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Abstract. This paper presents an analytical solution for the interaction of electric po-
tentials, electric displacement, elastic deformations, and describes hygrothermal effect
responses in hollow and solid cylinders, subjected to mechanical load and electric po-
tential. Exact solutions for displacement, stresses and electric potentials in functionally
graded piezoelectric material are determined using the infinitesimal theory. The ma-
terial properties coefficients of the present cylinder are assumed to be graded in the
radial direction by a power law distribution. Numerical examples display the signif-
icant of influence of material inhomogeneity. It is interesting to note that selecting a
specific value of inhomogeneity parameter can optimize the piezoelectric hollow and
solid cylinders responses, which will be of particular importance in modern engineer-
ing designs.

AMS subject classifications: 74-XX
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1 Introduction

Functionally graded materials (FGMs) are microscopically inhomogeneous composite
materials, in which the volume fraction of two or more materials is varied smoothly and
continuously as a function of position along certain dimension of the structure from one
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point to other [1]. These materials are mainly constructed to operate in high temperature
environments.

The functionally graded piezoelectric material (FGPM) is a kind of piezoelectric ma-
terial with material composition and properties varying continuously in certain direc-
tion. The piezoelectric devices can be entirely made of FGPM or use FGPM as a transit
inter layer between two different piezoelectric materials. FGPM is composite material
intentionally designed to possess desirable properties for some specific applications. The
advantage of this new kind of materials can improve the reliability or the service life of
piezoelectric devices.

In view of the advantages of FGMs, a number of investigations dealing with thermal
stresses had been published in the scientific literature. In recent years, Tanigawa et al. [2]
derived a one-dimensional temperature solution for inhomogeneous plate in transient
state and also optimized the material composition by introducing a laminated composite
model. Zimmerman and Lutz [3] determined the exact solution of thermal stresses and
thermal expansions for a uniformly heated FG cylinder. They derived a governing equa-
tion for the thermo-elastic equilibrium of the cylinder, by substituting stress strain and
kinematic relations into the stress equilibrium equation of cylinder allowing the elastic
moduli and thermal expansion coefficient to vary in the radial direction. Then the equa-
tion was solved analytically. The mechanical properties of FGMs are often being repre-
sented in the exponentially graded form [4–6] and power-law variations one [1, 7–15].
Reddy [1] analyzed the static behavior of FG rectangular plates based on his third-order
shear deformation plate theory. Reddy and Chin [10] studied the dynamic thermoelastic
response of FG cylinders and plates. In Reddy and Cheng [11], three-dimensional ther-
momechanical deformations of simply supported, FG rectangular plates were studied by
using an asymptotic method.

A new beam element has been developed to study the thermoelastic behavior of FG
beam structures by Chakraborty et al. [16] using the first-order shear deformation theory.
Nadeau and Ferrari [17] presented a one dimensional thermal stress analysis of a trans-
versely isotropic layer that was inhomogeneous in its thickness. Using the infinitesimal
theory of elasticity, Naki and Murat [18] obtained closed-form solutions for stresses and
displacements in FG cylindrical and spherical vessels subjected to internal pressure. Dai
et al. [19] presented closed form solutions for a FGM hollow cylinder, closed form so-
lutions for the through thickness stresses and perturbation of the magnetic field vector.
Allam and Tantawy [20] present an analytical solution for the interaction of electric po-
tentials, electric displacements, elastic deformations and thermoelasticity, and describes
electromagnetoelastic responses and perturbation of the magnetic field vector in hollow
structures subjected to mechanical load and electric potential. They consider the solution
for the case of hollow structure made of viscoelastic isotropic material, reinforced by elas-
tic isotropic fibers; this material is considered as structurally anisotropic material. More
reports on FG structures may also be found in the literature, such as [21–23].

The degradation in performance of the structure due to moisture concentration and
high temperature has become increasingly more important with the prolonged use of
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FGMs in many structural applications. As a result, hygrothermal internal stresses are
generated with the change of environment. These stresses generally induce large defor-
mation and could even contribute to the failure of the structure. The deformation and
stresses analysis of different plate structures subjected to moisture and temperature has
been the subject of research interest of many investigators [24–28].

This article is concerned with the effects of the graded material profile on the response
of piezoelectric cylinders in a hygrothermal environment. The hollow and solid cylin-
ders are subjected to mechanical load and electric potential. Analytical solutions for the
interaction of electric potentials, electric displacement, elastic deformations, and describe
hygrothermal effect responses, are presented. The infinitesimal theory is used to deter-
mine the displacement, stresses and electric potentials in functionally graded piezoelec-
tric cylinders.

2 Formulation of the problem

The present paper is upon employing simplifying assumptions, to present an analytical
solution of FGPM hollow and solid cylinders as shown in Fig. 1. The electric displace-
ment, stresses and electric potential in these cylinder will be investigated. Consider a
long FGPM cylinder having perfect conductivity. Let the cylindrical coordinates of any
representative point be (r,θ,z) and assume that the FGPM cylinder is subjected to a rapid
change in temperature T(r) and moisture concentration C(r). For the axisymmetric plane
strain assumption, the components of displacement, stresses, and electric displacement
and electric potential may be expressed as u(r), σi(r), Dr(r) and ψ(r), respectively. The
constitutive relations are:
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where cij (i = r,θ, j = r,θ,z), erj (j= r,θ,z), εrr, p11 and p22 are elastic coefficients, piezo-
electric parameters, dielectric parameters and pyroelectric coefficients, respectively. In
addition, ηi (i= r,θ,z) are the coefficients of moisture expansion, while λi represent the
stress-temperature moduli that take the forms
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Figure 1: A cross-sector of a functionally graded piezoelectric hollow cylinder.

in which αi are the thermal expansion coefficients. Generally, this study assumes that cij,
erj, αi (i, j = r,θ,z), εrr, p11 and p22 of the FG cylinder change continuously through the
radial direction of the cylinder.

The graded between the physical properties and the radial direction r for the present
cylinder is given by

P=P0rβ, (2.4)

where P0 is the material property of the homogeneous cylinder and β is a geometric pa-
rameter. The value β equals zero represents a fully homogeneous cylinder. The above
power law assumption reflects variable properties applied only to the radial direction.
The power law exponent β may be varied to obtain different distributions of the compo-
nents materials through the radial direction of the cylinder. The range −2≤β≤2 is used
in the present study to cover all values of the coordinate exponent encountered in [5,17].
However, these values of β do not necessarily represent a certain material, various β val-
ues are used to demonstrate the effect of inhomogeneity on the electric displacement,
stresses and electric potential.

3 Governing equations

3.1 Equation of temperature

The temperature distribution through the radial direction of the cylinder is governed by
the heat conduction equation

κ∇2T(r)+q(r)=0, (3.1)

where

∇2=
d2

dr2
+

1

r

d

dr
,

κ is the thermal conductivity and q(r) is the heat generation function.
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3.2 Equation of moisture

In modeling, the transient moisture diffusion equation is analogous to the transient heat
conduction equation. It can be described by Fick’s law as

∇2C(r)=0. (3.2)

3.3 Equations of equilibrium

The equilibrium equation of the FGPM cylinder, in the absence of body forces, is ex-
pressed as

dσr

dr
+

σr−σθ

r
=0. (3.3)

In the absence of free charge density, the charge equation of electrostatics [29] is expressed
as

dDr

dr
+

Dr

r
=0. (3.4)

4 Solution of the problem

The elastic solutions for the FGPM hollow and solid circular cylinders are given by solv-
ing all of temperature, moisture, and equilibrium equations. These solutions are com-
pleted by the application of the mechanical, electric, and boundary conditions.

4.1 Elastic solution for the FGPM hollow circular cylinder

The present FGPM hollow circular cylinder is considered with inner radius a and outer
radius b. The temperature is generated at a position-dependent rate within the inner sur-
face and it transfers to the outer one, while the outer surface is insulated. The boundary
conditions for temperature are

T(r)|r=a=T0,
dT(r)

dr

∣

∣

∣

r=b
=0, (4.1)

where T0 is the reference initial temperature. The internal energy generation within the
inner and outer surface is described by the heat generating function

q(r)=
Q

ab
(r−a)(b−r), a≤ r≤b, (4.2)

where Q represents the constant rate of internal energy generation. So, the general solu-
tion of the heat conduction equation given in Eq. (3.1) is

T(r)=
Qr2

144κab
[9(r2+4ab)−16r(a+b)]+c1 ln(r)+c2, (4.3)



238 M. N. M. Allam, A. M. Zenkour and R. Tantawy / Adv. Appl. Math. Mech., 6 (2014), pp. 233-246

where c1 and c2 are arbitrary integration constants that determined from the boundary
conditions, Eqs. (4.1), in the forms:
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Also the general solution of the moisture equation, given in Eq. (3.2) is

C(r)= c3 ln(r)+c4, (4.5)

where c3 and c4 are arbitrary integration constants. The boundary conditions for the
moisture concentration are

C(r)|r=a=0, C(r)|r=b=C0, (4.6)

where C0 is the reference initial moisture concentration. Then, the constants c3 and c4 are
given by
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. (4.7)

In addition, the solution of the charge equation of electrostatics is given by

Dr =
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r
, (4.8)

where A1 is unknown constant. Thus, Eqs. (2.2) and (4.8) with the aid of the gradation
relation, given in Eq. (2.4) give
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The radial and circumference stresses given in Eq. (2.1) with the aid of Eqs. (2.4) and (4.9)
can be summarized as
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Therefore, Eq. (3.3) with the aid of Eq. (4.10), yields
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The general solution of Eq. (4.12) is given by

u=B1rR1 +B2rR2 +Up, (4.15)

where B1 and B2 are arbitrary integration constants and R1 and R2 are the roots of the
equation m2+βm+m̂12 =0. The particular solution Up is given by
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The constants B1 and B2 can be obtained from the mechanical boundary conditions:

σr|r=a=−P1, σr |r=b=−P2, (4.17)

where P1 and P2 are the inner and outer pressures, respectively. So, the complete gen-
eral solution to the radial displacement u may be used to obtain the electric potential.
Integrating Eq. (4.9) gives the electric potential ψ(r) with additional arbitrary integration
constant A2. Finally, the constants A1 and A2 can be given by using the electric boundary
conditions:

ψ(r)|r=a=ψ1, ψ(r)|r=b =ψ2. (4.18)

Therefore, the final forms of stresses in the hollow cylinder can be obtained by using
Eqs. (4.10) with the aid of Eqs. (4.3), (4.5), and (4.15).
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4.2 Elastic solution for the FGPM solid circular cylinder

Let the present FGPM circular cylinder is solid with outer radius a. The temperature is
generated at a position-dependent rate within the surface. The boundary conditions for
temperature are

T(r)|r=a=T0,
dT(r)

dr

∣

∣

∣

r=0
=0, (4.19)

where T0 is the reference initial temperature. The internal energy generation is described
by the heat generating function

q(r)=
Q

a
(a−r), 0≤ r≤ a. (4.20)

The general solution of the heat conduction equation given in Eq. (3.1) is

T(r)=
Qr2

36κa
(9a−4r)+ c̄1 ln(r)+ c̄2, (4.21)

where c̄1 and c̄2 are arbitrary integration constants that determined from the boundary
conditions, Eqs. (4.19), in the forms:

c̄1=
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6κ
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[5−6ln(a)]+T0. (4.22)

The boundary conditions for the moisture concentration, in this case, are

C(r)|r=0=0, C(r)|r=a=C0, (4.23)

where C0 is the reference initial moisture concentration. So, the general solution of the
moisture equation, given in Eq. (3.2) is

C(r)=C0. (4.24)

For solid cylinder, we assume that Dr is vanished and Eq. (2.2) gives,
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The radial and circumference stresses given in Eq. (2.1) with the aid of Eqs. (2.4) and
(4.25) can be summarized as
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where mij are given in Eq. (4.11). Therefore, Eq. (3.3) with the aid of Eq. (4.26), yields
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Similarly, the general solution of Eq. (4.27) is given by

u= B̄1rR1 + B̄2rR2 +Ūp, (4.29)

where B̄1 and B̄2 are arbitrary integration constants and R1 and R2 are the roots of the
equation m2+βm+m̂12 =0. The particular solution Ūp is given as in Eq. (4.16) by replac-
ing ϕ(r) with ϕ̄(r). Also, the constants B̄1 and B̄2 can be obtained from the mechanical
boundary conditions:

u|r=0=0, σr |r=a=−P2. (4.30)

So, the complete general solution to the radial displacement u may be used to obtain the
electric potential. Integrating Eq. (4.25) gives the electric potential ψ(r) with arbitrary
integration constant A which is determined from the electric boundary condition:

ψ(r)|r=a=ψ2. (4.31)

Therefore, the final forms of stresses in the solid cylinder can be obtained by using
Eqs. (4.26) with the aid of Eqs. (4.21), (4.24) and (4.29).

5 Numerical examples and discussion

Numerical examples for the analysis of FGPM cylinders in a hygrothermal environment
will be given. These numerical computations are carried out for the temperature, dis-
placement and stresses that being reported herein are in the dimensionless forms:

r̄=
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a
, T̄=
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, C̄=

C

C0
, ψ̄=
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, σ̄θ =
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103P2

.

Computations were carried out for the following values of parameters:

c0
rr =1.11×1011Pa, c0

rθ =7.78×1010Pa, c0
rz=1.15×1011Pa,

c0
θθ =2.2×1011Pa, e0

rr =15.1c/m2, e0
rθ =−5.2c/m2,

ε0
rr =5.62×10−5c2/Km2, p0

11= p0
22=−2.5×10−5c/Km2,

α0
r =α0

z =0.0001K−1, α0
θ =0.00001K−1, κ=0.35W/KM,

η0
r =0.06×c0

rr, η0
θ =0.
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Figure 2: Temperature distribution in the FGPM
hollow cylinder.

Figure 3: Moisture distribution in the FGPM hol-
low cylinder.

Figure 4: Electric displacement distributions in the
FGPM hollow cylinder for different value of β.

Figure 5: Displacement in the FGPM hollow cylin-
der for different value of β.

In addition, the following constants for the rate of internal energy Q, the internal P1 and
external P2 pressures as well as the internal ψ1 and external ψ2 electric potentials, are
used:

Q=12W/m3, P1=0Pa, P2=107Pa, ψ1=0W/A, ψ2=100W/A.

For simplicity, the symbol bars are replaced by the original symbol in all figures. Numer-
ical results for the FGPM hollow cylinders (b=2a) are plotted in Figs. 2-8. The behaviors
of temperature and moisture through the radial direction of the hollow cylinders are il-
lustrated in Figs. 2 and 3. Fig. 4 shows the electric displacement distribution along the
radial direction of the FGPM hollow cylinder. Different values of the power exponent β

are used. The electric displacement decreases as r increases for different values of β. It
is also noted that Dr decreases as β increases and this irrespective of its position. Fig. 5
shows the radial displacement distribution along the radial direction of the FGPM hol-
low cylinder. The radial displacement increases as r increases and as β decreases. It is to
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Figure 6: Radial stress distribution in the FGPM
hollow cylinder for different value of β.

Figure 7: Circumferential stress distribution in the
FGPM hollow cylinder for different value of β.

Figure 8: Electric potential distribution in the
FGPM hollow cylinder for different value of β.

Figure 9: Temperature distribution in the FGPM
solid cylinder.

be noted that the radial displacement changes its sign from negative to positive along the
radial direction.

The radial σr and circumferential σθ stresses are plotted in Figs. 6 and 7 along the
radial direction of the hollow cylinder. The radial stress σr has different minimum points
according to the value of β. For negative β, the minimum radial stress occurs near the
inner surface of the cylinder while it occurs near the outer surface of the cylinder for
positive values of β. It is noticed that the value of β has no effect on σθ when r = 1.615
at which all circumferential stresses have the same value. On the left hand side of this
position σθ decreases as β increases and vise versa on the right hand side. The distribution
of the electric potential ψ(r) along the radial direction of the hollow cylinder is shown in
Fig. 8. The plots of ψ are concave up for positive values of β and concave down for
negative values of β.

Once again, the numerical results for the FGPM solid cylinders are plotted in Figs. 9-
13. The behavior of temperature through the radial direction of the hollow cylinder is
illustrated in Fig. 9. The minimum temperature occurs at the external surface of the solid
cylinder. Fig. 10 shows the radial displacement distribution along the radial direction of
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Figure 10: Displacement distribution in the FGPM
solid cylinder for different value of β.

Figure 11: Radial stress distribution in the FGPM
solid cylinder for different value of β.

Figure 12: Circumferential stress distribution in
the FGPM solid cylinder for different value of β.

Figure 13: Electric potential distribution in the
FGPM hollow cylinder for different value of β.

the FGPM solid cylinder. The radial displacement is no longer increases and has mini-
mum values at r∼=0.17,0.23,0.25 for β=2,1, and 0, respectively. The radial σr and circum-
ferential σθ stresses as well as the electric potential ψ are plotted in Figs. 11-13 along the
radial direction of the solid cylinder. All of these components increase directly through
the radial direction of the homogeneous solid cylinder (β = 0). Other components of
stresses and electric potential are no longer increase and have minimum values along the
radial direction for β=1 and 2. The maximum circumferential stress and electric potential
occur at the outer surface of the cylinder.

6 Conclusions

In this paper, the exact solutions for FGPM cylinders having perfect conductivity have
been obtained. An analytical solution technique is developed for the electro-thermo-
hygro-mechanical problem, where stresses are produced under combined thermome-
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chanical and electrical loading conditions. The result of this investigation are validated
with the recently published paper [19, 20] with the exception that hygrothermal distri-
bution is also considered in the present study and this might be responsible for little
variation which could be noted in stress and electric potential curves produced. The
inhomogeneous constants presented in this study are useful parameters from a design
point of view. The inhomogeneity parameter is considered as a power-law exponent.
However, other types of material inhomogeneity that can be tailored for specific applica-
tions to control hygrothermal distribution, stresses and electric potential distribution can
be used. Variation of normalized stresses, electric potential and displacement of bound-
ary conditions for different material inhomogeneity parameters β were plotted against
dimensionless radius. In general, radial stresses and electrical potentials satisfy the me-
chanical and electrical boundary conditions at the inner and outer surfaces of the FGPM
cylinders.

It is to be shown that the gradient index β has a great effect on the stresses, electric
potentials and hygrothermal distribution of the FGPM cylinders. Thus by selecting a
proper β value, engineers can design specific FGPM solid and hollow cylinders that can
meet some special requirements. In addition, the inclusion of temperature as well as the
moisture concentration has a great effect on the behavior of the present cylinders.

It is concluded from the above analyses and discussions that the presented analytical
solution is accurate and reliable, and the method is simple and effective. Although the
paper considers the case in which the material constants are of power functions in the
redial direction, the technique is applicable to other material inhomogeneity.
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