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Abstract. We consider a two-species competition model in which both populations
are identical except their movement strategies: One species moves upward along the
fitness gradient, while the other does not diffuse. While both species can coexist in
homogeneous environment, we show that the species with directed movement has
some advantage over the non-diffusing species in certain measurement. In contrast,
if one species moves by random dispersal while the other does not diffuse, then the
non-diffusing population could have advantage. Understanding the full dynamics of
these ODE-PDE hybrid systems poses challenging mathematical questions.
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1 Introduction

An important question in spatial ecology is whether dispersal could convey some eco-
logical or evolutionary advantages [1, 7, 17]. While random dispersal is selected against
in spatially varying but temporally constant environment [9, 11, 16], there are plenty of
examples which illustrate that dispersal can be favored [3, 13, 14]. For instance, it was
shown in [18] that for a two-species competition model in which both species are subject
to random dispersal and passive drift, the species with the larger dispersal rate could
always outcompete the species with the smaller dispersal rate, resulting the evolution of
faster dispersal; See also [15, 21, 22] for further developments.

The main aim of this paper is to consider a deceptively simply looking scenario, in
which two competing populations are identical in their competitive strengths but differ
in their dispersal strategies in the following way: One species adopts certain pattern of
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dispersal but the other simply does not move. We ask: Will dispersal be advantageous or
disadvantageous? To this end, we first consider























ut=−∇·
(

u∇(m−u−v)
)

+u(m−u−v), x∈Ω, t>0,

vt =v(m−u−v), x∈Ω, t>0,

u· ∂(m−u−v)
∂ν =0, x∈∂Ω, t>0,

u(x,0)=u0(x), v(x,0)=v0(x), x∈Ω,

(1.1)

in a bounded domain Ω ⊂ R
n with smooth boundary ∂Ω. Here u(x,t) and v(x,t) are

densities of two populations at location x and time t. ν denotes the outward unit normal
vector on ∂Ω, and the boundary condition in (1.1) means that there is no individuals of
the species u across ∂Ω.

We envision m as the available resource distribution in the habitat, and that m−u−v
is the effective growth rate for both populations. In fact, m−u−v is often termed as
the fitness of populations. In (1.1), the term ∇(m−u−v) suggests that the movement of
species u is solely governed by the advection upward along the fitness gradient, referred
as fitness-dependent dispersal henceforth, so that the species u can potentially find lo-
cations with the highest fitness in order to gain some competitive advantage. In recent
years there has been increasing interest in understanding the effect of fitness-dependent
dispersal on population dynamics: The single species model, i.e. (1.1) with v ≡ 0, was
proposed by Cosner [6] and its dynamics has been studied in [8]; See also [4]. For two-
species competition model with a combination of both random and fitness-dependent
movement, we refer to [5,20]; See also [2,12] for other types of reaction-diffusion models
with fitness-dependent dispersal.

In this paper we seek for rigorous evidence for the conjecture that the dispersive
strategy in (1.1) provides the respective subpopulation with an evolutionary advantage.
To see why this could be a difficult task, assume that m is strictly positive in Ω̄. Then
(1.1) has a continuum of positive steady states given by {(u∗,m−u∗)}, where u∗ satisfies
0< u∗(x)<m(x) in Ω̄. This implies that both populations in (1.1) could coexist. Hence,
dispersal does not seem to affect the persistence of populations in this model. However,
in some biological situations the total biomass of populations could also be important,
e.g. populations with small size could be subject to greater danger of extinction due to
stochastic effects. Therefore, a natural question will be: How does dispersal affect the
relative population size, as an index of measurement of the advantage, in two competing
species model (1.1)? Accordingly, throughout this paper we focus on the case

m≡ const. in Ω. (1.2)

We recall the following existence result from [20, Theorem 1.2]:

Theorem 1.1. Suppose that n≥ 1 and that Ω⊂R
n is a bounded convex domain with smooth

boundary, and m≡ const. Then for any choice of nonnegative functions u0∈
⋃

γ∈(0,1)C
γ(Ω̄) and
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v0 ∈W1,∞(Ω), (1.1) possesses at least one global nonnegative weak solution (u,v), in the sense
of Definition 1.1 in [20, Theorem 1.2], such that

u∈L∞(Ω×(0,∞))∩L2
loc([0,∞);W1,2(Ω))∩C0([0,∞);L2(Ω)) (1.3)

and

v∈L∞(Ω×(0,∞))∩L∞

loc([0,∞);W1,2(Ω))∩C0([0,∞);L2(Ω)), (1.4)

and vt∈L2
loc(Ω̄×[0,∞)). This solution can be obtained as the limit a.e. in Ω×(0,∞) of solutions

to the regularized problems (2.1) below, along some sequence (ε j)j∈N ⊂ (0,1) such that ε j ց0 as
j→∞.

As we moreover recall from [20], it is already known that solutions have the property
that (in some topology), (u(·,t),v(·,t))→ (u∞,v∞) as t→∞, with some function v∞ which
is positive a.e. in Ω. As noted in [20], this may be somewhat surprising, because one might
actually expect the first subpopulation to gain some benefit from its ability to include the
dispersal mechanism expressed in (1.1) in the motion of its individuals.

Our first goal is to derive the following feature of the solutions obtained in Theorem
1.1:

Theorem 1.2. Suppose that m≡const. and that u0∈
⋃

γ∈(0,1)C
γ(Ω̄) and v0∈W1,∞(Ω) are such

that u0≥0 and v0>0 in Ω̄, and let (u,v) denote the corresponding solution of (1.1) from Theorem
1.1. Then

∫

Ω

ln
(

1+
u(·,t)
v(·,t)

)

≥
∫

Ω

ln
(

1+
u(·,t0)

v(·,t0)

)

+
∫ t

t0

∫

Ω

u|∇(u+v)|2
(u+v)2

for all t0≥0 and t> t0 (1.5)

in the sense of an inequality in [0,+∞]. In particular, the functional
∫

Ω
ln(1+ u

v ) is non-decreasing
with time.

Now in order to take appropriate advantage of this property, let us introduce the fol-
lowing notion of exceedance in average which attempts to provide a quantitative means
of measuring advantage in a way accessible to mathematical analysis:

Definition 1.1. Let u and v be measurable in Ω such that u≥0 and v>0 a.e. in Ω. Then we say
that u exceeds v in the relative average over Ω if

∫

Ω

u

v
> |Ω|. (1.6)

Within this framework, we will see that Theorem 1.2 indeed implies the following
consequence:

Theorem 1.3. Suppose that m≡ const., and that v0 ∈W1,∞(Ω) is positive in Ω̄ with

v0 6≡ const.
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Then for all T>0 there exists δ(T)>0 such that whenever u0 ∈
⋃

γ∈(0,1)C
γ(Ω̄) is nonnegative

and such that

v0 ≥u0≥v0−δ(T) in Ω, (1.7)

the corresponding solution (u,v) of (1.1) from Theorem 1.1 has the property that for any t≥T,
the function u(·,t) exceeds v(·,t) in the relative average over Ω; that is, we have

∫

Ω

u(·,t)
v(·,t) > |Ω| for all t≥T. (1.8)

Remark 1.1. If two species have the same initial data and neither of them moves, then it
is easy to see that u(x,t)/v(x,t)≡1, which in particular implies

∫

Ω

u(·,t)
v(·,t) = |Ω| for all t≥0. (1.9)

In contrast, Theorem 1.3 suggests that with the help of the biased movement upward
along the fitness gradient, the species u is able to increase its relative average over v.
Moreover, by the continuous dependence of solutions on the initial data, Theorem 1.3
implies that even if initially v exceeds u in the relative average slightly, the species u may
still be able to regain its relative average over v as time evolves.

This paper is organized as follows: In Section 2 we introduce a regularized problem
as an approximate version of (1.1) and collect some uniform estimates on solutions to the
regularized problem from [20]. Section 3 is devoted to the proof of the stable positive
property of some key quantity for the approximate solutions. Various properties for cer-
tain logarithmic functionals of the solutions are established in Section 4. Theorems 1.2
and 1.3 are proved in Sections 5 and 6, respectively. In Section 7 we discuss the scenario
when one species moves by random dispersal while the other does not diffuse.

2 Preliminaries

As an approximate version of (1.1), let us consider the regularized problem























∂tuε = ε∆uε+∇·
(

uε∇(uε+vε−m)
)

+uε(m−uε−vε), x∈Ω, t>0,

∂tvε = ε∆vε+vε(m−uε−vε), x∈Ω, t>0,
∂uε
∂ν = ∂vε

∂ν =0, x∈∂Ω, t>0,

uε(x,0)=u0(x), vε(x,0)=v0(x), x∈Ω,

(2.1)

which, under the assumptions from Theorem 1.1, for each ε ∈ (0,1) admits a globally
defined classical solution (uε,vε) with uε ≥ 0 and vε > 0 in Ω̄×[0,∞) [20, Theorem 1.1].
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Moreover, let us note for later reference that since we have chosen the diffusion coeffi-
cients for both uε and vε in (2.1) to be equal here, on addition of the respective equations
we see that

wε :=uε+vε, ε∈ (0,1),

satisfies the scalar parabolic Neumann problem














∂twε = ε∆wε+∇·
(

uε∇(wε−m)
)

+wε(m−wε), x∈Ω, t>0,
∂wε
∂ν =0, x∈∂Ω, t>0,

wε(x,0)=u0(x)+v0(x), x∈Ω.

(2.2)

Apart from that, let us list here some further regularity properties of solutions to (2.1)
that will be used in various places below. All these features have actually been derived
in [20] already, although the dependence of the respective bounds on the initial data has
not explicitly been addressed there. In order to avoid repetition of arguments, we may
thus restrict ourselves to merely formulating the corresponding evident generalizations
of the findings from [20] here.

The first statement in this direction, to be found in [20, Corollary 3.3], is a consequence
of quite a straightforward comparison argument:

Lemma 2.1. Let K> 0. Then there exist C(K)> 0 and ε0(K)∈ (0,1) such that whenever u0 ∈
⋃

γ∈(0,1)C
γ(Ω̄) and v0∈W1,∞(Ω) satisfy u0≥0 and v0 >0 in Ω̄ and are such that

‖u0‖L∞(Ω)+‖v0‖W1,∞(Ω)≤K, (2.3)

for any choice of ε∈ (0,ε0(K)) we have

‖uε(·,t)‖L∞(Ω)+‖vε(·,t)‖L∞(Ω)≤C(K) for all t>0. (2.4)

We secondly collect some implications thereof, and of some appropriate testing proce-
dures applied to (2.1), on regularity properties of first-order spatial and temporal deriva-
tives, as deduced in [20, Lemma 3.4, Lemma 3.5 and Lemma 3.6].

Lemma 2.2. Let K> 0, and let ε0(K)∈ (0,1) be as provided by Lemma 2.1. Then for all T > 0
there exists C(K,T)>0 such that if 0≤u0∈

⋃

γ∈(0,1)C
γ(Ω̄) and 0<v0∈W1,∞(Ω) are such that

(2.3) holds, we have
∫ T

0

∫

Ω

|∇uε|2≤C(K,T) for all ε∈ (0,ε0(K)) (2.5)

and
∫

Ω

|∇vε(·,t)|2 ≤C(K,T) for all t∈ (0,T) and any ε∈ (0,ε0(K)), (2.6)

and moreover
‖∂tuε‖L2((0,T);(W1,2(Ω))⋆)≤C(K,T) for all ε∈ (0,ε0(K)) (2.7)

and
∫ T

0

∫

Ω

|∂tvε|2≤C(K,T) for all ε∈ (0,ε0(K)). (2.8)
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3 A stable positivity property of |∇(u+v)|
Lemma 3.1. Suppose that for some T>0 we are given two functions

ũ∈L2((0,T);W1,2(Ω))∩C0([0,T];L2(Ω))

and

ṽ∈L∞((0,T);W1,2(Ω))∩C0([0,T];L2(Ω))

such that ũ is nonnegative as well as

ũ(·,0)>0 a.e. in Ω and ũ(·,0)+ ṽ(·,0) 6≡ const.

Then
∫ T

0

∫

Ω

ũ
∣

∣

∣
∇(ũ+ ṽ)

∣

∣

∣

2
>0. (3.1)

Remark 3.1. It is not claimed here that the integral in (3.1) is finite.

Proof. We divide the proof into three steps, throughout assuming that contrary to the
claim of the lemma, (3.1) was false. For convenience, we write u and v instead of ũ and ṽ,
respectively.

Step 1. We first show that there exist c1>0 and a null set N⊂ (0,T) such that

∫

Ω

∣

∣

∣
∇(u+v)(·,t)

∣

∣

∣
≤ c1 for all t∈ (0,T)\N.

To see this, we first note that since we assume that
∫ T

0

∫

Ω
u|∇(u+v)|2=0, by nonnegativity

of u we obtain that ∇(u+v)= 0 a.e. in {u> 0}. We now take c1 > 0 and a null set N ⊂
(0,T) such that u(·,t) and v(·,t) both belong to W1,2(Ω), that ∇(u+v)(·,t) = 0 a.e. in
{x∈Ω | u(x,t)>0} and that

∫

Ω

|∇v(·,t)|2 ≤ c1

for all t∈ (0,T)\N, which is possible because ∇v∈ L∞((0,T);L2(Ω)). Then for any such
t, ∇u(·,t) = 0 a.e. in {u(·,t) = 0} := {x ∈ Ω | u(x,t) = 0} [10, Theorem 4.4]. Therefore,
whenever t∈ (0,T)\N we have

∫

Ω

∣

∣

∣
∇(u+v)(·,t)

∣

∣

∣

2
=

∫

{u(·,t)=0}

∣

∣

∣
∇(u+v)(·,t)

∣

∣

∣

2

=
∫

{u(·,t)=0}
|∇v(·,t)|2

≤
∫

Ω

|∇v(·,t)|2

≤ c1,
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as claimed.

Step 2. We next assert that with N as above, there exists a sequence (tk)k∈N ⊂ (0,T)\N

such that tkց0 as k→∞, that u(·,tk) and v(·,tk) belong to W1,2(Ω) for all k∈N, and that

∇(u+v)(·,tk)→0 a.e. in Ω as k→∞. (3.2)

Indeed, since u∈C0([0,T];L2(Ω)), it is clear that we can find (tk)k∈N⊂(0,T)\N such that
tk ց0 as k→∞, that u(·,tk)∈W1,2(Ω) and v(·,tk)∈W1,2(Ω) with

∫

Ω

u(·,tk)
∣

∣

∣
∇(u+v)(·,tk)

∣

∣

∣

2
=0 for all k∈N, (3.3)

and that

u(·,tk)→u(·,0) a.e. in Ω as k→∞.

Since we have assumed u(·,0) to be strictly positive a.e. in Ω, we can thus pick a null set
N1⊂Ω such that

liminf
k→∞

u(x,tk)>0 for all x∈Ω\N1. (3.4)

But by (3.3), there exists N2⊂Ω such that |N2|=0 and such that for all k∈N,

u(x,tk)·
∣

∣

∣
∇(u+v)(x,tk)

∣

∣

∣

2
=0 for all x∈Ω\N2. (3.5)

Thus, combining (3.4) and (3.5) we see that for all x∈Ω\(N1∪N2) we can find k0(x)∈N

fulfilling

∇(u+v)(x,tk)=0 for all k≥ k0(x),

which evidently proves (3.2).

Step 3. We finally derive a contradiction to our hypothesis u(·,0)+v(·,0) 6≡ const.

To achieve this, we take (tk)k∈N⊂(0,T)\N as provided by Step 2 and then apply Step
1 to find a subsequence, still denoted by (tk)k∈N for simplicity, such that

∇(u+v)(·,tk)⇀ z in L2(Ω) as k→∞

with some z∈ L2(Ω). According to Step 2 and the Egorov theorem, we must have z=0.
On the other hand, since both u and v are continuous on [0,T] with values in L2(Ω), upon
extracting another subsequence if necessary we may assume that

u(·,tk)+v(·,tk)→u(·,0)+v(·,0) in L2(Ω) as k→∞.

This, however, means that in fact u(·,0)+v(·,0) belongs to W1,2(Ω) and satisfies ∇(u+
v)(·,0)=0 a.e. in Ω, contradictory to our assumption on u(·,0)+v(·,0).
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Lemma 3.2. Let T > 0, and suppose that (uk)k∈N ⊂ L2((0,T);W1,2(Ω)), uk ≥ 0 for all k∈N,
and (vk)k∈N ⊂ L∞((0,T);W1,2(Ω)) are such that

(uk)k∈N is bounded in L∞((Ω×(0,T))∩L2((0,T);W1,2(Ω)),

(∂tuk)k∈N is bounded in L2((0,T);(W1,2(Ω))⋆),

}

(3.6)

that
(vk)k∈N is bounded in L∞((0,T);W1,2(Ω)),

(∂tvk)k∈N is bounded in L2((0,T);(W1,2(Ω))⋆),

}

(3.7)

and such that

uk(·,0)→u0 and vk(·,0)→v0 in L2(Ω) as k→∞ (3.8)

with certain limit functions satisfying

u0>0 a.e. in Ω and u0+v0 6≡ const. (3.9)

Then

liminf
k→∞

∫ T

0

∫

Ω

uk

∣

∣

∣
∇(uk+vk)

∣

∣

∣

2
>0. (3.10)

Remark 3.2. The functions uk(·,0) and vk(·,0) are well-defined, because according to a
well-known result, the regularity requirements in (3.6) and (3.7) ensure that both uk and
vk belong to C0([0,T];L2(Ω)) for all k∈N.

Proof. Assuming on the contrary that (3.10) be false, on extracting a subsequence if nec-
essary we can achieve that

∫ T

0

∫

Ω

uk ·
∣

∣

∣
∇(uk+vk)

∣

∣

∣

2
→0 as k→∞, (3.11)

where in view of (3.6) and (3.7) we may also assume that

uk → ũ and vk → ṽ a.e. in Ω×(0,T),

uk ⇀ ũ in L2((0,T);W1,2(Ω)) and vk
⋆

⇀ ṽ in L∞((0,T);W1,2(Ω)),

∂tuk⇀ ũt in L2((0,T);(W1,2(Ω))⋆) and ∂tvk ⇀ ṽt in L2((0,T);(W1,2(Ω))⋆)















(3.12)
hold as k→∞ with appropriate limit functions

ũ∈L∞(Ω×(0,T))∩L2((0,T);W1,2(Ω))∩C0([0,T];L2(Ω)),

ṽ∈L∞((0,T);W1,2(Ω))∩C0([0,T];L2(Ω)).

}

(3.13)

Clearly, ũ≥0 a.e. in Ω×(0,T), and it is easy to see that (3.8) and (3.12) imply that

ũ(·,0)=u0 and ṽ(·,0)=v0. (3.14)
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We claim that moreover
√

ũ∇(ũ+ ṽ) belongs to L2(Ω×(0,T);Rn) and in fact satisfies

∫ T

0

∫

Ω

ũ
∣

∣

∣
∇(ũ+ ṽ)

∣

∣

∣

2
=0. (3.15)

For this purpose, we let zk :=
√

uk∇(uk+vk) for k ∈ N and then obtain from (3.7) that
(zk)k∈N is bounded in L2(Ω×(0,T)), whence passing to a subsequence we may assume
that zk ⇀ z in L2(Ω×(0,T)) as k→∞. Since furthermore

√
uk →

√
ũ in L2(Ω×(0,T)) by

(3.7), (3.12) and the dominated convergence theorem, and since (3.12) also entails that
∇(uk+vk)⇀∇(ũ+ṽ) in L2(Ω×(0,T)), it follows that for any fixed ϕ∈C∞

0 (Ω×(0,T)) we
have

∫ T

0

∫

Ω

zk ·ϕ=
∫ T

0

∫

Ω

(
√

uk ϕ)·∇(uk+vk)

→
∫ T

0

∫

Ω

(
√

ũϕ)·∇(ũ+ ṽ) as k→∞,

which enables us to identify z=
√

ũ∇(ũ+ ṽ). Thus, by a lower semicontinuity argument,

∫ T

0

∫

Ω

ũ
∣

∣

∣
∇(ũ+ ṽ)

∣

∣

∣

2
=

∫ T

0

∫

Ω

|z|2

≤ liminf
k→∞

∫ T

0

∫

Ω

uk

∣

∣

∣
∇(uk+vk)

∣

∣

∣

2
=0

according to (3.11). In view of (3.13), (3.14) and (3.9), however, Lemma 3.1 says that (3.15)
is impossible, whence in conclusion (3.10) must have been valid.

4 The evolution of certain logarithmic functionals

Lemma 4.1. Let δ∈ (0,1). Then w :=u+v satisfies

∫

Ω

ln
(

w(·,t)+δ
)

≥
∫

Ω

ln
(

w(·,t0)+δ
)

+
∫ t

t0

∫

Ω

u

(w+δ)2
|∇w|2

+
∫ t

t0

∫

Ω

w

w+δ
·(m−w) for all t0≥0 and any t> t0. (4.1)

Proof. For ε∈ (0,1), we multiply the PDE in (2.2) satisfied by wε = uε+vε by the smooth
function 1

wε+δ and integrate by parts over Ω and use that ∇m≡0 to find that

d

dt

∫

Ω

ln(wε+δ)=ε
∫

Ω

1

(wε+δ)2
|∇wε|2+

∫

Ω

uε

(wε+δ)2
|∇wε|2

+
∫

Ω

wε

wε+δ
·(m−wε) for all t>0.
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Since the first summand on the right is nonnegative, an integration in time yields

∫

Ω

ln
(

wε(·,t)+δ
)

−
∫

Ω

ln
(

wε(·,t0)+δ
)

−
∫ t

t0

∫

Ω

wε

wε+δ
·(m−wε)

≥
∫ t

t0

∫

Ω

uε

(wε+δ)2
|∇wε|2 for all t0≥0 and each t> t0 (4.2)

whenever ε∈ (0,1). Now Lemma 2.1 says that with some ε0∈ (0,1) and c1>0 we have

uε ≤wε≤ c1 in Ω×(0,∞) (4.3)

and hence

δ≤wε+δ≤ c1+1 in Ω×(0,∞). (4.4)

Moreover, Theorem 1.1 asserts that

uε→u and wε→w a.e. in Ω×(0,∞), (4.5)

whence in particular for some null set N⊂ (0,∞) we have

wε(·,t)→w(·,t) a.e. in Ω for all t∈ (0,∞)\N (4.6)

as ε= ε j ց 0. Therefore, in view of (4.3) and (4.4), the dominated convergence theorem
becomes applicable to ensure that

∫

Ω

ln
(

wε(·,t)+δ
)

−
∫

Ω

ln
(

wε(·,t0)+δ
)

→
∫

Ω

ln
(

w(·,t)+δ
)

−
∫

Ω

ln
(

w(·,t0)+δ
)

for all t0∈ (0,∞)\N and each t∈ (t0,∞)\N (4.7)

as well as

∫ t

t0

∫

Ω

wε

wε+δ
·(m−wε)

→
∫ t

t0

∫

Ω

w

w+δ
·(m−w) for all t0≥0 and any t> t0 (4.8)

as ε= ε j ց0.

As for the integral on the right of (4.2), we argue in a more subtle way: Firstly, if T>0
is given then according to the above reasoning, using (4.2) we can find c2(T)>0 such that

∫ T

0

∫

Ω

uε

(wε+δ)2
|∇wε|2≤ c2(T)
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for all ε∈(0,ε0), whence for a subsequence (ε jk)k∈N of (ε j)j∈N and some z∈L2(Ω×(0,T))
we have

√
uε

wε+δ
∇wε ⇀ z in L2(Ω×(0,T)) (4.9)

as ε= ε jk ց 0. Next, since hε :=
√

uε

wε+δ satisfies hε ≤
√

c1

δ in Ω×(0,∞), along a further sub-

sequence, still denoted by (ε jk)k∈N, we have hε ⇀ h in L2(Ω×(0,T)) as ε= ε jk ց 0. Here

the observation that hε →
√

u
w+δ a.e. in Ω×(0,T) as ε = ε j ց 0 by (4.5) allows us to iden-

tify h=
√

u
w+δ , and thereupon another application of the dominated convergence theorem

shows that in fact

hε →
√

u

w+δ
in L2(Ω×(0,T)) (4.10)

as ε= ε jk ց0. As furthermore

∇wε⇀∇w in L2(Ω×(0,T)) as ε= ε j ց0 (4.11)

according to Theorem 1.1, this determines z in (4.9): Indeed, given ϕ∈C∞

0 (Ω×(0,T)) we
may combine (4.10) and (4.11) to obtain

∫ T

0

∫

Ω

hε∇wε ·∇ϕ=
∫ T

0

∫

Ω

(hε ϕ)·∇wε

→
∫ T

0

∫

Ω

(

√
u

w+δ
ϕ
)

·∇w as ε= ε jk ց0,

which implies that z=
√

u
w+δ∇w.

Now in view of lower semicontinuity of the norm in L2(Ω×(0,T)) with respect to
weak convergence, (4.9) in conjunction with (4.2), (4.7) and (4.8) yields

∫ t

t0

∫

Ω

u

(w+δ)2
|∇w|2 ≤

∫

Ω

ln
(

w(·,t)+δ
)

−
∫

Ω

ln
(

w(·,t0)+δ
)

−
∫ t

t0

∫

Ω

w

w+δ
·(m−w)

for all t0∈ (0,T)\N and all t∈ (t0,T)\N. (4.12)

Here we note that thanks to the mean-value theorem and the inclusion w∈C0([0,T];L2(Ω))
asserted by Theorem 1.1, the mapping [0,T]∋ s 7→

∫

Ω
ln(w(·,s)+δ) is continuous, because
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for any s and s0 from [0,T] we have

∣

∣

∣

∣

∫

Ω

ln
(

w(·,s)+δ
)

−
∫

Ω

ln
(

w(·,s0)+δ
)

∣

∣

∣

∣

2

≤|Ω|·
∫

Ω

∣

∣

∣

∣

ln
(

w(·,s)+δ
)

−ln
(

w(·,s0)+δ
)

∣

∣

∣

∣

2

≤ |Ω|
δ2

·
∫

Ω

|w(·,s)−w(·,s0)|2.

Since clearly also the space-time integrals in (4.12) depend continuously on both t0∈[0,T]
and t∈(t0,T], by density of (0,T)\N in [0,T] we conclude that (4.12) implies (4.1), because
T>0 was arbitrary.

Our analysis of the corresponding quantity involving v will additionally rely on the
bound on ∇v from Lemma 2.2:

Lemma 4.2. For any δ∈ (0,1), we have

∫

Ω

ln
(

v(·,t)+δ
)

=
∫

Ω

ln
(

v(·,t0)+δ
)

+
∫ t

t0

∫

Ω

v

v+δ
·(m−w)

for all t0≥0 and any t> t0, (4.13)

where w=u+v.

Proof. The proof parallels that of Lemma 4.1 to a certain extent, a main difference stem-
ming from the fact that in view of the claimed exact equality in (4.13), for the diffusive
term appearing in the regularization (2.1), a one-sided estimation as above is no longer
sufficient here.

To be more precise, for fixed δ ∈ (0,1) and T > 0 and any ε ∈ (0,1) we multiply the
second equation in (2.1) by 1

vε+δ to see upon integrating by parts that

∫

ln
(

vε(·,t)+δ
)

−
∫

Ω

ln
(

vε(·,t0)+δ
)

=ε
∫ t

t0

∫

Ω

1

(vε+δ)2
|∇vε|2+

∫ t

t0

∫

Ω

vε

vε+δ
·(m−wε)

for all t0∈ [0,T) and any t∈ (t0,T], (4.14)

where wε = uε+vε. Since with ε0 as in Lemma 2.1, both (vε)ε∈(0,ε0) and (wε)ε∈(0,ε0) are
bounded in L∞(Ω×(0,T)) and, by Theorem 1.1, a.e. in Ω×(0,T) convergent to v and w
as ε=ε jց0, respectively, the dominated convergence theorem guarantees that as ε=ε jց0,

∫ t

t0

∫

Ω

vε

vε+δ
·(m−wε)→

∫ t

t0

∫

Ω

v

v+δ
·(m−w) for all t0∈ [0,T) and t∈ (t0,T] (4.15)
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and
∫

Ω

ln
(

vε(·,t)+δ
)

−
∫

Ω

ln
(

vε(·,t0)+δ
)

→
∫

Ω

ln
(

v(·,t)+δ
)

−
∫

Ω

ln
(

v(·,t0)+δ
)

for all t0∈ (0,T)\N and each t∈ (t0,T)\N (4.16)

with an appropriate null set N⊂ (0,∞). Now since from Lemma 2.2 we know that there
exists c1(T)>0 such that

∫

Ω

|∇vε(·,t)|2 ≤ c1(T) for all t∈ (0,T)

whenever ε∈ (0,ε0), the first summand on the right of (4.14) satisfies

ε
∫ t

t0

∫

Ω

1

(vε+δ)2
|∇vε|2≤

εc1(T)·(t−t0)

δ2
→0 as εց0.

Therefore, (4.14), (4.15) and (4.16) warrant the validity of the identity in (4.13) for all
t0∈(0,T)\N and any t∈(t0,T)\N. Since the L2(Ω)-valued continuity of v on [0,T] ensures
continuity of [0,T]∋ s 7→

∫

Ω
ln(v(·,s)+δ), again a density argument thus yields the claim.

5 Proof of Theorem 1.2

Proof of Theorem 1.2. Given t0 ≥ 0 and t> t0, for δ∈ (0,1) we subtract (4.13) from (4.1) to
obtain

∫

Ω

ln
(

w(·,t)+δ
)

−
∫

Ω

ln
(

v(·,t)+δ
)

≥
∫

Ω

ln
(

w(·,t0)+δ
)

−
∫

Ω

ln
(

v(·,t0)+δ
)

+
∫ t

t0

∫

Ω

u

(w+δ)2
|∇w|2+

∫ t

t0

∫

Ω

( w

w+δ
− v

v+δ

)

·(m−w) (5.1)

with w=u+v. Since in the pointwise sense we have

ln(w+δ)−ln(v+δ)= ln
u+v+δ

v+δ
= ln

(

1+
u

v+δ

)

ր ln
(

1+
u

v

)

a.e. in Ω×(t0,t)

as δց0, two applications of the monotone convergence theorem yield

∫

Ω

ln
(

w(·,t)+δ
)

−
∫

Ω

ln
(

v(·,t)+δ
)

ր
∫

Ω

ln
(

1+
u(·,t)
v(·,t)

)

∈ [0,∞] (5.2)

and
∫

Ω

ln
(

w(·,t0)+δ
)

−
∫

Ω

ln
(

v(·,t0)+δ
)

ր
∫

Ω

ln
(

1+
u(·,t0)

v(·,t0)

)

∈ [0,∞] (5.3)
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as δց0. By the same token,

∫ t

t0

∫

Ω

u

(w+δ)2
|∇w|2ր

∫ t

t0

∫

Ω

u

w2
|∇w|2∈ [0,∞] as δց0. (5.4)

Finally, observing that both w
w+δ →1 and v

v+δ →1 a.e. in Ω×(t0,t) and

∣

∣

∣

∣

( w

w+δ
− v

v+δ

)

·(m−w)

∣

∣

∣

∣

≤2(|m|+‖w‖L∞(Ω×(0,t))) a.e. in Ω×(t0,t)

for all δ∈ (0,1), the dominated convergence theorem ensures that

∫ t

t0

∫

Ω

( w

w+δ
− v

v+δ

)

·(m−w)→0 as δց0.

Therefore, in view of (5.2)-(5.4), the inequality (1.5) is a consequence of (5.1).

6 Proof of Theorem 1.3

Proof of Theorem 1.3. We claim that for all T> 0 there exists δ(T)> 0 such that whenever
u0 ∈

⋃

γ∈(0,1)C
γ(Ω̄) is nonnegative and such that (1.7) holds, then the corresponding so-

lution (u,v) of (1.1) from Theorem 1.1 satisfies

∫

Ω

ln
(

1+
u(·,t)
v(·,t)

)

> |Ω|·ln2 for all t≥T. (6.1)

Indeed, if this claim were false, then there would exist T>0 such that for all k∈N we
could find some nonnegative u0k ∈

⋃

γ∈(0,1)C
γ(Ω̄) such that

v0≥u0k ≥v0−
1

k
in Ω, (6.2)

but such that the corresponding solutions (uk,vk) of (1.1) emanating from (u0k,v0) would
satisfy

∫

Ω

ln
(

1+
uk(·,T)
vk(·,T)

)

≤|Ω|·ln2 for all k∈N, (6.3)

where we have used that [0,∞)∋ t 7→
∫

Ω
ln(1+ uk(·,t)

vk(·,t) ) is nondecreasing by Theorem 1.2.

Now since the estimates in Lemma 2.2 depend on u0 only through its norm in L∞(Ω), in
view of (6.2) it is clear from the latter that we can find c1>0 such that for all k∈N,

∫ T

0

∫

Ω

|∇uk|2≤ c1 and
∫

Ω

|∇vk(·,t)|2 ≤ c1 for all t∈ (0,T)

as well as
∫ T

0
‖∂tuk(·,t)‖2

(W1,2(Ω))⋆dt≤ c1 and
∫ T

0

∫

Ω

|∂tvk|2≤ c1.
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As (6.2) moreover guarantees that

u0k →u0 :=v0 in L∞(Ω) as k→∞,

where by assumption we have u0>0 a.e. in Ω and u0+v0=2v0 6≡const., Lemma 3.2 applies
so as to yield c2>0 and a subsequence, not relabeled for convenience, such that

∫ T

0

∫

Ω

uk

∣

∣

∣
∇(uk+vk)

∣

∣

∣

2
≥ c2 for all k∈N.

Thus, the quantitative monotonicity estimate in Theorem 1.2 shows that

∫

Ω

ln
(

1+
uk(·,T)
vk(·,T)

)

≥
∫

Ω

ln
(

1+
u0k

v0

)

+
∫ T

0

∫

Ω

uk

∣

∣

∣
∇(uk+vk)

∣

∣

∣

2

≥
∫

Ω

ln
(

1+
v0− 1

k

v0

)

+c2

for all k∈N. But the monotone convergence theorem asserts that

∫

Ω

ln
(

1+
v0− 1

k

v0

)

ր|Ω|·ln2 as k→∞,

whence

liminf
k→∞

∫

Ω

ln
(

1+
uk(·,T)
vk(·,T)

)

≥|Ω|·ln2+c2.

This contradicts (6.3) and thereby proves the claim.
By the inequality x−1≥2ln 1+x

2 for x>−1, it follows from (6.1) that

∫

Ω

u(·,t)
v(·,t)−|Ω|≥2

∫

Ω

ln
(

1+
u(·,t)
v(·,t)

)

−2|Ω|·ln2>0 for all t≥T,

that is, (1.8) holds.

7 On disadvantage of dispersal

Diffusion may not always be advantageous in the sense of Definition 1.1. As an example,
in this section we consider



















ut=d∆u+u(m−u−v), x∈Ω, t>0,

vt=v(m−u−v), x∈Ω, t>0,
∂u
∂ν =0, x∈∂Ω, t>0,

u(x,0)=u0(x), v(x,0)=v0(x), x∈Ω,

(7.1)
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in a bounded domain Ω⊂R
n with smooth boundary ∂Ω, d>0 is a constant. In contrast

with (1.1), species u in (7.1) adopts random diffusion, i.e. the transition probability of
the individuals moving in all directions are the same. It turns out that, in contrast to
fitness-dependent diffusion in (1.1), random diffusion can be disadvantageous in various
ways.

According to the result of Dockery et al. [9], if both species have instead positive
random diffusion rates, the species with the smaller diffusion rate will become dominant
and always drive the species with the larger diffusion rate to extinction, irrespective of
the initial condition, provided that m is non-constant. It might be natural to inquire that,
if the diffusion rate of v is equal to zero as in system (7.1), does it remain that the no-
diffusing species v will be dominant? Recently it has been shown in [19] that if m(x)
changes sign, for positive and continuous initial data, solutions of (7.1) will converge
to (0,m+) uniformly in x as t→∞, where m+ :=max{m(x),0}. This implies that if the
underlying environment has both sources and sinks, which correspond to the regions of
positive and negative m, respectively, the no-diffusing species will drive the diffusing
species to extinction and is thus advantageous. However, the answer is different when
m is positive: For strictly positive function m, system (7.1) has a continuum of positive
steady states, given by (C,m(x)−C), where C is any constant satisfying C∈ (0,min

Ω̄
m).

In particular, this implies that two competing populations in (7.1) may be able to coexist.
Does v still have the advantage when both population can coexist? If so, can we

measure the advantage of species v in the sense of Definition 1.1? Assuming that the
initial data u0,v0 in (7.1) have proper regularity, we can establish the following identity:

∫

Ω

ln
v(·,t)
u(·,t) =

∫

Ω

ln
v(·,t0)

u(·,t0)
+d

∫ t

t0

∫

Ω

|∇u|2
u2

(7.2)

for all t0≥0 and t> t0; See [19]. In particular, if v0≥u0>0 and u0 6≡ const. in Ω̄, then
∫

Ω

ln
v(·,t)
u(·,t) >0 for all t>0. (7.3)

Applying the inequality x≥1+lnx for x>0, we have
∫

Ω

v(·,t)
u(·,t) > |Ω| for all t>0, (7.4)

i.e. the corresponding solution (u,v) of (7.1) has the property that v(·,t) exceeds u(·,t)
in the relative average over Ω for all t>0, in strong contrast to (1.8) which holds for the
solutions of (1.1).

The conclusions from Theorem 1.3 and the discussions in this section illustrate that
the global dynamics of the ODE-PDE hybrid systems (1.1) and (7.1) could be quite differ-
ent from that of the kinetic system











ut=u(m−u−v), t>0,

vt =v(m−u−v), t>0,

u(0)=u0, v(0)=v0.

(7.5)
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Furthermore, the details of such differences could depend upon the movement strategies
in subtle but meaningful ways. Many questions concerning the full dynamics of (1.1) are
open, e.g., what are the large time asymptotic behaviors of the solutions to system (1.1)
when function m(x) is positive and non-constant? We hope to address these questions in
future investigations.
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