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Abstract. An implicit evaluation method of vector 2-norms is presented for function
evaluations arising from sphere constrained quadratic optimizations. The efficiency of
the method in terms of computational costs mainly comes from the well-known shifted
conjugate gradient method, and the robustness of the method comes from the fact that
it never suffers from cancellations when the coefficient matrix is symmetric positive
definite. Numerical experiments indicates that the method is promising for reducing
computational costs of Ye’s hybrid method for solving sphere constrained quadratic
optimizations.
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1 Introduction

Given a symmetric positive definite matrix A∈R
N×N and a vector b∈R

N , finding a root
of the function

f (σ)=‖(A+σI)−1b‖2−1 (1.1)

over the set of all positive real numbers R
+ is of prime importance in solving sphere

constrained quadratic optimizations (SQO hereafter)

minimize q(x)=
1

2
(x,Ax)−(b,x)

subject to x∈S={x∈R
N :‖x‖2 ≤1}.
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Here, the symbol (·,·) denotes the standard dot product, i.e., (x,y)= xTy. The SQO prob-
lems have a rich variety of applications such as trust region algorithms for nonlinear
programming (see [1] and references therein), regularization methods for ill-posed prob-
lems [8], and graph partitioning problems [6].

Of many root-finding algorithms, e.g. the bisection method, the false position method,
and Newton’s method, one of the most well-known root-finding algorithms for (1.1) is
Ye’s hybrid method [10] that is combining Newton’s method and a special binary search.
The most time consuming part of Ye’s hybrid method is evaluating the function (1.1) for
some given values, i.e.,

f (σℓ)=‖(A+σℓ I)−1b‖2−1, ℓ=1,2,··· ,m. (1.2)

For computing the 2-norms in (1.2), one may choose sparse direct solvers (see, e.g.,
[3]), since the sparse pattern of A+σℓ I does not change for all σℓ ∈ R

+ and thus one
symbolic factorization may be enough. This is very cost-efficient in this respect. The ap-
proach, however, requires m times numerical factorizations that will be highly expensive.
The Householder triangularization of A+σℓ I may be more useful when the matrices are
small, since the triangularizations can be done simultaneously, i.e., QT(A+σℓ I)Q=T+σℓ I
for ℓ= 1,··· ,m, where T is a tridiagonal matrix, and the Cholesky factorizations of tridi-
agonal matrices T+σℓ I for ℓ= 1,··· ,m can be done in O(mN). When matrices are large,
the memory requirement of O(N2) may be a bottleneck.

The 2-norms in (1.2) can be viewed as the solution 2-norms ‖x(ℓ)‖2 of the following,
so-called, shifted linear systems:

(A+σℓ I)x(ℓ)=b, ℓ=1,2,··· ,m. (1.3)

Krylov subspace methods for solving shifted linear systems have received much atten-
tion since only one Krylov subspace Kn(A,b):=span{b,Ab,··· ,An−1b} is required because
of the shift-invariance property Kn(A,b)=Kn(A+σℓ I) (see, an excellent survey, [9]). Since
the coefficient matrices are symmetric positive definite, it is natural to use the shifted
Conjugate Gradient (shifted CG) method for solving (1.3) whose algorithm in a complete
form is described in [7]; the symmetric version of the shifted Bi-CG [5], and an accurate
variant of the shifted CG method was proposed for the case (ATA+σℓ I)x(ℓ)= ATb [4].
This motivates us to use the shifted CG method for efficiently evaluating the function
(1.1).

The purpose of the paper is to give an efficient evaluation method for computing the
solution 2-norms ‖x(ℓ)‖2 of (1.3) based on the shifted CG method. The paper is organized
as follows: In the next section, a brief explanation of the shifted CG method is given. In
Section 3, explicit and implicit evaluation methods for evaluating function values (1.2)
are described. The main contribution of the paper is the implicit evaluation method.
In Section 4, the explicit/implicit evaluation methods are modified so that they can be
applicable to Ye’s hybrid method. In Section 5, the results of some numerical experiments
are described. Finally some concluding remarks are made in Section 6.
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2 The shifted CG method

The shifted CG method is a powerful solver for shifted linear systems with symmetric

positive definite matrices (1.3). Let x
(ℓ)
0 be initial guesses for the shifted linear systems

(1.3) so that the corresponding initial residual vectors r
(ℓ)
0 :=b−(A+σℓ I)x

(ℓ)
0 are collinear,

i.e., {r
(ℓ)
0 }m

ℓ=1 lie in one dimensional subspace:

c1r
(1)
0 = c2r

(2)
0 = ···= cmr

(m)
0 , c1,c2,··· ,cm ∈R.

Then, the shifted COCG method finds approximate solutions over the following affine
space:

x
(ℓ)
n ∈ x

(ℓ)
0 +Kn(A+σℓ I,r

(ℓ)
0 ), (2.1)

where the nth residual vector r
(ℓ)
n :=b−(A+σℓ I)x

(ℓ)
n satisfies

r
(ℓ)
n ∈Kn+1(A+σℓ I,r

(ℓ)
0 )⊥Kn(A+σℓ I,r

(ℓ)
0 ). (2.2)

Here Kn(A,b) is an n-dimensional Krylov subspace given by span{b,Ab,··· ,An−1b}. Since

r
(ℓ)
0 ’s are collinear, it is well known that shift-invariance property of Krylov subspaces

holds: Kn(A+σi I,r
(i)
0 )=Kn(A+σj I,r

(j)
0 ) for all i, j=1,2,··· ,m. This means that it is enough

to generate only one Krylov subspace, leading to cost efficient algorithm shown in Algo-
rithm 1.

There are some remarks on Algorithm 1: For simplicity, all initial guesses are zeros
so that all initial residual vectors are collinear; in exact precision arithmetic all residual

vectors r
(ℓ)
n for all ℓ,n are the same as true CG residual vectors; the seed system is chosen

as Ax = b, since from the following proposition shown by Frommer, all shifted linear
systems are solved within the required number of iteration steps for solving the seed
system by the CG method.

Proposition 2.1 ([5]). Let A be symmetric positive definite, then 1/π
(ℓ)
n ∈(0,1). From the relation

r
(ℓ)
n = rn/π

(ℓ)
n , it follows that ‖r

(ℓ)
n ‖2<‖rn‖2.

3 Explicit/Implicit evaluation methods

This section describes explicit and implicit evaluation methods for (1.1).

3.1 Explicit evaluation method

Explicit evaluation is explicitly evaluating the solution 2-norms after convergence. The
algorithm is summarized in Algorithm 2.

The symbol n(ℓ) in Algorithm 2 denotes the required number of iteration steps for
each shifted linear system (1.3).
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Algorithm 1 The shifted Conjugate Gradient method

x
(ℓ)
0 = p

(ℓ)
−1=0, r0=b,

β−1=0, π
(ℓ)
0 =π

(ℓ)
−1=α−1=1,

for n=0,1,··· , until ‖rn‖2≤ǫ‖b‖2 do:

pn = rn+βn−1pn−1,

αn =
(rn,rn)

(pn,Apn)
,

(begin shifted system)

for ℓ=1,2,··· ,m

if ‖r
(ℓ)
n ‖2>ǫ‖b‖2 then

π
(ℓ)
n+1=(1+αnσℓ)π

(ℓ)
n + βn−1

αn−1
αn

(

π
(ℓ)
n −π

(ℓ)
n−1

)

,

β
(ℓ)
n−1=

(

π
(ℓ)
n−1

π
(ℓ)
n

)2

βn−1,

α
(ℓ)
n = π

(ℓ)
n

π
(ℓ)
n+1

αn,

p
(ℓ)
n = 1

π
(ℓ)
n

rn+β
(ℓ)
n−1p

(ℓ)
n−1,

x
(ℓ)
n+1= x

(ℓ)
n +α

(ℓ)
n p

(ℓ)
n ,

end if

end for

(end shifted system)

rn+1= rn−αn Apn,

βn =
(rn+1,rn+1)
(rn,rn)

.

end for

Algorithm 2 Explicit evaluation method for ‖x
(ℓ)
n(ℓ)

‖2

Step 1: Run Algorithm 1.

Step 2: Compute ‖x
(ℓ)
n(ℓ)

‖2=(x
(ℓ)
n(ℓ)

,x
(ℓ)
n(ℓ)

)1/2 for ℓ=1,2,··· ,m.

3.2 Implicit evaluation method

This subsection describes implicit evaluation method for ‖x
(ℓ)
n(ℓ)

‖2. For simplicity the sym-

bol n(ℓ) is abbreviated as n. The key proposition for the implicit evaluation method is
given below.

Proposition 3.1. Let D
(ℓ)
n be an n×n diagonal matrix with ‖r

(ℓ)
0 ‖2/π

(ℓ)
0 ,··· ,‖r

(ℓ)
n−1‖2/π

(ℓ)
n−1

on the diagonal; B
(ℓ)
n be an n×n upper diagonal matrix with 1,··· ,1 on the diagonal and
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−β
(ℓ)
0 ,··· ,−β

(ℓ)
n−2 on the upper diagonal; a

(ℓ)
n be a vector of length n with α

(ℓ)
0 ,··· ,α

(ℓ)
n−1. Then

solution 2-norms of (1.3) are evaluated by the following method:

∥

∥x
(ℓ)
n

∥

∥

2
=
∥

∥D
(ℓ)
n (B

(ℓ)
n )−1a

(ℓ)
n

∥

∥

2
, (3.1)

where r
(ℓ)
k , α

(ℓ)
k , β

(ℓ)
k for all k,ℓ are generated in Algorithm 1.

Proof. It follows from recurrences relation for p
(ℓ)
n in Algorithm 1 that we have

[r0/π
(ℓ)
0 ,··· ,rn−1/π

(ℓ)
n−1]= [p

(ℓ)
0 ,··· ,p

(ℓ)
n−1]B

(ℓ)
n . (3.2)

Since x
(ℓ)
n =[p

(ℓ)
0 ,··· ,p

(ℓ)
n−1]a

(ℓ), it follows that

x
(ℓ)
n =[p

(ℓ)
0 ,··· ,p

(ℓ)
n−1]a

(ℓ)
n

=[r0/π
(ℓ)
0 ,··· ,rn−1/π

(ℓ)
n−1](B

(ℓ)
n )−1a

(ℓ)
n (from (3.2))

= [r0/‖r0‖2,··· ,rn−1/‖rn−1‖2]D
(ℓ)(B

(ℓ)
n )−1a

(ℓ)
n .

The r
(ℓ)
k ’s are CG residual vectors to be orthogonal to each other, and thus column vectors

of the matrix Qn := [r0/‖r0‖2,··· ,rn−1/‖rn−1‖2] are orthonormal. The solution 2-norms
are, therefore, given by

∥

∥x
(ℓ)
n

∥

∥

2
=
∥

∥QnD
(ℓ)
n (B

(ℓ)
n )−1a

(ℓ)
n

∥

∥

2
=
∥

∥D
(ℓ)
n (B

(ℓ)
n )−1a

(ℓ)
n

∥

∥

2
,

which concludes the proof.

Eq. (3.1) leads to the following implicit evaluation method (Algorithm 3) for all solu-
tion 2-norms of the shifted linear systems.

Algorithm 3 Implicit evaluation method for ‖x
(ℓ)
n(ℓ)

‖2

Step 1: Run Algorithm 1 without computing p
(ℓ)
n and x

(ℓ)
n .

Step 2: Compute b
(ℓ)
n(ℓ)

:=(B
(ℓ)
n(ℓ)

)−1a
(ℓ)
n(ℓ)

by back substitution.

Step 3: Compute ‖D
(ℓ)
n(ℓ)

b
(ℓ)
n(ℓ)

‖2.

We compare Algorithms 2 and 3 in terms of computational costs. The shifted part and
computing 2-norms in Algorithm 2 require O(Nñm) operations, and that in Algorithm
3 requires O(ñm) operations. Here, ñ denotes average number of required iterations for
each shifted linear system.

From Proposition 3.1, we readily have the following corollary that implies numerical
robustness of the implicit evaluation method.
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Corollary 3.1. Steps 2 and 3 in Algorithm 3 never suffer from cancellation.

Proof. It is enough to show α
(ℓ)
k ,β

(ℓ)
k ∈R

+. Firstly, α
(ℓ)
k ∈R

+, since α
(ℓ)
k =‖r

(ℓ)
k ‖2

2/(p
(ℓ)
k ,(A+

σℓ I)p
(ℓ)
k ), where (A+σℓ I) is symmetric positive definite. Secondly, β

(ℓ)
k =‖r

(ℓ)
k+1‖

2
2/‖r

(ℓ)
k ‖2

2∈
R

+.

4 Application

In this section, we describe an application of Algorithms 2 and 3. These algorithms may
substantially reduce computational costs of Ye’s hybrid algorithm [10] that is widely
known as an approximate root finding algorithm arising in the SQO problems.

4.1 Ye’s hybrid algorithm

Ye’s hybrid algorithm finds an approximate root of f (σ) in (1.1) and then run root-finding
algorithm such as Newton’s method with the computed approximate root. The good
initial guess of Ye’s hybrid algorithm is given in Algorithm 4.

Algorithm 4 The initial guess of Ye’s hybrid algorithm

Step 1: Set ǫ to be small value, set β :=1+1/12 and compute β̂i :=β2i
for i=0,1,··· ,K,

where K :=⌈log2(log2(‖b‖2/ǫ3))−log2(log2 β)⌉ and ⌈·⌉ is the ceiling function.

Set k :=K, ℓ :=1, ξ :=ǫ3.

Step 2: Set σℓ := β̂k−1ξ and compute g(σℓ) :=‖(A+σℓ I)−1b‖2
2−1.

Step 3: If g(σℓ)>0 then ξ := β̂k−1ξ.

Step 4: Set k := k−1, ℓ := ℓ+1 and goto Step 2.

Note that the function used in Ye’s hybrid algorithm is g(σ)= ‖(A+σI)−1b‖2
2−1 in-

stead of f (σ). The resulting value ξ in Algorithm 4 is an approximate root of g(σ), i.e., a
root of g(σ) is in the interval [ξ, βξ], and thus the value ξ can be a good initial guess.

4.2 Application of the explicit/implicit evaluation methods to Ye’s hybrid
algorithm

We should note that (i) the explicit/implicit evaluation methods require Algorithm 1, and
Algorithm 1 solves shifted linear systems in not sequential but in parallel manner, which
means the algorithm is suitable for parallel evaluations of g(σℓ) for ℓ=1,2,··· ,m; (ii) Ye’s
hybrid algorithm, however, require sequential evaluations, i.e., after evaluation of g(σk),
it requires g(σk+1).

From the above note, Algorithms 2 and 3 requires a modification so that these algo-
rithms can be applicable to Ye’s hybrid algorithm. To this end, Algorithm 2 is modified
as Algorithm 5.
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Algorithm 5 A modified version of the explicit evaluation method for ‖x
(ℓ)
n(ℓ)

‖2

Run Algorithm 1 only for ℓ=1, and then compute ‖x
(1)
n(1)

‖2.

Set nits :=n(1) and store αk,βk,rk for k=0,1,··· ,nits and pnits .

for ℓ=2,3,···

if ‖r
(ℓ)
nits

‖2(=‖rnits‖2/|π
(ℓ)
nits

|)>ǫ then

run CG part of Algorithm 1 from nits iteration step,

store additional information: αk,βk,rk for k=nits,nits+1,c··· ,n(ℓ), and pn(ℓ),

set nits :=n(ℓ),

end if

run shift part of Algorithm 1 using αk,βk,rk for k=0,1,··· ,n(ℓ),

run Step 2 in Algorithm 2.

end for

Similarly, Algorithm 3 is modified as Algorithm 6.

Algorithm 6 A modified version of the implicit evaluation method for ‖x
(ℓ)
n(ℓ)

‖2

Run Algorithm 1 only for ℓ=1 without computing p
(1)
n , x

(1)
n , and then run Steps 2 and 3

in Algorithm 3.

Set nits :=n(1) and store αk,βk, for k=0,1,··· ,nits and pnits ,rnits .

for ℓ=2,3,···

if ‖r
(ℓ)
nits

‖2(=‖rnits‖2/|π
(ℓ)
nits

|)>ǫ then

run CG part of Algorithm 1 from nits iteration step,

store additional information: αk,βk, for k=nits+1,nits+2,··· ,n(ℓ), and pn(ℓ),rn(ℓ),

set nits :=n(ℓ),

end if

run Steps 2 and 3 in Algorithm 3 using αk,βk for k=0,1,··· ,n(ℓ).

end for

Algorithm 6 has an additional advantage over Algorithm 5 in that the required mem-
ory in Algorithm 6 is of O(N), whereas O(nitsN) in Algorithm 5.

5 Numerical experiments

Numerical experiments were performed on MATLAB 5.3.1. Test matrices we used are
small in order to know the condition numbers. Flops are given for the evaluation of
algorithms instead of CPU time.
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5.1 Example 1

The first test matrix A is bcsstk09 that comes from Matrix Market

http://math.nist.gov/MatrixMarket/

The matrix size is 1083×1083 and the number of nonzeros is 18437. We used the shifted
matrix A−7102.229I that is symmetric positive definite and the right-hand side b to be
all ones. The nonzero structure of the matrix is given in Fig. 1.

Algorithm 4 with ǫ = 0.0001 required 9 shifted linear systems as shown in the first
column of Table 1. The corresponding condition numbers are shown in the third column.

Table 1: Solution 2-norms for shifted linear systems and these condition numbers.

Shift value Solution 2-norm κ2(A+σℓ I)

σ1: 7.927e-004

Direct: 1.594775024955985e+004

7.953e+010Explicit: 1.594779579679995e+004

Implicit: 1.594779575580611e+004

σ2: 2.232e+001

Direct: 6.073309881220007e–001

3.028e+006Explicit: 6.073309880806945e–001

Implicit: 6.073309880806930e–001

σ3: 1.330e–001

Direct: 1.018625458467804e+002

5.079e+008Explicit: 1.018625439946537e+002

Implicit: 1.018625439929811e+002

σ4: 1.723e+000

Direct: 7.866825585488928e+000

3.923e+007Explicit: 7.866825587334573e+000

Implicit: 7.866825587324572e+000

σ5: 6.201e+000

Direct: 2.185829280249282e+000

1.090e+007Explicit: 2.185829283220941e+000

Implicit: 2.185829283220929e+000

σ6: 1.176e+001

Direct: 1.152182531617289e+000

5.746e+006Explicit: 1.152182531909113e+000

Implicit: 1.152182531909114e+000

σ7: 1.620e+001

Direct: 8.365144399127212e–001

4.171e+006Explicit: 8.365144400896551e–001

Implicit: 8.365144400896537e–001

σ8: 1.381e+001

Direct: 9.817420371340140e–001

4.896e+006Explicit: 9.817420371705738e–001

Implicit: 9.817420371705737e–001

σ9: 1.274e+001

Direct: 1.063553505983321e+000

5.304e+006Explicit: 1.063553505234087e+000

Implicit: 1.063553505234081e+000
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Figure 1: Sparse matrix structure for bcsstk09.
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Figure 2: Operation counts of explicit/implicit evaluations for bcsstk09.

The result of the comparison in terms of accuracy among direct, explicit, and explicit
evaluations is given in the second column, where direct evaluation means that all shifted
linear systems were solved by the LU decomposition and then the solution 2-norms were
computed. We see from Table 1 that the number of the same digits of solution 2-norms
by direct, explicit, and implicit evaluations tends to be 15−log10κ2(A+σℓ I). This implies
that in this case explicit and implicit evaluation methods work well in terms of accuracy.

Next, the result of computational costs is shown in Fig. 2. “PCG” in Fig. 2 means
that the conjugate gradient method with incomplete Cholesky factorization precondi-
tioner using dropping tolerance 0.001, and the required number of operations was 138.2
MFlops for solving all shifted linear systems. The explicit evaluation method required
51.3 MFlops that was much smaller than that of the PCG method. The implicit evalu-
ation method required 29.9 MFlops that was smaller than that of the explicit one. The
main reason is that the implicit evaluation method does not require vector updates in its
shifted parts.
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5.2 Example 2

The second test matrix A is s3rmt3m3 that also comes from Matrix Market. The matrix
size is 5357×5357 and the number of nonzeros is 207123. We used the original matrix A
that is symmetric positive definite and the right-hand side b to be all ones. The nonzero
structure of the matrix is given in Fig. 3.

As shown in the first column of Table 2, Algorithm 4 with ǫ=0.003 required 9 shifted
linear systems. The corresponding condition numbers are listed in the third column.

Table 2: Solution 2-norms for shifted linear systems and these condition numbers.

Shift value Solution 2-norm κ2(A+σℓ I)

σ1: 2.140e+001

Direct: 3.165655510617757e+000

4.495e+002Explicit: 3.165655510617755e+000

Implicit: 3.165655510617751e+000

σ2: 6.026e+005

Direct: 1.214609320949817e–004

1.016e+000Explicit: 1.214609320949815e–004

Implicit: 1.214609320949814e–004

σ3: 3.591e+003

Direct: 2.031232674106394e–002

3.673e+000Explicit: 2.031232674106397e–002

Implicit: 2.031232674106396e–002

σ4: 2.772e+002

Direct: 2.590323610557677e–001

3.562e+001Explicit: 2.590323610557674e–001

Implicit: 2.590323610557669e–001

σ5: 7.703e+001

Direct: 9.141579239647525e–001

1.256e+002Explicit: 9.141579239647535e–001

Implicit: 9.141579239647565e–001

σ6: 4.060e+001

Direct: 1.707126617087568e+000

2.374e+002Explicit: 1.707126617087575e+000

Implicit: 1.707126617087571e+000

σ7: 5.593e+001

Direct: 1.250078635467547e+000

1.726e+002Explicit: 1.250078635467547e+000

Implicit: 1.250078635467544e+000

σ8: 6.563e+001

Direct: 1.069164846481907e+000

1.472e+002Explicit: 1.069164846481908e+000

Implicit: 1.069164846481908e+000

σ9:7.110e+001

Direct: 9.886633461616962e–001

1.360e+002Explicit: 9.886633461616918e–001

Implicit: 9.886633461616963e–001
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Figure 3: Sparse matrix structure for s3rmt3m3.
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Figure 4: Operation counts of explicit/implicit evaluations for s3rmt3m3.

The result of the comparison in terms of accuracy among direct, explicit, and explicit
evaluations is given in the second column. From Table 2, the number of the same digits of
solution 2-norms by direct, explicit, and implicit evaluations tends to be 15−log10κ2(A+
σℓ I), which is a similar tendency to that seen in the previous example.

The result of computational costs is shown in Fig. 4. “PCG” in Fig. 4 means that the
conjugate gradient method with incomplete Cholesky factorization preconditioner using
dropping tolerance 0.001, and the required number of operations was 641.2 MFlops for
solving all shifted linear systems. The explicit evaluation method required 163.3 MFlops.
The implicit evaluation method required 129.8 MFlops that was smaller than that of the
explicit one. We also see from the result that accelerating the CG part in Algorithm 1 will
lead to further efficient computation for implicit/explicit evaluation methods.
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6 Concluding remarks

In this paper, the implicit evaluation method of vector 2-norms was proposed for func-
tion evaluations arising from sphere constrained quadratic optimizations. The method
is based on the shifted conjugate gradient method, and the total computational costs are
less than that of the explicit one because of no requirement of the vector updates in the
shifted part. In terms of accuracy, we have shown that the method never suffers from
cancellation when the coefficient matrix is symmetric positive definite. Furthermore, we
have modified the explicit/implicit evaluation methods so that they can be applicable to
Ye’s hybrid method for solving sphere constrained quadratic optimizations. In this case,
we have seen that the implicit method is more memory efficient than the explicit one.

From numerical experiments we have learned that the implicit method is promising
for reducing computational costs of Ye’s hybrid method, and that accelerating the CG
part in the shifted CG method will be a key for more efficient computation of the implicit
evaluation method. To achieve this, a deflation technique may be a method of choice (see,
e.g., [2]).

Finally, future work is described below, which was inspired by useful and insightful
comments of the anonymous referee. Since one of the commonly used methods in prac-
tice for the SQO problem is the truncated CG method [11], both theoretical and practical
comparison arising from nonlinear programming problem and machine learning (logis-
tic regression) between the truncated CG method and our algorithms will be important
future work. Furthermore, an extension of the presented algorithms to the case where A
is positive indefinite will also be interesting future work. In this case, we may need to
consider some theory such as look-ahead Lanczos process to avoid breakdown.
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