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Abstract. We study coarse-grained models of some linear static lattice models with in-
teractions up to second nearest neighbors. It will be demonstrated how nonlocal inter-
actions, as described by a nonlocal kernel function, arise from a coarse-graining proce-
dure. Some important properties of the nonlocal kernels will be established such as its
decay rate and positivity. We also study the scaling behavior of the kernel functions as
the level of coarse-graining changes. In addition, we suggest closure approximations
of the nonlocal interactions that can be expressed in local PDE forms by introducing
auxiliary variables.
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1 Introduction

Coarse-graining of finest scale models has become an important methodology in com-
puter simulations of complex systems in the last two decades. For example, despite
rapidly growing computing power, all-atom simulations of materials still remain chal-
lenging due to the computational complexity, which has been a major motivation for the
development of coarse graining methodology. Reduced models (a.k.a., coarse-grained
models) have been shown to be more effective in practice. Starting with a relatively small
number of representative degrees of freedom, e.g., local averages, the goal in developing
a reduced model is to begin with the many-body atomic interactions and derive a model
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that only involves the preselected degrees of freedom, see [13, 14, 23, 24] for various per-
spectives and recent progress.

One remarkable success, in the study of solids with crystal structures, has been the
quasi-continuum (QC) method [30]. By assuming the smoothness of the deformation
field away from defects and employing a finite-element approximation of the elastic en-
ergy, a reduced model is constructed that describes the deformation of pre-selected repre-
sentative atoms. The key ingredient in such an approach is the Cauchy-Born rule, which
obtains the local energy density by considering a unit cell under uniform deformation
gradient. Effectively, the reduced model, known as the local quasi-continuum approxi-
mation, is expressed in terms of the finite element nodal values.

Most QC type of methods have been motivated by continuum mechanics, and in-
evitably, they lead to modeling error, which can be quantified when the underlying
atomic displacement has certain smoothness, see, for example [6, 18, 33], the analysis for
one-dimensional models. In this paper, however, we will first derive an exact reduced
model, with an attempt to understand various properties of the exact interactions among
the representative atoms resulting from the coarse-graining process. As an illustration,
we consider a one-dimensional lattice system with the interactions being among the first
and second neighbors. By assuming that the interaction is linear, we can obtain the exact
reduced model explicitly in the form of nonlocal difference equations. Several properties
regarding the kernel function that characterizes the coarse-grained interactions can be
established. Our first observation is that, in general, this kernel function has no compact
support, i.e., the interaction is nonlocal. This observation reflects a strong motivation
for the current work, that is, to connect model reduction with nonlocal modeling [7]. It
also allows us to draw similarities of the reduced models using nonlocal integral oper-
ators to nonlocal peridynamics models, see [15, 29]. We show that the reduced nonlocal
model, through rescaling, has a characteristic interaction range, even though the kernel
decays exponentially. The latter observation provides a justification for the finite-ranged
interactions that are often used in the parameterization of reduced models [14, 23].

Furthermore, we suggest a new approach to approximate the nonlocal continuum for-
mulation of the reduced models, by using a Padé approximation of the dispersion rela-
tion. More specifically, the nonlocal operator can be approximated by an integral operator
with the kernel function consisting of double exponential functions and delta functions.
In the physical domain, these models can be rewritten as higher order PDEs, and we
prove the stability of these PDEs. It is our hope that this result sheds some light on the
origins and selections of interaction kernel functions in nonlocal continuum models. In
particular, this approach associates atomic interactions, in the form of force constants, to
the kernel functions in the nonlocal models, and hence leading to kernel functions that
are material specific and dependent of the coarse-graining procedure.

The rest of the paper is organized as follows. Section 2 will provide a demonstration
of the model reduction procedure of some lattice models, including a model with nearest
neighbor interactions, followed by one with next nearest neighbor interactions that leads
naturally to nonlocal reduced models. In Section 3, we present a Fourier representation
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of the kernel function. Analysis of properties of the kernel function is illustrated in sec-
tion 4. Finally, in section 5, we make a connection to nonlocal continuum models with
exponential type of kernels.

2 Lattice models

In this section, to demonstrate the reduction procedure and investigate the properties
of the resulting model, we consider a one-dimensional chain model of a crystal lattice.
More specifically, given the equilibrium lattice constant ε>0, we define a one dimensional
infinite lattice as follows,

L=
{

x|x=nε, n∈Z
}

. (2.1)

We will let x be the undeformed (equilibrium) position of an atom, and u(x) be the dis-
placement of the atom from the equilibrium position.

For typical lattice models used in practice, the lattice spacing ε is on the order of a
few angstroms (10−10m). In order to describe the material deformation on a much larger
scale, we define a coarse lattice by selecting a representative atom from each group of
M atoms, as done in the quasi-continuum method [30]. To be more specific, the selected
representative atoms form a similar lattice structure, i.e.,

LCG =
{

y|y=nH, n∈Z
}

, L
−
CG =L\LCG (2.2)

where we have set H=Mε, which represents the spatial scale of interest, possibly ranging
from nanometer scale (10−9m) to micron scale (10−6m). A pictorial illustration of the two
lattices can be found in Fig. 1. Here L

−
CG denotes the set of remaining atoms that will be

eliminated by the coarse-graining procedure.

−ǫ 0 ǫ Mǫ

H

Figure 1: The lattice structure associated with the full atomistic model (open circles), together with the lattice
associated with the coarse spatial scale.

2.1 A lattice model with nearest neighbor interactions

To illustrate the idea of the model reduction, let us first consider a linear lattice model
with nearest neighbor interactions, i.e., each atom is interacting with its immediate neigh-
bors on the one dimensional chain. Let K>0 be the elastic constant, and f ∈ ℓ2(L) be an
external force function. Then the model can be formulated as a minimization problem,
where the quadratic strain energy is given by

E[u]= ∑
x∈L

K

2

(

u(x+ε)−u(x)

ε

)2

− f (x)u(x). (2.3)
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One can use the variational principle for the energy functional E in (2.3) and obtain
the Euler-Lagrange equation, which yields a force balance equation,

Lu :=−K
u(x+ε)−2u(x)+u(x−ε)

ε2
= f (x). (2.4)

Starting with the lattice model (2.4), we turn to the deformation of the representative
atoms on the coarse scale H. In particular, we aim to reduce the degrees of freedom by
deriving a new equation that accounts only for the displacement of the representative
atoms. One simple approach to perform the reduction procedure is to use the lattice
Green’s function g(x,x′), which is defined on L×L by

Lg(x,x′)= ε−1δ(x−x′), (2.5)

where

δ(x)=

{

1, x=0,

0, otherwise,
(2.6)

is the Kronecker delta function. See for example [19]. In fact, the Green’s function for this
one-dimensional lattice model has a closed form, given by

g(x,x′)=−|x−x′|
2K

, ∀x,x′∈L. (2.7)

To move forward, we also need Green’s identities (Lemma A.2) that, in the discrete
setting, amount to summation by parts (Lemma A.1). Details are provided in the appen-
dices.

With all the ingredients ready, the original model on the full lattice L can be reduced
to a model on LCG. This can be understood in an intuitive way: Since we want to keep the
representative atoms, other atoms can be eliminated by solving boundary value problems
associated with the original lattice model over a cell between two neighboring atoms
on the coarse lattice LCG. Simply multiplying Eq. (2.4) by the Green’s function, then
applying the Green’s identity, we obtain an equation on LCG for the displacement of the
representative atoms,

−K
u(y+H)−2u(y)+u(y−H)

H2
=

ε

H ∑
x∈L

y−H<x<y+H

h(x,y) f (x), ∀y∈LCG , (2.8)

where h(x,y) is a nonnegative function taking value 1 at x= y and 0 at x= y+H,y−H.
For details of the derivation, see the Appendices.

The main observation here is that the coarse-scale model is still local, though this is a
property that is only associated with this one-dimensional model with nearest neighbor
interactions. In the next section, we will show that this property breaks down for lattice
models with next nearest neighbor interactions. Indeed, the atomic degrees of freedom
in general can not be eliminated without involving all the representative atoms.
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2.2 A lattice model with next nearest neighbor interactions

Next, we consider a lattice model involving next nearest neighbor interactions, where
each atom interacts with two neighboring atoms on each side. The corresponding total
energy takes the form of

E[u]= ∑
x∈L

K1

2

(

u(x+ε)−u(x)

ε

)2

+
K2

2

(

u(x+2ε)−u(x)

ε

)2

− f (x)u(x). (2.9)

Here K1 and K2 are the force constants, and we assume that the phonon stability condition
is satisfied [12]:

K1>0, K1+4K2>0. (2.10)

The variational principle leads to the equation,

Lu :=−K1
u(x+ε)−2u(x)+u(x−ε)

ε2
−K2

u(x+2ε)−2u(x)+u(x−2ε)

ε2
= f (x). (2.11)

This is a difference equation defined on L that can be viewed as a discretization of the
Poisson equation,

−(K1+4K2)u
′′(x)= f (x), (2.12)

which can be regarded as a one-dimensional elasticity model with elastic constant K :=
K1+4K2.

Again, the linear operator L admits a Green’s function, which takes the form of

g(x−x′)=α|x−x′|+βz|x−x′ |/ε−β, ∀x,x′∈L, (2.13)

with parameters α,β and z obtained from K1 and K2.
Following the same procedure as before, we can remove the non-representative atoms

L
−
CG, and derive a set of equations only involving the displacement of the representative

atoms on LCG. The reduced model can be written as

∑
y′∈LCG

θ(y−y′)u(y′)= f̄ (y), ∀y∈LCG . (2.14)

Here f̄ (x) is defined in terms of the body force f (x) and the Green’s function (2.13).
This procedure is similar to the Schur complement reduction or the boundary element
formulation [17]. Due to the lengthy derivation, we have left the details in the Appen-
dices.

The function θ will be referred to as the nonlocal kernel function (see Theorem 3.2).
The main observation here is that the reduced model on the coarse lattice LCG is nonlo-
cal: the displacement of all the representative atoms are in principle coupled with every
other representative atom. The rest of this paper is concerned with the properties and
approximations of this kernel function.
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3 Nonlocal interactions via the Fourier transform

In this section, we reformulate the reduced model (2.14) and study the nonlocal inter-
action kernel using Fourier transform. This approach reveals a more intuitive coarse-
graining process through direct eliminations, and it also offers an effective tool for more
detailed analysis.

In light of the symmetry and translation invariance of Eq. (2.11), for functions u ∈
ℓ2(L) and f ∈ℓ2(L), one may take the Fourier transform in a block-wise manner to arrive
at a finite-dimensional matrix representation of the reduction procedure. In particular, it
leads to the Fourier transform of θ.

3.1 Operator formulation and function spaces

We begin with ℓ2(L), the Hilbert space of square integrable functions defined on the
lattice L,

ℓ
2(L)=

{

u(x)| ∑
x∈L

u2(x)<∞
}

. (3.1)

Similarly we define ℓ2(LCG) and ℓ2(L−
CG) for LCG and L

−
CG defined in (2.2).

Recall that to obtain the coarse lattice, we simply select one representative atom for
each group of consecutive M atoms. This selection procedure can be expressed in terms
of the following linear mappings:

Φ : ℓ
2(L)→ ℓ

2(LCG), u(x) 7→v(x),

Ψ : ℓ
2(L)→ ℓ

2(L−
CG), u(x) 7→w(x).

Note that the setup requires v(x)=Φu(x) and w(x)=Ψu(x) satisfying v(x)=u(x), ∀x∈
LCG and w(x)=u(x), ∀x∈L

−
CG.

With those Hilbert spaces set up, the adjoint operators are given via duality respec-
tively

(

Φu,s
)

ℓ2(LCG)
=
(

u,Φ∗s
)

ℓ2(L)
, (3.2a)

(

Ψu,t
)

ℓ2(L−
CG)

=
(

u,Ψ∗t
)

ℓ2(L)
, (3.2b)

for all s∈ ℓ2(LCG) and t∈ ℓ2(L−
CG). One may view Φ and Ψ as the restriction operators

as in conventional multigrid/multiscale analysis [21]. The way that the two operators
Φ and Ψ are defined implies that Φ∗ and Ψ∗ have range supported in LCG and L

−
CG,

respectively. For example, Φ∗s would be a function in ℓ2(L) with zero values away from
the representative atoms. Therefore for any u∈ ℓ2(L), there exist some v∈ ℓ2(LCG) and
w∈ ℓ2(L−

CG), such that u=Φ∗v+Ψ∗w, a fact that we will use later.
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Next we explore the operator L : ℓ2(L)→ ℓ2(L) as in Eq. (2.11). It is intuitive to think
of L as the following infinite matrix

L=

















...
...

...
··· −K1 2K1+2K2 −K1 −K2 ···

−K2 −K1 2K1+2K2 −K1 −K2

−K2 −K1 2K1+2K2 −K1 −K2
...

...
...

















. (3.3)

By definition, such an operator L is a Toeplitz operator generated by the vector

(··· ,0,−K2,−K1,2K1+2K2,−K1,−K2,0,···).

Theorem 1.1 in [2] states that L is a bounded self-adjoint operator on ℓ2(L).
Naturally, we can also consider a mapping for the reduced model (2.14),

Θ : ℓ2(LCG)→ ℓ
2(LCG). (3.4)

In Theorem 3.1, we shall derive the reduced equation (2.14) in terms of operators, where
the precise formula of Θ is given.

Theorem 3.1. Given M∈N and M>5, Θ is an operator given by

Θ=(Φ◦L◦Φ∗)−(Φ◦L◦Ψ∗)(Ψ◦L◦Ψ∗)−1(Ψ◦L◦Φ∗). (3.5)

Proof. We first need the fact that Ψ◦L◦Ψ∗ is invertible, which will be proved in Lemma
3.2.

Now consider the equation Lu= f for u, f ∈ ℓ2(L). Let us define as above v=Φu and
w=Ψu so that v∈ ℓ2(LCG) and w∈ ℓ2(L−

CG). For ∀s∈ ℓ2(L), we have

(

Φ∗v,s
)

ℓ2(L)
+
(

Φ∗w,s
)

ℓ2(L)
=
(

v,Φs
)

ℓ2(LCG)
+
(

w,Ψs
)

ℓ2(L−
CG)

=
(

Φu,Φs
)

ℓ2(LCG)
+
(

Ψu,Ψs
)

ℓ2(L−
CG)

=
(

u,s
)

ℓ2(L)
. (3.6)

The equality holds since Φ and Ψ are projections and inner products are summable. It
is essentially a change of order in the summation for ℓ2(L) innerproduct, which is valid
here because the summation is bounded due to Cauchy-Schwarz inequality. Therefore
we have u=Φ∗v+Ψ∗w.

Operating Φ and Ψ on this equation, we get

{

(Φ◦L◦Φ∗)v+(Φ◦L◦Ψ∗)w=Φ f ,

(Ψ◦L◦Φ∗)v+(Ψ◦L◦Ψ∗)w=Ψ f ,
(3.7)
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for some v∈ ℓ2(LCG) and w∈ ℓ2(L−
CG), such that u=Φ∗v+Ψ∗w.

To derive an equation for functions on LCG, we simply eliminate w from the second
equation in (3.7) by making use of the invertibility of Ψ◦L◦Ψ∗ . This yields

[

(Φ◦L◦Φ∗)−(Φ◦L◦Ψ∗)(Ψ◦L◦Ψ∗)−1(Ψ◦L◦Φ∗)
]

v

=Φ f −(Φ◦L◦Ψ∗)(Ψ◦L◦Ψ∗)−1◦Ψ f . (3.8)

Comparing (3.4) with (3.8), we obtain the operator Θ and f̄ .

Remark 3.1. The operator formulation takes an explicit closed form, which is helpful
to explore the mathematical properties of Θ. However, when it comes to the numerical
implementations, the term Ψ◦L◦Ψ∗ does not offer a more competitive approach than
some others such as the one using the Green’s functions [17, 34].

3.2 Blockwise Fourier transform

Here we introduce the notation of the blockwise Fourier transform. Plancherel’s Theo-
rem states that each element in ℓ2(L) is uniquely associated with a function in L2(T) by
Fourier transform, where T is the torus. We borrow this idea to examine the operator Θ.

We note first that the operator Θ is defined only for functions in ℓ2(LCG). To address
this issue, we start by taking Fourier transform of L in a block form, in that every M atoms
in each block is viewed as one point in LCG. From the lattice structures, this amounts
to a complex lattice with each unit cell containing M atoms. More precisely, for each
u(x)∈ ℓ2(L), we can define a vector-valued function ũ(x),∀x∈LCG, such that

ũ(x)=(u(x),u(x+ε),··· ,u(x+(M−1)ε))∗.

Therefore, the Fourier transform is a one-to-one mapping from ℓ2(LCG)
M to L2(T)M.

Similarly, in order to define the Fourier transform on L
−
CG, we can define for each u(x)∈

L
−
CG a vector-valued function ū(x),∀x∈LCG , such that

ū(x)=(u(x+ε),··· ,u(x+(M−1)ε))∗.

Therefore, the Fourier transform is a one-to-one mapping from ℓ2(LCG)
M−1 to L2(T)M−1.

To proceed, we define the following matrices:

φ=
[

1 0 ··· 0
]

1×M
, ψ=







0 1 0 ···
0 0 1 ···
...

...
...







(M−1)×M

. (3.9)

If we represent the operators Φ and Ψ with infinite matrices and use φ and ψ as blocks,
then Φ and Ψ are Toeplitz operators generated by (··· ,0,φ,0,···) and (··· ,0,ψ,0,···), re-
spectively. Based on this observation, we can take the Fourier transform, yielding

F(Φ)=φ, F(Ψ)=ψ. (3.10)
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Notice that both Fourier transforms are constant matrices that are independent of the
Fourier variable ξ, due to the fact that operators Φ and Ψ are block diagonal as infinite
matrices.

In the same manner, we view L as being generated by (··· ,0,L1,L0,L∗
1,0,···) so that

F(L)= L0+L1e−iξH+L∗
1eiξH , (3.11)

where H is the spacing parameter of LCG, ξ∈ (−π/H,π/H) and

L0= ε−2











2K1+2K2 −K1 −K2 0 0 ··· 0
−K1 2K1+2K2 −K1 −K2 0 ··· 0
−K2 −K1 2K1+2K2 −K1 −K2 ··· 0

...
...

...
...

...
...

...











M×M

, (3.12)

L1= ε−2











0 ··· −K2 −K1

0 ··· 0 −K2
...

...
...

...
0 ··· 0 0











M×M

. (3.13)

To facilitate the necessary computations, it is helpful to observe the following properties.

Lemma 3.1. Suppose S and T are Toeplitz operators such that the composition S◦T is well-
defined, and F is the Fourier transform, then

1. F(S◦T) = F(S)F(T). In particular, F(S−1)=F(S)−1 if S is invertible.

2. F(S∗)=F(S)∗.

Proof. The proof depends on the one-to-one correspondence of ℓ2 and the L2 space as
explained at the beginning, which allows us to take Fourier transform. Now the com-
position of Toeplitz operators S and T can be expanded as a convolution, and under the
assumption that S◦T is well-defined, Fourier transform turns convolution into products.
The rest is immediate by definition.

Utilizing the above setup, we can prove the invertibility of Ψ◦L◦Ψ∗ .

Lemma 3.2. For any M>5, Φ◦L◦Φ∗ and Ψ◦L◦Ψ∗ are invertible.

Proof. In our setting, Φ◦L◦Φ∗ = ε−2(2K1+2K2)id where id is the identity operator from
LCG onto itself, therefore invertible. On the other hand, we notice that Ψ◦L◦Ψ∗ has the
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following form,



























. . . −K2

··· −K2 2K1+2K2 −K1 −K2 ···
−K1 2K1+2K2 −K1 −K2

−K2 −K1 2K1+2K2 −K1 −K2

. . .
. . .

. . .

−K2 −K1 2K1+2K2 −K2 ···
−K2

. . .



























.

(3.14)
Its Fourier transform on ℓ2(L−

CG), according to our block-wise definition, is given by

F(Ψ◦L◦Ψ∗)=ψ0+ψ1e−iξH+ψ∗
1eiξH , (3.15)

where

ψ0= ε−2











2K1+2K2 −K1 −K2 0 0 ··· 0
−K1 2K1+2K2 −K1 −K2 0 ··· 0
−K2 −K1 2K1+2K2 −K1 −K2 ··· 0

...
...

...
...

...
...

...











(M−1)×(M−1)

, (3.16)

and

ψ1= ε−2







0 ··· −K2
...

...
...

0 ··· 0







(M−1)×(M−1)

. (3.17)

We now show F(Ψ◦L◦Ψ∗) is positive definite. For X = (x1,. . .,xM−1)
∗ ∈ C(M−1)×1, we

have

X∗(ψF(L)ψ∗)X

=
M−1

∑
j=1

(2K1+2K2)ε
−2|xj|2−

M−2

∑
j=1

K1ε−2(x̄jxj+1+ x̄j+1xj)

−
M−3

∑
j=1

K2ε−2(x̄jxj+2+ x̄j+2xj)−K2ε−2e−iξH x̄1xM−1−K2ε−2eiξH x̄M−1x1

=
M−2

∑
j=1

K1ε−2|xj−xj+1|2+
M−3

∑
j=1

K2ε−2|xj−xj+2|2+K1ε−2|x1|2+K1ε−2|xM−1|2

+K2ε−2|x1|2+K2ε−2|x2|2+K2ε−2|xM−2|2+K2ε−2|xM−1|2

−K2ε−2e−iξH x̄1xM−1−K2ε−2eiξH x̄M−1x1.
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Here we notice that

|xj−xj+2|2= |xj−xj+1+xj+1−xj+2|2≤2(|xj−xj+1|2+|xj+1−xj+2|2),

and by rearranging the terms, we arrive at

X∗(ψF(L)ψ∗)X

≥
M−3

∑
j=2

(K1+4K2)ε
−2|xj−xj+1|2+(2K1+3K2)ε

−2|x1|2+(K1+3K2)ε
−2|x2|2

+(K1+3K2)ε
−2|xM−2|2+(2K1+3K2)ε

−2|xM−1|2−(K1+2K2)ε
−2(x̄1x2+ x̄2x1)

−(K1+2K2)ε
−2(x̄M−1xM−2+ x̄M−2xM−1)−K2ε−2(e−iξH x̄1xM−1+eiξH x̄M−1x1)

≥
M−3

∑
j=2

(K1+4K2)ε
−2|xj−xj+1|2+(K1+2K2)ε

−2

∣

∣

∣

∣

√

K1+2K2

K1+3K2
x1−

√

K1+3K2

K1+2K2
x2

∣

∣

∣

∣

2

+(K1+2K2)ε
−2

∣

∣

∣

∣

√

K1+2K2

K1+3K2
xM−1−

√

K1+3K2

K1+2K2
xM−2

∣

∣

∣

∣

2

+
K2

1+5K1K2+5K2
2

K1+3K2
ε−2

∣

∣

∣
x1−

K2(K1+3K2)

K2
1+5K1K2+5K2

2

e−iξHxM−1

∣

∣

∣

2

+ε−2
(

1− K2
2(K1+3K2)2

(K2
1+5K1K2+5K2

2)
2

)

|xM−1|2≥0.

The last inequality is due to the stability assumption 2.10. Notice that the equality can
not hold unless X=0. Therefore, the inverse operator, according to Lemma 3.1, is given

by the inverse Fourier transform of
[

F(Ψ◦L◦Ψ∗)
]−1

.

Now we state the main theorem regarding Fourier transform of the operator Θ.

Theorem 3.2. Let F be the Fourier transform defined as above and ξ∈R\{0}, then

θ̂(ξ)=(φF(L)−1φ∗)−1. (3.18)

Proof. We shall take Fourier transform and adopt the matrix notation throughout the
proof. By definition,

[

φ

ψ

]

[

φ∗ ψ∗]= I. (3.19)

Therefore, with direct multiplications, we get

[

φF(L)φ∗ φF(L)ψ∗

ψF(L)φ∗ ψF(L)ψ∗

]−1

=

[

φF(L)−1φ∗ φF(L)−1ψ∗

ψF(L)−1φ∗ ψF(L)−1ψ∗

]

. (3.20)
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Now Lemma 3.2 states that ψF(L)ψ∗ is invertible, we can then take the Schur comple-
ment and find the inverse,

(ψF(L)ψ∗)−1=ψF(L)−1ψ∗−ψF(L)−1φ∗(φF(L)−1φ∗)−1φF(L)−1ψ∗. (3.21)

Notice that φF(L)φ∗=(2K1+2K2)ε−2 and ψ∗ψ= I−φ∗φ. Collecting terms, we get from
Eq. (3.8) that

θ̂(ξ)=φF(L)φ∗−φF(L)ψ∗(ψF(L)ψ∗)−1ψF(L)φ∗

=(2K1+2K2)ε
−2−φF(L)ψ∗[ψF(L)−1ψ∗

−ψF(L)−1φ∗(φF(L)−1φ∗)−1φF(L)−1ψ∗]ψF(L)φ∗

=(2K1+2K2)ε
−2−φF(L)ψ∗ψF(L)−1ψ∗ψF(L)φ∗

−φF(L)ψ∗ψF(L)−1φ∗(φF(L)−1φ∗)−1φF(L)−1ψ∗ψF(L)φ∗

=(2K1+2K2)ε
−2−φF(L)(I−φ∗φ)F(L)−1(I−φ∗φ)F(L)φ∗

−φF(L)(I−φ∗φ)F(L)−1φ∗(φF(L)−1φ∗)−1φF(L)−1(I−φ∗φ)F(L)φ∗

=2(2K1+2K2)ε
−2−(2K1+2K2)

2ε−4φF(L)−1φ∗

+(φF(L)−1φ∗)−1−2(2K1+2K2)ε
−2+(2K1+2K2)

2ε−4φF(L)−1φ∗

=(φF(L)−1φ∗)−1.

The proof is completed.

This procedure can be extended to more general settings involving other choices of
operators Φ and Ψ, e.g., those considered in [3, 16].

4 Properties of nonlocal operator

This section is devoted to quantitative analysis of properties of the nonlocal operator Θ.
The reduced model depends entirely on the operator Θ, so it makes sense to see what
kind of properties are inherited by the reduced model by exploring Θ. Relevant results
are summarized in Theorem 4.1.

Meanwhile, the reduced model exhibits nonlocal interactions spreading over the whole
domain. In practical applications, it is important to understand how strong the pairwise
interactions are in the coarse-grained model. Theorem 4.2 suggests that such nonlocal
interactions through the coarse-graining performed in the previous section decay faster
than any algebraic power. Numerical simulations show that the decay is exponential. See
Fig. 3.

In the case where K2 > 0, given a finite lattice with proper boundary conditions,
Eq. (2.11) is well posed and discrete maximum principle applies, see [4]. Similarly for
the reduced model, the maximum principle like properties are inherited by θ (the nonlo-
cal kernel function defined in Theorem 4.1), as stated in Theorem 4.3 and 4.4.
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4.1 Some basic facts

First we list basic facts about Θ in the following theorem.

Theorem 4.1. The nonlocal operator Θ satisfies:

1. Θ is translation invariant, i.e. there exist θ∈ ℓ2(LCG) such that

Θu= ∑
y′∈LCG

Θ(y,y′)u(y′)= ∑
y′∈LCG

θ(y−y′)u(y′). (4.1)

We shall call θ the nonlocal kernel function.

2. θ is an even function and has a zero sum. Consequently, θ̂(0)=0 in Theorem 3.2.

Proof. To prove (1), we first examine the coarse-graining procedure. The full lattice and
the linear operator L are symmetric about 0 and translation invariant, i.e.,

L[u(−x)]= [Lu](−x), L[u(x+t)] = [Lu](x+t). (4.2)

If we view the model block-wise, the operators Φ and Ψ share the properties stated above.
Hence, based on the operator formulation, we deduce that the nonlocal operator Θ pre-
serves such symmetry properties as well.

To obtain the sum of θ, we take the Fourier transform of Eq. (2.14): θ̂(ξ)û(ξ)= ˆ̄f (ξ).

The idea is to find u ∈ ℓ2(L) and f ∈ ℓ2(L) such that û(0) 6= 0 while ˆ̄f (0) = 0. For this
purpose, consider a particular function u∈ ℓ2(L) as follows:

u(x)=

{

1, |x|≤NH,

0, otherwise,
(4.3)

for a fixed N>0, and then with direct calculations, we get the corresponding force func-
tion f ,

f (x)=



























0, |x|≤NH−2ε or |x|≥NH+3ε,

K2ε−2, |x|=NH−ε,

(K1+K2)ε−2, |x|=NH,

−(K1+K2)ε−2, |x|=NH+ε,

−K2ε−2, |x|=NH+2ε.

(4.4)

The rest is to compute ˆ̄f (0). To that end, we use the Fourier transform of Eq. (3.8). Notice
here u∈ ℓ2(LCG), so we have the following:

θ̂(0)= ∑
y∈LCG

θ(y), (4.5)

û(0)= ∑
|y|≤NH

1=2N+1, (4.6)

f̂ (0)= ε2(K1+K2,−(K1+K2),−K2,0,··· ,0,K2)
∗
M×1. (4.7)
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(a) θ̂(ξ): K1=1.0, K2=0.2 (b) θ̂(ξ): K1=1.0, K2=−0.2

Figure 2: Fourier transform of the nonlocal kernel function θ. Since θ is defined for atoms on the coarse lattice,
its Fourier transform is periodic with a period 2π/H. Here M=20, ε=1.

A direct calculation of matrices gives

(φF(L)(0)ψ∗)(ψF(L)(0)ψ∗)−1=(−1,··· ,−1)1×(M−1). (4.8)

So we obtain the Fourier transform of right side of Eq. (3.8),

F(Φ f −(Φ◦L◦Ψ∗)(Ψ◦L◦Ψ∗)−1◦Ψ f )=(1,··· ,1) f̂ (0)=0. (4.9)

Therefore, û(0) is nonzero and ˆ̄f (0)=0. Therefore, θ̂(0)=0.

4.2 Spatial decay of the nonlocal kernel

Our next result provides some insight into the spatial decay of the nonlocal kernel func-
tion θ defined in Theorem 4.1.

Theorem 4.2. For any integer s∈N, as y→∞, θ satisfies

θ(y)= o(|y|−s). (4.10)

Proof. We shall look at the decay rate via the Fourier transform θ̂. By Lemma 3.2,
ψF(L)ψ∗ ∈ (C∞(T))(M−1)×(M−1) and is invertible. Therefore, the Fourier transform of
Eq. (3.8) implies that θ̂∈C∞(T).

Now we express the kernel function via the inverse Fourier transform of θ̂, and per-
form integration by parts to obtain

θ(y)=
H

2π

∫ π
H

− π
H

θ̂(ξ)eiyξ dξ

=(iy)−1 H

2π

[

θ̂
( π

H

)

eiy π
H − θ̂

( π

H

)

eiy π
H

]

−(iy)−1 H

2π

∫ π
H

− π
H

eiyξdθ̂(ξ)
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(a) θ, K1=1, K2=0.2 (b) log(|θ|), K1=1, K2=0.2

(c) θ, K1=1, K2=−0.2 (d) log(|θ|), K1=1, K2=−0.2

Figure 3: The figures illustrate θ and the corresponding exponential fitting except at y=0 (which plays no role
in the nonlocal form). Here M=20, ε=1. Notice that θ may take positive values if K2<0, e.g., at y=−40,40
in the third figure.

=−(iy)−1 H

2π

∫ π
H

− π
H

eiyξ θ̂′(ξ)dξ. (4.11)

This implies that θ(y) =O(|y|−1) since the integrand is bounded in y. We can proceed
with arbitrary order since θ̂ is smooth and periodic. This completes the proof.

Remark 4.1. Our numerical test suggests that the nonlocal kernel function θ decays ex-
ponentially. See Fig. 3. The same behavior has been observed in the context of dynamic
coarse-graining [3].

4.3 Monotonicity and maximum principle with repulsive interactions

Next we restrict our attention to the case where K2 > 0. The operator L : ℓ2(L)→ ℓ2(L)
can be viewed as a discretization of an elliptic operator, for which the maximum principle
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holds. We shall show similar properties for the reduced equation (2.14) in the following
theorems. For additional discussions on monotone properties and maximum principles
in the context of nonlocal models, we refer to [31, 32].

Theorem 4.3. Given f ∈ Image(L) and f ≥0, there is a unique u∈ℓ2(L) such that u(x)≥0 for
all x∈L and u solves Eq. (2.11). As a consequence, if f̄ ∈ Image(Θ) and f̄ ≥ 0, then there is a
unique v∈ ℓ2(LCG) such that v(y)≥0 for all y∈LCG , and v solves Eq. (2.14).

Proof. L is a linear operator, associated with the equation,

−K1
u(x+ε)−2u(x)+u(x−ε)

ε2
−K2

u(x+2ε)−2u(x)+u(x−2ε)

ε2
=0. (4.12)

The characteristic equation of the above is of fourth order with roots,

λ1,λ2=1, λ3,λ4=
(−K1−2K2)±

√

K2
1+4K1K2

2K2
. (4.13)

When K2>0, all roots are real. Thus the solution u∈Kernel(L) is a combination of an
affine function and powers of λ3,λ4. However, the fact that u∈ ℓ2(L) implies that u≡0.
So for any f ∈ Image(L), the solution u is unique.

We now prove that inf{u(x) : x∈L}≥ 0 under the condition that f̄ ≥ 0. Suppose on
the contrary there exists u(x0)<0, we use the equation at x= x0,

−K1(u(x0+ε)−2u(x0)+u(x0−ε))

−K2(u(x0+2ε)−2u(x0)+u(x0−2ε))

=K1(u(x0)−u(x0+ε))+K1(u(x0)−u(x0−ε))

K2(u(x0)−u(x0+2ε))+K2(u(x0)−u(x0−2ε))

= f (x0)≥0.

Since K1,K2 > 0, either all of the four differences are 0, which means u(x) = u(x0) for
all x, or one of the differences is positive, meaning there exists some x1 6= x0 such that
u(x1)< u(x0)< 0. The former case is not possible since u∈ ℓ2(L). In the latter case, we
can repeat the argument for u(x1) and obtain a sequence of negative values all less than
u(x0), which is a contradiction too.

Now for f̄ ∈ ℓ2(LCG) and f̄ ≥0, we simply take f =Φ∗ f̄ , so f ≥0, which implies u≥0
and therefore v=Φu≥0.

Theorem 4.3 is equivalent to the strong maximum principle stating that any solution
to Eq. (2.14) cannot take maximum value except the 0 function.

Theorem 4.4. Suppose K1,K2 > 0, then the nonlocal kernel function θ(y) ≤ 0 for any y ∈
LCG\{0}.
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Proof. Let {ei : i∈Z} be the standard basis of ℓ2(L). Since Θ is a Toeplitz operator gener-
ated by θ, according to Eq. (3.5), we only need to show that for i 6= j,

(

ei,Θej)ℓ2(LCG)=
(

ei,(Φ◦L◦Φ∗)−(Φ◦L◦Ψ∗)(Ψ◦L◦Ψ∗)−1(Ψ◦L◦Φ∗)ej

)

ℓ2(LCG)
≤0. (4.14)

By definition, (ei,Φ◦L◦Φ∗ej)=0. Meanwhile, (Φ◦L◦Ψ∗) is a block-wise Toeplitz operator
generated by

(

··· ,0,X1,X2,0···
)

,

where

X1=(0,··· ,0,−K2,−K1)1×(M−1),

X2=(−K1,−K2,0,··· ,0)1×(M−1).

Therefore, we have (Ψ◦L◦Φ∗)ei≤0. Using the same argument as in the proof of Theorem
4.3, we can show that if w∈ ℓ2(LCG) satisfies

(Ψ◦L◦Ψ∗)w=(Ψ◦L◦Φ∗)ej, (4.15)

then w(y)≥0 for ∀y∈LCG\{0}. Since Ψ◦L◦Ψ∗ is invertible, eventually we get

(

(Ψ◦L◦Φ∗)ei,(Ψ◦L◦Ψ∗)−1(Ψ◦L◦Φ∗)ej

)

ℓ2(LCG)
≥0. (4.16)

Combining all the facts, the theorem is proved.

4.4 Rescaling property

Finally we observe the rescaling property of the nonlocal kernel function θ, an important
assumption in nonlocal modeling such as in peridynamics, see [26, 27].

To establish the rescaling equation, we need a pivoting constant. Notice that Eq. (2.11)
corresponds to the Poisson equation (2.12) with elastic constant K1+4K2. The reduced
equation (2.14) is expected to have the same associated elastic constant.

Conceptually, if one takes u(x) =−x2/2, then Lu = f = (··· ,K1+4K2,K1+4K2,···) ∈
ℓ∞(L). Although the coarse-graining is done in the ℓ2 space, we assume that it is true for
such u(x) and f (x) and the Fourier transforms are interpreted in the sense of distribu-
tions. Eq. (4.8) shows that the coarse-graining process on the force function f is in fact
summing up f on L for every M atoms to get f̄ . Therefore, we postulate the following
identity relating to the elastic constant:

− 1

2M ∑θ(y)y2 =K1+4K2, (4.17)

which has been verified numerically.
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(a) K1=1.0, K2=0.2 (b) K1=1.0, K2=−0.2

Figure 4: Mθ̂(ξ/M) for M=10,30,50,70. The rescaling property asserts that as M→∞, Mθ̂(ξ/M) approaches
a limit function on (−π/ε,π/ε). Here ε=1.

Now assuming (4.17) is true for all M, and there exists a function θ0 such that

−1

2 ∑
x∈L

θ0(x)x2=− 1

2M ∑
y∈LCG

θ(y)y2 =−1

2 ∑
x∈L

Mθ(Mx)x2
(4.18)

holds for all sufficiently large M, we let θ0(x)=Mθ(Mx) for x∈L.
Under this assumption, the Fourier transform gives a similar rescaling,

θ̂0(ξ)= ∑
x∈L

Mθ(Mx)e−ixξ =M ∑
y∈LCG

θ(y)e−iyξ/M =Mθ̂

(

ξ

M

)

, (4.19)

for ξ∈
(

−π/ε,π/ε
)

.

As is shown in Fig. 4, when M increases, the rescaled function Mθ̂(ξ/M) indeed con-
verges to a fixed function, substantiating the assumption on the existence of θ0. Thus, M
serves as a parameter for the characteristic range of nonlocal interactions. Following the
literature on nonlocal mechanics, particularly peridynamics [26, 27], we may view M as
the effective nonlocal horizon parameter. Naturally, the particular form of rescaled non-
local interaction kernel θ0 and the effective horizon parameter M are not only determined
by M but also the original model and the restriction operators Φ and Ψ.

5 Connection to continuum models

Due to the non-locality of the kernel function θ, it is natural to think of its consistency
with a continuum model which is also a nonlocal model, i.e., a nonlocal PDE. This leads
us to attempt to make a connection to the peridynamic models, recently developed to
model nonlocal material interactions [28, 29].
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In order to obtain desired limiting behavior as the horizon parameter tends to 0, it
has been widely accepted that the nonlocal kernel function, which indicates the rela-
tive strength of interactions within the horizon, is chosen to be a positive non-increasing
function that approaches a Dirac delta function in the sense of distribution as the hori-
zon tends to zero, see for example, [1]. Moreover, it has been observed in [22] that to be
compatible with the local models and obtain desired compactness, the kernel function
must meet certain growth conditions. However, even with these constraints, there are
still many choices of such kernel functions. Widely used nonlocal kernel functions in
numerical simulations include Gaussian kernels [5], constant kernel [9], power law ker-
nel [10, 11, 32], or others, [1]. On the other hand, it is of practical importance to identify
kernels based on the underlying material structures and atomic interactions.

Let us start with the reduced equation in the Fourier space,

θ̂(ξ)û(ξ)= f̂ (ξ),ξ∈
(

− π

H
,
π

H

)

. (5.1)

θ̂(ξ) is a periodic function. For the continuum approximation, we aim to approximate
θ̂(ξ) for small wave number ξ (long wave length). In particular, we choose the Padé ap-
proximation since it has the well-known stability property and larger convergence radius
when compared to Taylor expansions. In addition, to enhance the stability of the approx-
imation, we would like to control the bound of θ̂(ξ) for large ξ. Rational approximations
are clearly good candidates for this purpose.

Therefore, we propose to choose the following type of rational functions:

R[m/n](ξ)=
a0+a1ξ+a2ξ2+···+amξm

b0+b1ξ+b2ξ2+···+bnξn
. (5.2)

When the kernel function is approximated by rational functions, and also when ξ is ex-
tended to the entire R, the reduced model will correspond to local PDEs after an inverse
Fourier transform over R. For example, if n=m=2 and we choose

R[2/2](ξ)=
a0+a2ξ2

b0+b2ξ2
. (5.3)

Such an approximation would replace Eq. (5.1) by

(a0+a2ξ2)û(ξ)=(b0+b2ξ2) f̂ (ξ), ∀ξ∈R, (5.4)

which corresponds the PDE

a0U(x)−a2U′′(x)=b0 F̄(x)−b2F̄′′(x), ∀x∈R. (5.5)

There are a couple of ways to specify the approximation conditions. However, in general,
they may not lead to stable PDEs. For example, if one tries only to match θ̂(ξ) at ξ=0 to
arbitrary order, the resulting PDEs might be ill-posed.
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These examples suggest that we ought to impose other types of constraints. We notice
that θ̂ is an even function, so no odd order terms appear in rational approximations.
Secondly, θ̂ is nonnegative, so we want approximations to stay nonnegative which is
related to certain stability properties. Finally, θ̂ is periodic, so approximations should not
blow up for large ξ.

Let us consider the following rational functions,

R[2/2](ξ)=
a0+a2ξ2

1+b2ξ2
, (5.6)

R[2/4](ξ)=
a0+a2ξ2

1+b2ξ2+b4ξ4
, (5.7)

R[4/4](ξ)=
a0+a2ξ2+a4ξ4

1+b2ξ2+b4ξ4
. (5.8)

To obtain the coefficients in the rational functions that eventually lead to stable PDE
models, we impose the following conditions.

R(0)= θ̂(0), (5.9a)

R′(0)= θ̂′(0), (5.9b)

R′′(0)= θ̂′′(0), (5.9c)

R(
π

H
)= θ̂

( π

H

)

, (5.9d)

R′(
π

H
)= θ̂′

( π

H

)

, (5.9e)

lim
ξ→∞

R(ξ)=
H

2π

∫ π
H

− π
H

θ̂(ξ)dξ. (5.9f)

We now explain the purpose of these constraints. First, the conditions (5.9a) and (5.9b)
require that the rational function matches the behavior of θ̂ around ξ=0. Secondly, since
the second order derivative of θ̂ at ξ = 0 is related to the elastic constant of the model,
we enforce (5.9c). Thirdly, we enforce the approximation functions to match the values
at the boundary of the Fourier domain (−π/H or π/H), i.e., (5.9d) and (5.9e). Finally,
if more parameters are permitted, we can also control the behavior of R[m/n] for high
frequencies. For instance, we impose (5.9e), or use the average of θ̂ function in one period,
as in (5.9f).

For the specific approximation R[2/2] in (5.6), it is determined from the conditions
(5.9a), (5.9b), and (5.9c); the approximation R[2/4] (5.7) is determined based on (5.9a),
(5.9b), (5.9c) and (5.9d); The approximation R[4/4] (5.8) satisfies all the conditions.

With the above-mentioned conditions, it can be shown that the resulting partial differ-
ential equations have guaranteed stability. We will only include the proof for the stability
of the PDE associated with R[4/4] in (5.8).
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(a) K1=1, K2=0.2

(b) K1=1, K2=−0.2

Figure 5: Approximations of θ̂(ξ): we are mostly concerned about the approximation errors within one period,

while guaranteeing boundedness toward infinity. Meanwhile, the positivity of θ̂(ξ) is maintained by assigning
conditions at −π/H and π/H, as is proven in Theorem 5.1. For this numerical test, we chose M=20, ε=1.

Theorem 5.1. The PDE model from the rational approximation R[4/4] is given by

a0U(x)−a2U′′(x)+a4U(4)(x)= F̄(x)−b2 F̄′′(x)+b4F̄(4)(x). (5.10)

If R[4/4] satisfies all the conditions listed in (5.9), then a0 =0, a2,a4 >0, b4 >0. Consequently,
the following energy estimate holds:

∫

R

a2|U′|2+a4|U′′|2dx≤
(

∫

R

|F̄|2+|b2||F̄′′|2+b4|F̄4|2dx
)

1
2 ·
(

∫

R

|U|2dx
)

1
2
. (5.11)

Proof. Eq. (5.10) is a direct consequence of the inverse Fourier transform over R.
Regarding the stability, we show the energy estimate. From Theorem 4.1, we have

θ̂(0)=0, so condition (5.9a) implies that R[4/4](0)=a0=0. Next we consider (5.9c). From
the Fourier transform, we find that,

θ̂′′(0)=− ∑
y∈LCG

θ(y)y2.

Theorem 4.4 implied that θ(y)≤0 for all y 6=0. Therefore, R[4/4]′′(0)= a2 >0.
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Suppose now a4<0, a2ξ2+a4ξ4 has roots when ξ>0. However, as ξ→∞, R[4/4](ξ)→
a4/b4 > 0 due to (5.8) and (5.9f). That means a2ξ2+a4ξ4 must have more than two roots
when ξ>0, or one root at ξ0=

√
−a2/a4 satisfying R[4/4]′(ξ0)=0. The former case can not

be consistent with a2ξ2+a4ξ4. In the latter case, for R[4/4](ξ) to be nonnegative around
ξ0, 1+b2ξ2+b4ξ4 must contain the factor 1+(a4/a2)ξ2, or otherwise it is easy to find that
R[4/4]′(ξ0) 6=0. Thus R[4/4](ξ) is degenerate since

R[4/4](ξ)=
a2ξ2+a4ξ4

1+b2ξ2+b4ξ4
=

a2ξ2(1+a4/a2ξ2)

(1+b′ξ2)(1+a4/a2ξ2)
, (5.12)

which is impossible to meet all conditions in (5.9) due to the lack of degrees of freedom.
Therefore, a4>0 and b4>0.

Now we multiply both sides of Eq. (5.10) by U(x), integrate by parts and then apply
Cauchy’s inequality. We obtain

∫

R

a2|U′|2dx+
∫

R

a4|U′′|2dx

=−
∫

R

(

F̄−b2 F̄′′+b2F̄(4)
)

Udx

≤
(

∫

R

|F̄|2+|b2||F̄′′|2+b4|F̄4|2dx
)

1
2 ·
(

∫

R

|U|2dx
)

1
2
. (5.13)

The proof is completed.

In general the kernel functions for the nonlocal continuous PDE model can be found
explicitly. In the case when 1+b2ξ2+b4ξ4 can be factorized, we have b2 ≥ 0 since 1+
b2ξ2+b4ξ4 must not have real zeros by construction. Now by using partial fractions, the
rational functions can be written as

R[2/2]=
s1

1+t1ξ2
+s2, (5.14a)

R[2/4]=
s1

1+t1ξ2
+

s2

1+t2ξ2
, (5.14b)

R[4/4]=
s1

1+t1ξ2
+

s2

1+t2ξ2
+s3, (5.14c)

where s1,s2, and s3 are coefficients obtained from the partial fraction procedure, and
t1,t2>0 since b2,b4≥0.

Now, applying the inverse Fourier transform to the functions in (5.14), we find

P[2/2](x)=
s1

2
√

t1
e−|x|/√t1+s2δ(x), (5.15a)

P[2/4](x)=
s1

2
√

t1
e−|x|/√t1+

s2

2
√

t2
e−|x|/√t2 , (5.15b)

P[4/4](x)=
s1

2
√

t1
e−|x|/√t1+

s2

2
√

t2
e−|x|/√t2+s3δ(x). (5.15c)



Q. Du, X. Li and L. Yuan / CSIAM Trans. Appl. Math., 1 (2020), pp. 155-185 177

Therefore, rational approximation is by nature an approximation of the kernel function
via exponential function e−α|x| or Dirac delta distribution.

6 Conclusion

One of our motivations for the present study is the recent interests in nonlocal me-
chanical models like peridynamics [25] and related discussions on the origins of non-
locality [8, 29]. It has been suggested that two sources of non-locality may contribute to
the long-range interactions in the peridynamic formulations, namely coarse-graining as
in [28] and homogenization as in [29]. Discussions along this line, within the context
of multiscale modeling, have been further explored in [8]. Indeed, delicate treatment is
needed to gain more mathematical insight from the underlying atomistic models, since
existing descriptions (e.g. [28, 29]) have largely remained procedural.

In this paper, we posed a one-dimensional linear molecular model, and reduced it
via coarse-graining while retaining all information from the full model. This is similar
to the procedure in [28], although the approach in [28] was done for continuum mod-
els. Both the local and nonlocal interactions were considered, and detailed derivations
using the lattice Green’s functions and Schur complements were shown. The reduced
model involves a discrete nonlocal kernel function θ that exhibits fast decay. Subse-
quently, we drew connections from discrete nonlocal kernel functions to the continuous
ones. Through proper Padé approximations we were able to prove the stability of the
corresponding continuum models.

Apparently there are a lot of possible extensions to our results for future works. When
we approximate θ̂ in Section 5, many other interesting options are open in addition to
rational functions. For example, the Gaussian kernel, which is very popular in nonlocal
models due to its smoothness, fast decay, uniformity among other desired properties,
can fit in the current framework. By approximating θ̂ with a Gaussian function (flipped
at 0), one obtains the Fourier transform of a nonlocal continuum model with a Gaussian
kernel. This may shed light upon and provide support to the modeling procedure for
peridynamics where the connection between microscopic and macroscopic models are
crucial. In this work, such connections are made by matching the Fourier transform,
which can be done for several nonlocal kernels, see Fig. 6 for a schematic illustration.

Finally, the analysis in this work has been limited to the one-dimensional case. Nat-
urally, extensions to particle interactions in higher dimensional settings and systems in-
volving defects will be of much practical interests. For instance, the lattice Green’s func-
tion has been used in two-dimensional systems [17, 20] to derive computationally more
tractable reduced models. In addition, the analysis in [19] shows that the asymptotic be-
havior of the Green’s function depends on the dimension as well as the lattice structure.
The strong connection between the kernel and the Green’s function suggests that the
resulting nonlocal interactions will inherit similar dependence. The more general discus-
sion will be dependent on the topological and geometrical structures of the underlying
lattice and defect structures, thus leading to new challenges in the mathematical analysis.
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Figure 6: An illustration for approximating θ̂ by other types of functions that correspond to widely used nonlocal
kernels.
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Appendices

A Green’s identities

In the appendix, we establish the mathematical theory and provide rigorous treatment
of the Green’s identities toward coarse-graining. These formulas have been used to con-
struct the atomistic-based boundary element methods [17, 34].

The coarse-graining procedure relies on the discrete Green’s identity. We first give,

Lemma A.1 (Summation by parts). Assume that JA and JB are integers, and JB− JA>1. There
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holds
JB−1

∑
j=JA+1

φ(j)
(

ψ(j+1)−ψ(j)
)

=φ(JB−1)ψ(JB)−φ(JA)ψ(JA+1)−
JB−1

∑
j=JA+1

(

φ(j)−φ(j−1)
)

ψ(j). (A.1)

Similarly,

JB−1

∑
j=JA+1

φ(j)
(

ψ(j)−ψ(j−1)
)

=φ(JB)ψ(JB−1)−φ(JA+1)ψ(JA)−
JB−1

∑
j=JA+1

(

φ(j+1)−φ(j)
)

ψ(j).

For the difference terms involving next nearest neighbor, one has

JB−1

∑
j=JA+1

φ(j)
(

ψ(j+2)−ψ(j)
)

=φ(JB−1)ψ(JB+1)+φ(JB−2)ψ(JB)−φ(JA−1)ψ(JA+1)

−φ(JA)ψ(JA+2)
JB−1

∑
j=JA+1

(

φ(j)−φ(j−2)
)

ψ(j),

and similarly,

JB−1

∑
j=JA+1

φ(j)(ψ(j)−ψ(j−2))

=φ(JB+1)ψ(JB−1)+φ(JB)ψ(JB−2)−φ(JA+1)ψ(JA−1)

−φ(JA+2)ψ(JA)−
JB−1

∑
j=JA+1

(φ(j+2)−φ(j))ψ(j).

Proof. For the summation by parts formulas, one only needs to make up boundaries and
rearrange all terms.

Lemma A.2 (Green’s identities). JA, JB are integers and JB− JA >1. The following are Green’s
Identities for the difference operator involving next nearest neighbors:

JB−1

∑
j=JA+1

φ(j)
(

ψ(j+1)−2ψ(j)+ψ(j−1)
)

=
JB−1

∑
j=JA+1

(

φ(j+1)−2φ(j)+φ(j−1)
)

ψ(j)+φ(JA+1)ψ(JA)

+φ(JB−1)ψ(JB)−φ(JA)ψ(JA+1)−φ(JB)ψ(JB−1),
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and

JB−1

∑
j=JA+1

φ(j)
(

ψ(j+2)−2ψ(j)+ψ(j−2)
)

=
JB−1

∑
j=JA+1

(

φ(j+2)−2φ(j)+φ(j−2)
)

ψ(j)+φ(JB−1)ψ(JB+1)+φ(JA+1)ψ(JA−1)

+φ(JB−2)ψ(JB)+φ(JA+2)ψ(JA)−φ(JB+1)ψ(JB−1)

−φ(JA−1)ψ(JA+1)−φ(JB)ψ(JB−2)−φ(JA)ψ(JA+2).

Proof. Simply sum up the equations in Lemma A.1.

B Derivations for Eq. (2.8) and Eq. (2.14)

We show Eq. (2.8) holds. Using Green’s identity, we compute

ε ∑
x′∈(y,y+H)

g(x,x′)Lu(x′)=ε ∑
x′∈(y,y+H)

Lg(x,x′)u(x′)

−K

ε

[

g(x,y)u(y+ε)+g(x,y+H)u(y+H−ε)
]

+
K

ε

[

g(x,y+ε)u(y)+g(x,y+H−ε)u(y+H)
]

.

Setting x=y+ε, we get

u(y+ε)+
K

ε
g(y+ε,y)u(y+ε)+

K

ε
g(y+ε,y+H)u(y+H−ε)

=
K

ε
g(y+ε,y+H−ε)u(y+H)+ε ∑

x′∈(y,y+H)

g(y+ε,x′) f (x′).

Similarly, we have

u(y+H−ε)+
K

ε
g(y+H−ε,y)u(y+ε)+

K

ε
g(y+H−ε,y+H)u(y+H−ε)

=
K

ε
g(y+H−ε,y+ε)u(y)+ε ∑

x′∈(y,y+H)

g(y+H−ε,x′) f (x′). (B.1)
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Now a direct substitution gives

u(y+ε)=
(

1− ε

H

)

u(y)+
ε

H
u(y+H)

− 2ε2

H−2ε ∑
y∈(y,y+H)

[ ε

H
g(y+ε,y)+

(

1− ε

H

)

g(y+H−ε,y)
]

f (y)

=
(

1− ε

H

)

u(y)+
ε

H
u(y+H)+

ε2

K ∑
x∈(y,y+H)

H+y−x

H
f (x),

u(y+H−ε)=
ε

H
u(y)+

(

1− ε

H

)

u(y+H)

− 2ε2

H−2ε ∑
y∈(y,y+H)

[(

1− ε

H

)

g(y+ε,y)+
ε

H
g(y+H−ε,y)

]

f (y)

=
ε

H
u(y)+

(

1− ε

H

)

u(y+H)+
ε2

K ∑
x∈(y,y+H)

x−y

H
f (x).

By substituting y to y+H, we find

u(y−ε)=
ε

H
u(y−H)+

(

1− ε

H

)

u(y)+
ε2

K ∑
x∈(y−H,y)

x−y+H

H
f (x).

Notice that

u(y+ε)−2u(y)+u(y−ε)=− ε2

K
f (y).

Putting all equations together, there holds

−K
u(y+H)−2u(y)+u(y−H)

H2
=

ε

H ∑
x∈(y−H,y+H)

h(x,y) f (x).

Coarse-grain model with nearest neighbor interactions is not of much interest. However,
the Green’s function idea can be easily extended to the case with next nearest neighbor
interaction. Here the Green’s function reads

g(x−x′)=α|x−x′ |+βz|x−x′|/ε−β, (B.2)

where the parameters are given by










































z=−1−
K1−

√

4K1K2+K2
1

2K2
,

α=−K1(z−1)2+K2(z3−z)

∆
, β=

2K2ε

∆
,

∆=(2K1K2+4K2
2)z

3+(2K2
1+4K1K2−4K2

2)z
2

−(4K2
1+14K1K2+4K2

2)z+2K2
1+8K1K2+4K2

2.
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Then we get our hands on the model (2.11). It turns out that Green’s identities even-
tually lead to a system of linear equations on LCG, which can be solved via Fourier trans-
form.

Now simply compute

ε ∑
x′∈(y,y+H)

g(x,x′)Lu(x′)=ε ∑
x′∈(y,y+H)

Lg(x,x′)u(x′)

+K1ε−1
[

g(x,y)u(y+ε)+g(x,y+H)u(y+H−ε)
]

+K2ε−1
[

g(x,y−ε)u(y+ε)+g(x,y+H+ε)u(y+H−ε)
]

+K2ε−1
[

g(x,y)u(y+2ε)+g(x,y+H)u(y+H−2ε)
]

−K1ε−1
[

g(x,y+ε)u(y)+g(x,y+H−ε)u(y+H)
]

−K2ε−1
[

g(x,y+ε)u(y−ε)+g(x,y+H−ε)u(y+H+ε)
]

−K2ε−1
[

g(x,y+2ε)u(y)+g(x,y+H−2ε)u(y+H)
]

.

By definition of Green’s function, the following equation holds for all x∈ (y,y+H)

u(x)+ε−1
[

K1g(x,y)+K2g(x,y−ε)
]

u(y+ε)

+ε−1
[

K1g(x,y+H)+K2g(x,y+H+ε)
]

u(y+H−ε)

+ε−1K2g(x,y)u(y+2ε)+ε−1K2g(x,y+H)u(y+H−2ε)

−ε−1K2g(x,y+ε)u(y−ε)−ε−1K2g(x,y+H−ε)u(y+H+ε)

= ε−1
[

K1g(x,y+ε)+K2g(x,y+2ε)
]

u(y)

+ε−1
[

K1g(x,y+H−ε)+K2g(x,y+H−2ε)
]

u(y+H)

+ε ∑
x′∈(y,y+H)

g(x,x′) f (x′).

Notice that next nearest neighbor interactions bring in additional terms involving func-
tion values of atoms not on the coarse lattice.

For y ∈ LCG, we take v(y) = u(y) and eliminate irrelevant terms u(y+ε), u(y+2ε),
u(y+H−ε) and u(y+H−2ε) to target v(y). To that end we define a column vector d(y)=
(u(y+ε),u(y−ε),u(y+2ε),u(y−2ε))∗ .

After substitution, we obtain a system of equations

A0d(y)+A1d(y+H)=b0v(y)+b1v(y+H)+f0, (B.3)
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where

A0=









1+ε−1(K1g(ε)+K2g(2ε)) 0 ε−1K2g(ε) 0
ε−1(K1g(2ε)+K2g(3ε)) −ε−1K2g(ε) 1+ε−1K2g(2ε) 0

ε−1(K1g(H−2ε)+K2g(H−ε)) −ε−1K2g(H−3ε) ε−1K2g(H−2ε) 0
ε−1(K1g(H−ε)+K2g(H)) −ε−1K2g(H−2ε) ε−1K2g(H−ε) 0









,

A1=









−ε−1K2g(H−2ε) ε−1(K1g(H−ε)+K2g(H)) 0 ε−1K2g(H−ε)
−ε−1K2g(H−3ε) ε−1(K1g(H−2ε)+K2g(H−ε) 0 ε−1K2g(H−2ε)

−ε−1K2g(ε) ε−1(K1g(2ε)+K2g(3ε)) 0 1+ε−1K2g(2ε)
0 1+ε−1(K1g(ε)+K2g(2ε)) 0 ε−1K2g(ε)









,

b0=









ε−1K2g(ε)
ε−1K1g(ε)

ε−1(K1g(H−3ε)+K2g(H−4ε))
ε−1(K1g(H−2ε)+K2g(H−3ε))









, b1=









ε−1(K1g(H−2ε)+K2g(H−3ε))
ε−1(K1g(H−3ε)+K2g(H−4ε))

ε−1K1g(ε)
ε−1K2g(ε)









,

f0= ε ∑
x′∈(y,y+H)

f (x′)
(

g(y+ε,x′),g(y+2ε,x′),g(y+H−ε,x′),g(y+H−2ε,x′)
)T

.

Formally the equation can be solved via Fourier transform,

Â(ξ)=A0e−iξH/2+A1eiξH/2, b̂(ξ)=b0e−iξH/2+b1eiξH/2,

v̂(ξ)= ∑
y∈LCG

v(y)e−iyξ , f̂0(ξ)= ∑
y∈LCG

f0(y)e
−iyξ ,

where ξ∈ (−π/H,π/H).

In Fourier space, the equation reads

d̂(ξ)= Â(ξ)−1b̂(ξ)v̂(ξ)+ Â(ξ)−1f̂0.

Since eventually we want to obtain an equation in v(y) only, here we use the original
equation to associate d with v(y).

ε−2k·(1v(y)−d(y))= f (y), (B.4)

where k=(K1,K1,K2,K2)∗.

Finally, we arrive at the equation,

ε−2(2(K1+K2)δ(y)−kF−1(Â(ξ)−1b̂(ξ))v(y))= f (y)+F−1(Â(ξ)−1f̂0), (B.5)

for y∈LCG . Here δ is the Kronecker Delta function, see (2.6).



184 Q. Du, X. Li and L. Yuan / CSIAM Trans. Appl. Math., 1 (2020), pp. 155-185

References

[1] R. Abeyaratne and O. Weckner. The effect of long-range forces on the dynamics of a bar. J.
Mech. Phys. Solids, 53(3):705–728, 2005.
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