Let
h(t) = g(t)e−γt,

expanding the function g(t)e−γt in a Fourier series in the interval [0, 2l] we obtain
approximation formula as

g(t) = g∞(t) + ED, (5.4)

where

g∞(t) =
C0

2
+

∞

∑
k=1

CK, for 0 6 t 6 2l.

Here

Ck =
exp(γt)

l
Re

[
ḡ
(

γ +
ikπ

l

)
exp

( ikπt
l

)]
,

and ED is the discretisation error can be made arbitrary small by choosing γ large
enough. As infinite series in Eq. (5.4) can be summed up to finite number (N) of terms,
the approximate value of g(t) becomes

gN(t) =
C0

2
+

N

∑
k=1

CK, for all 0 6 t 6 2l. (5.5)

Using this formula to evaluate g(t) a new error called truncation error get introduced
that must be added to discretisation error to produce the total approximation error.
The Korrector method is used to reduce the discretisation error; while ε-algorithmic
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method is used to reduce the truncation error and hence to accelerate the convergence.
The Korrector method is used to evaluate the function g(t) as

g(t) = g∞(t)− exp(−2γl)g∞(2l + t) + E′
D,

where
|E′

D| < |ED.|.
The approximate value of g(t) becomes

gNK(t) = gN(t)− exp(−2γl)gN′(2l + 1), (5.6)

where N is an integer such that N′ < N. We shall now describe the ε-algorithm
method that is used to accelerate the convergence of the series. Let N be an odd natural
number and let

sm =
N

∑
K=1

CK,

be the sum of partial sequences of Eq. (5.5). We define the ε sequence by

ε0,m = 0, ε1,m = sm, εn+1,m = εn−1,m+1 −
1

εn,m+1 − εn,m
,

with n, m = 1, 2, 3. It can be shown that the sequence of partial sum ε1,1, ε3,1,
· · · , εN+1 converges to g(t) + ED − C0/2 faster than the sequence of partial sum
(sm, m = 1, 2, 3, · · ·). The actual procedure used to invert the Laplace transform con-
sist of Eq. (5.6) together with ε-algorithm. The value of γ and l are chosen according
to the criteria outlined in Honig and Hirdes [25].

6 Small-time approximations

Because of damping terms in Eqs. (3.1a)-(3.1c), the dependency of roots λi (i = 1, 2, 3)
on p is complicated and hence the inversion of Laplace transform is quite difficult.
These difficulties however will get reduced, if we use some approximation method.
The approach used here consists of recasting the transformed functions as the Laplace
transform of known functions in order to allow us to write down their inverse trans-
forms by inspection. Mathematically this procedure is based on an elementary obser-
vation given in [27] as:

L−1
( e−ap

p

)
= H(t − a), L−1(e−ap) = δ(t − a), (6.1a)

L−1
( 1

p2 + a2

)
=

sin at
a

, L−1
( p

p2 + a2

)
= cos at. (6.1b)

In order to apply this technique, Laplace transform parameter p is to be isolated as
required by Eq. (6.1). Since the second sound effects are short lived (Green and Lind-
say [5]), we consider the short time approximation (i.e., p large) of the solution which
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enables us to isolate p as required. It is found that the solution in general represents
three waves propagating with finite speeds. The roots λi (i = 1, 2, 3) of Eq. (4.5) may
be expanded binomially and after retaining positive sign only, we obtain

λi =
1
Vi

+
ϕi

p
+O

( 1
p2

)
, i = 1, 2, 3, (6.2)

with

∑
1

V2
1
=

1 + ω̄bt1 + t0
{
(1 + āb̄)(1 + εa) + (1 + β̄b̄)(εT − εa)

}
1 − β̄εC

, (6.3a)

∑
1

V2
1 V2

2
=

t0(1 + āb̄) + ω̄bt1{1 + t0(1 + εT)}
1 − β̄εC

, (6.3b)

∑
1

V2
1 V2

2 V2
3
=

ω̄bt1t0

1 − β̄εC
, (6.3c)

ϕi =
A∗V4

i − B∗V2
i + C∗

Vi{(V2
j − V2

i )(V
2
k − V2

i )}
, i ̸= j ̸= k = 1, 2, 3, (6.3d)

A∗ =
t1 + t0

2t1t0
, (6.3e)

B∗ =
(1 + āb̄) + ω̄b{1 + (t1 + t0)(1 + εT)}

2ω̄bt1t0
, (6.3f)

C∗ =
ω̄bt0(1 + āb̄)(1 + εa)

2ω̄bt1t0
. (6.3g)

The displacement, concentration change and temperature fields in the transformed
domain are given by{

ū(x, p), T̄(x, p), C̄(x, p)
}

= σ0 f̄ (p)
3

∑
i=1

∆i0
∆0

[ 1
p

, ViS̄i0,
W̄i0
Vi

]
exp

{
−
( p

Vi
+ ϕi

)
x
}

, (6.4a)

S̄i0 = 1 − 1
V2

i
(1 + β̄W̄i0), W̄i0 =

(V2
i − 1 − εa)b̄

1 + β̄b̄ − ω̄bt1V2
i

, (6.4b)

∆i0 =
1
Vi

( S̄k0W̄j0

V2
j

−
S̄j0W̄k0

V2
k

)
, ∆0 = ∑

(i,j,k)

WK0

V2
k
(Sj0 − Si0), (6.4c)

where (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) and f̄ (p) is defined in Eq. (4.14).
Inverting the Laplace transform of expression (6.4a) with the help of Eq. (6.1) the

solution in the physical domain is obtained as

{u, T, C} = σ0

3

∑
i=1

[
H
(

t − x
Vi

)
, S̄i0Viδ

(
t − x

Vi

)
,

W̄i0
Vi

δ
(

t − x
Vi

)]∆i0
∆0

e−ϕix, (6.5a)

{u, T, C} = σ0

3

∑
i=1

[(
t − x

Vi

)
, S̄i0Vi,

W̄i0
Vi

]∆i0
∆0

e−ϕix H
(

t − x
Vi

)
, (6.5b)
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{u, T, C} = σ0

3

∑
i=1

[ sin ω
(

t − x
Vi

)
ω

, cos ω
(

t − x
Vi

)
S̄i0Vi, cos ω

(
t − x

Vi

)W̄i0
Vi

]∆i0
∆0

e−ϕix, (6.5c)

in case of impulsive, continuous and periodic loads, respectively.

6.1 Approximation for thermoelastic halfspace

In the absence of mass diffusion a = 0 = β2, the Eqs. (4.16) and (6.2) provide us

V∗−2
1 + V∗−2

2 = 1 + t0(1 + εT), V∗−2
1 V∗−2

2 = t0, V∗−2
3 = ω̄bt1, (6.6a)

ϕ∗
i =

V∗
1 V∗

2 N1

2(V∗2
1 − V∗2

2 )
, ϕ∗

2 =
V∗

1 V∗
2 N2

V∗2
1 − V∗2

2
, (6.6b)

N1 = V∗
1 (V

∗
1 + V∗

2 )− V∗
2 (1 + εT), N2 = V∗

2 (V
∗
1 + V∗

2 )− V∗
1 (1 + εT). (6.6c)

Eq. (6.6a) implies
1

V∗2
1

,
1

V∗2
2
=

1 + t0(1 + εT)±
√

M
2

,

where
M =

√
{1 − t0(1 + εT)}2 + 4εTt0 =

1
V∗2

1
− 1

V∗2
2

> 0. (6.7)

Clearly M > 0 and this implies that V∗
1 < V∗

2 . Thus V∗
1 corresponds to slowest wave

and V∗
2 refers to fastest wave. Further in the absence of thermo-mechanical coupling

(εT = 0), Eq. (6.6a) leads to

V∗
2 =

1√
t0

, V∗
1 = 1, V∗

3 =
1√

ϖbt1
, (6.8)

where V∗
1 corresponds to elastodiffusive wave and V∗

2 corresponds to thermodiffusive
wave because for most of the materials t0 is quite small. Therefore V∗

1 < V∗
2 and

thus elastodiffusive wave follows thermodiffusive wave. Moreover the thermal waves
have finite, though quite large, velocity of propagation. In the absence of thermal
relaxation (t1 = t0 = 0), Eq. (6.7) provides us

V∗
2 → ∞, V∗

3 → ∞, V∗
1 = 1,

this implies that in the absence of thermal relaxation time the longitudinal elastic wave
travels with velocity equal to isothermal value

c2
L =

(λ + 2µ)

ρ
,

as in elastokinetics and other two waves have infinite velocity of propagation being
diffusive in character. This corresponds to the case of conventional coupled thermoe-
lasticity which predicts infinite speed of heat propagation and mass diffusion.
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The displacement and temperature change in the transformed domain can be ob-
tained from Eqs. (4.17a)-(4.17b) for small time approximation as:

ū(x, p) =
σ0 f̄ (p)

(V∗2
1 − V∗2

2 )p

[V∗2
2 − 1
V∗

1
exp

{
− x

( p
V1

+ ϕ1

)}
+

V∗2
1 − 1
V∗

2
exp

{
− x

( p
V2

+ ϕ2

)}]
, (6.9a)

T̄(x, p) =
σ0 f̄ (p)

(V∗2
1 − V∗2

2 )p

[
(V∗2

1 − 1)(V∗2
2 − 1) exp

{
−

( p
V1

+ ϕ1

)
x
}

+ exp
{
−

( p
V2

+ ϕ2

)
x
}]

. (6.9b)

Inverting the Laplace transform, we get

T(x, t)

=
σ0(V∗2

1 − 1)(V∗2
2 − 1)

V∗2
1 − V∗2

2

2

∑
i=1

e−ϕix

 H
(
t − x

Vi

)
, for impulsive(

t − x
Vi

)
H
(
t − x

Vi

)
, for continuous

sin ω
(
t − x

Vi

)
/ω, for periodic

 , (6.10a)

u(x, t) =
σ0

V∗2
1 − V∗2

2


V∗2

2 −1
V∗

1
e−ϕ1x H(t − x

V1
)

V∗2
2 −1
V∗

1
e−ϕ1x(t − x

V1

)
H
(
t − x

V1

)
V∗2

2 −1
V∗

1
e−ϕ1x sin ω

(
t − x

V1

)
+

V∗2
1 −1
V∗

2
e−ϕ2x H

(
t − x

V2

)
, for impulsive

+
V∗2

1 −1
V∗

2
e−ϕ2x(t − x

V1

)
H
(
t − x

V2

)
, for continuous

+
V∗2

1 −1
V∗

2
e−ϕ2x sin ω

(
t − x

V2

)
, for periodic

 . (6.10b)

7 Analysis at the wave fronts

The short time solutions obtained above indicate that each of u, T and C are made
up of three waves namely elastic, thermal and mass diffusion traveling with finite
speeds V1, V2 and V3 respectively. The terms containing H(t − x/Vi) represent their
contribution in vicinity of the corresponding wave fronts

x = Vit, i = 1, 2, 3.

Jumps at the wave fronts are denoted by [ ]1, [ ]2 and [ ]3 respectively. Heaviside unit
step function in short time solution predicts the occurrence of waves. Wave propa-
gation velocities and position of wave fronts can be guessed from the arguments of
Heaviside step function. Disturbance consists of three coupled waves one following
the other. For most of the materials faster wave is elastic wave, thermal wave is slower
than elastic but faster than mass diffusive wave. It is observed that displacement is
continuous at each wave front in case of continuous and periodic loads. However,
this function is discontinuous at the wave front in case of impulsive load. This means



100 J. N. Sharma, N. K. Sharma and K. K. Sharma / Adv. Appl. Math. Mech., 3 (2011), pp. 87-108

that a discontinuous mechanical load does generate discontinuities in the displace-
ment which is not physically realistic. The temperature and concentration fields are
found to be discontinuous at the wave fronts in case of continuous and periodic loads
and exhibit Dirac delta behaviour at wave fronts in case of impulsive load. The dis-
continuities are given by

[u+ − u−]Vit

=σ0

{
∆i0
∆0

exp{−ϕiVit}, i = 1, 2, 3, impulsive load,

0, continuous and periodic load,
(7.1a)

[T+ − T−]Vit

=σ0

{
∞, impulsive load,
∆i0Si0Vi

∆0
exp{−ϕiVit}, i = 1, 2, 3, continuous and periodic load,

(7.1b)

[C+ − C−]Vit

=σ0

{
∞, impulsive load,
∆i0W̄i10

Vi∆0
exp{−ϕiVit}, i = 1, 2, 3, continuous and periodic load.

(7.1c)

The jumps at the wave fronts in case of thermoelastic halfspace are given by

(u+ − u−)x=Vit

=σ0


(V∗2

2 −1) exp{−ϕ1V1t}
V∗

1 (V
∗2
1 −V∗2

2 )
, (V

∗2
1 −1) exp{−ϕ1V1t}

V(V∗2
1 −V∗2

2 )
, impulsive load,

0, continuous and periodic load,
(7.2a)

(T+ − T−)x=Vit

=σ0


(V∗2

1 −1)(V∗2
1 −1) exp{−ϕ1V1t}
(V∗2

1 −V∗2
2 )

, impulsive load,

0, continuous and periodic load.
(7.2b)

Here also, the displacement and temperature change are discontinuous at the wave
fronts in case of impulsive load but continuous for periodic as well as continuous
loadings.

8 Numerical results and discussion

In order to illustrate and verify the analytical results obtained in the previous section
we present some numerical simulation results. The material chosen for this purpose
is solid solution of zinc (solute) and copper (solvent) whose physical data is given in
Table 1. The dimensional value of thermal relaxation time parameter t0 have been
estimated from the relation t0 = 3K/ρCeC2

L (see Chandrasekharaiah [26]) and that of
t1 is taken proportional to t0. Consequently, the non-dimensional values of thermal
relaxation times have been taken as t0 = 0.5, t1 = 0.3 for computation purpose. The
change in non-dimensional surface displacement, temperature and concentration are
computed for brass for various values of distance (x). Due to closeness of results and
hence to avoid clustering of curves the variation of quantities are plotted only for two
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Table 1: The physical data for Brass (70%Cu+30%Zn) material.

Quantity Unit Numerical Value Reference
λ Nm−2 7.69 × 1010 Callister, Jr [28]
µ Nm−2 3.61 × 1010

D m2s−1 0.24 × 10−4

αC K−1 1.8 × 10−5

K W/mK 1.11 × 102 Thomas [29]
αT K−1 2 × 10−6

ρ kgm−3 8.522 × 103

T0 K 293
Ce J/kg/K 385
a mS−1 0.1521 × 102 Sherief and Saleh [17]
b mS−1 0.02 × 104

values of time t0 = 0.25 and t0 = 0.50. Here solid and dotted curves are respectively
for isothermal and insulated boundary of the halfspace.

Fig. 1 shows the variation of displacement (u) with distance (x) due to impulsive
and continuous load acting on the isothermal boundary of the halfspace. It is observed
that there is maximum displacement in the vicinity of load which decreases sharply
in the range 0 ≤ x ≤ 2 to become asymptotically close to each other and ultimately
tends to zero at time t = 0.25. At time t = 0.50 the displacement curve shows similar
behaviour as that of t = 0.25, but here the magnitude of displacement is relatively
small. For x ≥ 2 the profiles become quite close to be distinguished from each other
which shows the existence of wave front. Variation of displacement due to continuous
load acting on the isothermal boundary of the halfspace shows similar trends with
small variations in magnitude. However, we have extended our analysis to the case of
insulated boundary where we found that the displacement profile for both impulsive
and continuous load follows similar trend of variation as that of isothermal boundary
of the halfspace.

Fig. 2 presents the variation of normalized temperature change with distance due
to impulsive load acting on the isothermal surface of halfspace. It is observed that
the temperature is found to increase sharply in the range 0 ≤ x ≤ 1 to attain its
maximum value at x = 1 and decreases monotonically in the range 1 ≤ x ≤ 2, and
again increases up to x = 2.5, then it decreases sharply and become asymptotically
close to zero with increasing distance from the vicinity of the load. At time t = 0.50,
the temperature is found to increase in the range 0 ≤ x ≤ 1, and then decreases
steadily up to x = 3.5 and finally become close to zero for x ≥ 4 at both considered
values of time, which shows the existence of wave fronts here also.

Fig. 3 represents the variation of the concentration change with distance due to
impulsive load acting at the isothermal and thermally insulated boundary of the half-
space. The profiles of this quantity exhibit sinusoidal and damped behaviour at both
values of the time with increasing distance from the vicinity of load for considered
boundary conditions. These profiles ultimately converges to zero at x ≥ 5 which
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Figure 1: Displacement due to impulsive (without ball) and continuous load (with ball) in case of isothermal
boundary.
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Figure 2: Temperature due to impulsive load in case of with isothermal boundary.

again shows the existence of wave front.
Fig. 4 presents the variation of temperature change due to continuous load in case

of isothermal boundary. It is observed from Fig. 4 that at both considered values of
time the temperature increases form its initial value in the range 0 ≤ x ≤ 1.5, decreases
monotonically up to x = 4 and become asymptotically close to zero at x ≥ 5.

Fig. 5 represents the variation of concentration due to continuous loads with dis-
tance from the vicinity of the load at t = 0.25 and t = 0.50. At t = 0.25 it is revealed
that the concentration follows increasing trend in the range 0 ≤ x ≤ 1.5 thereafter de-
creases and become asymptotically close to zero at x ≥ 5 in case of isothermal bound-
ary. The profile of variation of this quantity at time t = 0.05, follows similar trend
as that of t = 0.25, though with small magnitude. The profile in case of insulated
boundary shows similar trend of variation with the exception that here the magnitude
of concentration is three times less as compared with that isothermal boundary. More-
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Figure 3: Concentration due to impulsive load in case of isothermal (without ball) and thermally insulated
(with ball).
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Figure 4: Temperature due to continuous load in case of isothermal boundary.

over, in this case and the variations are not steady in the range 2.5 ≤ x ≤ 4 as observed
in isothermal boundary of halfspace.

Fig. 6 shows variation of the temperature change for impulsive and continuous
loads at the insulated and isothermal boundary of the halfspace. For insulated bound-
ary at time t = 0.25 under impulsive load, the profile shows sharp increase in the
range 0 ≤ x ≤ 0.50 it attains maximum value at x = 0.50 then decreases sharply for
0.50 ≤ x ≤ 1. It exhibit fluctuating behaviour in the range 1 ≤ x ≤ 4.5 and then
approaches to zero. At time t = 0.50, the temperature is found to decrease from a
constant initial value and ultimately tends to zero at x ≥ 5 after exhibiting slightly
fluctuating behaviour with increasing distance from the vicinity of load. It is observed
that variation of temperature has maximum value at the vicinity of continuous load
acting at the boundary which decreases monotonically and becomes zero. At time
t = 0.50 the variation profile follows similar pattern as that of t = 0.25 but here the
temperature change is relatively small as compared to previous impulsive case.

Fig. 7 represents the variation of displacement, temperature and concentration in
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Figure 5: Concentration due to continuous load in case of isothermal (without ball) and thermally insulated
(with ball).
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Figure 6: Temperature due to impulsive (without ball) and continuous (with ball) load in case of insulated
boundary.

case of periodic load with frequency in case of isothermal and insulated boundary
on logarithmic and linear scales respectively. It is observed that the displacement
decreases sharply in the range 0 ≤ ω ≤ 10 both in case of isothermal and insulated
boundary before the corresponding profiles become indistinguishable for ω ≥ 10. The
temperature profile follows almost similar trend of variation as that of displacement
with significant difference of magnitude in the range 1 ≤ ω ≤ 10. The concentration
profiles decreases initially in the range 0 ≤ ω ≤ 1 then increases thereby follow Gaus-
sian type behaviour in the range 1 ≤ ω ≤ 10 with maximum magnitude at ω = 10
which may corresponds to the resonance condition. At higher frequency ω ≥ 100 of
the periodic load all the quantities almost vanish in asymptotically. The comparison of
various profiles shows that the physical nature and character of loads has significant
effects on the considered functions which are clearly depicted by the plots. Moreover,
the effect of thermal conditions, insulated or isothermal, prevailing on the boundary
of the continuum, is also clearly visible from the respective profiles.
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Figs. 8-10 represent small time solution in case of isothermal boundary at which the
impulsive, continuous and periodic loads are acting. The slowest wave has velocity
equal to V1 = 0.94774 followed by V2 = 1.41342 and the fastest wave has speed equal
to V3 = 7.0114514. Keeping in view the trend V1 < V2 < V3, we find that the medium
remains undisturbed for x ≥ V3t. This means that at a given instant of time t ≥ 0,
the points of space that are beyond the faster wave front x = V3t do not experience
any disturbance. For t = 0.25, the corresponding wave fronts are given by x = V1t =
0.23694, x = V2t = 0.3534 and x = V3t = 1.7536. The existence of these wave fronts is
clearly shown in Fig. 8. Their existence can also be observed form Figs. 9 and 10. Here
all the considered quantities are found to vanish for x ≥ 1.7536 thereby showing that
the medium remains undisturbed beyond the fastest wave front. The temperature and
concentration experiences infinite jumps at all the wave fronts due to impulsive load
whereas these quantities remain continuous in case of continuous as well as periodic
loads.
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Figure 7: Displacement, Temperature and Concentration due to periodic load in case of isothermal (solid)
and thermally insulated (dotted) boundary.
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load in case of isothermal boundary.

9 Conclusions

The present analysis reveals that maximum displacement, temperature change and
concentration change occur in the vicinity of loads. It is observed that all the consid-
ered physical quantities vanish at a certain finite value of distance from the point of
application of the load which indicates the existence of wave fronts. The short time
solutions show that displacement is continuous at the wave fronts in case of periodic
as well as continuous loads whereas it is found to be discontinuous for impulsive load.
While the temperature and concentration changes experience Dirac-delta singularity
at all the wave fronts in case of impulsive load in generalized elasto-thermodiffusive
solid, but these are subjected to a finite jump in the absence of mass diffusion. These
quantities are found to be continuous at all the wave fronts in case of periodic and
continuous loads. The concentration change follows almost similar behaviour as that
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of temperature change in elasto-thermodiffusive halfspace. It is also observed that
the displacement, temperature and concentration change are significantly affected by
the load periodicity at higher frequencies. The physical nature and character of the
load are clearly depicted by the plots of various considered functions. The nature of
thermal boundary also exhibit significant effects on the profiles of various considered
physical quantities. The study may find applications in material characterization and
their fabrication in addition to electronic industry. A significant effect of mass diffu-
sion (concentration change) has been noticed on displacement and thermal fields.
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