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Abstract. Strong-scattering inversion or the inverse problem for strong scattering has
different physical-mathematical foundations from the weak-scattering case. Seismic
inversion based on wave equation for strong scattering cannot be directly solved by
Newton’s local optimization method which is based on weak-nonlinear assumption.
Here I try to illustrate the connection between the Schrödinger inverse scattering (in-
verse problem for Schrödinger equation) by GLM (Gel’fand-Levitan-Marchenko) the-
ory and the direct envelope inversion (DEI) using reflection data. The difference be-
tween wave equation and Schrödinger equation is that the latter has a potential in-
dependent of frequency while the former has a frequency-square dependency in the
potential. I also point out that the traditional GLM equation for potential inversion can
only recover the high-wavenumber components of impedance profile. I propose to use
the Schrödinger impedance equation for direct impedance inversion and introduce a
singular impedance function which also corresponds to a singular potential for the re-
construction of impedance profile, including discontinuities and long-wavelength ve-
locity structure. I will review the GLM theory and its application to impedance inver-
sion including some numerical examples. Then I analyze the recently developed multi-
scale direct envelope inversion (MS-DEI) and its connection to the inverse Schrödinger
scattering. It is conceivable that the combination of strong-scattering inversion (in-
verse Schrödinger scattering) and weak-scattering inversion (local optimization based
inversion) may create some inversion methods working for a whole range of inversion
problems in geophysical exploration.
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1 Introduction

The earth medium has a very nonlinear response to the excitation of seismic waves.
Therefore, the parameter inversion, especially velocity inversion, is expected generally
to be nonlinear for seismic exploration. Newton’s scheme of local optimization has the
assumption of weak nonlinearity so that the nonlinear search can be realized by a local
linearization [1]. It is well-known that the local minimization approach has many diffi-
culties, such as the cycle-skipping, local minima, or divergence of the iterative process
(for a review, see [2]). On the other hand, we know that Born data has a simple linear re-
lationship with the parameter change no matter how strong the perturbations are. Born
scattering observes linear superposition, so the final scattered field is the superposition
of all the scattered fields by each element volume of the whole medium. If the data col-
lected are the Born data, everything will be simple. For a full illumination, the inversion
problem can be solved by a linear inversion. However, the real scattering process in the
earth is nonlinear, and the strong interaction and interference between scattered waves
including multiply scattered waves from different elements destroy the linearity of the
Born data. For strong-nonlinear data due to strong scattering, the linearity of the data re-
sponse cannot be recovered by any linear process. This why the Newton type inversion
has to start the iterative process in a nearly linear region. That means the iterative process
must start with a ”good” initial model which is ”close” to the true model.

Different from the popular Newton’s method, there are some special approaches
which can solve strong-scattering inversion without weak-scattering assumption. One
approach is the direct nonlinear inversion or nonlinear inverse scattering based on wave
equation. Since the Newton’s local optimization method uses the linearized sensitivity
operator, one approach to deal with strong nonlinearity is to introduce directly the non-
linear sensitivity operator (NLSO) to the inversion. Wu and Zheng [3] proved that the
higher-order terms of the NLSO, i.e. the higher order Fréchet derivatives correspond
to the higher-order multiple-scattering terms in the scattering series. Scattering series
in solving forward and inverse scattering problem has been known for a long time in
the literature. However, in the case of strong-scattering for wave equation, the conven-
tional Born-Neumann series may not converge (see e.g., [4]), which is the cause for the
divergence or falling into local minima of nonlinear inversion. To overcome the diver-
gence problem of scattering or inverse-scattering series, renormalization or renormaliza-
tion group (RG) theory/method was applied to the scattering or inverse-scattering series
in different ways. One way is to use the Volterra integral to renormalize the scattering
series [5, 6]. Yao et al. [6] uses a perturbation series approach and calculated the Volterra
inverse scattering series (VISS) to the third order, but the convergence of the VISS is not
discussed. Weglein et al. [7] proposed to use different task-oriented subseries to mitigate
the divergence problem. The other way to renormalize the scattering series is to use the
De Wolf series [3, 8–11]. Geng et al. [12] has applied the method to inversion using up to
the second order NLSO.

Another approach for nonlinear inversion, especially for strong-nonlinear inversion
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(strong inverse-scattering) is to formulate the strong-scattering by using the Schrödinger
equation. This approach borrows theory/methods from quantum scattering. Inverse-
scattering based on the Schrödinger equation is among the most popular one. In
Schrödinger equation, the scattering potential is frequency-independent, that is an im-
portant difference from the wave equation where the scattering potential has a frequency-
square dependence. This is a critical factor for the applicability of some theory/method.
Schrödinger equation is devised by Schrödinger in the early stage of quantum mechanics
to formulate the wave-particle duality: propagate like wave but interaction like parti-
cle. The equation can be applied to field interaction with nucleus, atom or molecular.
So the scattering involved is ”strong” interaction, in which the potential is like a fixed
barrier whose property does not change during the interaction. For classic wave scat-
tering, such as acoustic, elastic or electro-magnetic waves, normally the scattering is
frequency-dependent, so the interaction will change the property of the potential. For
strong-contrast and large-body scattering, such as boundary scattering, it can be treated
as strong-scattering or ”Schrödinger scattering”. We will discuss it in more details in
the second section. For the one-dimensional Schrödinger equation, there is an exact so-
lution for the inverse problem from the celebrated and elegant GLM (Gel’fand-Levitan-
Marchenko) theory. Nevertheless, although there is a corresponding theory for the 3D
potential scattering [60, 61], multi-dimensional inverse scattering for impedance and ve-
locity scattering in wave equation is not available yet. So the GLM theory has very limited
application to 3D wave inverse-scattering problem.

The third approach is to nonlinearly extract the slow-dynamics of the waveform data
so that the gross property (large-scale structure, or the low-wavenumber component) can
be inverted from the derived data: envelope data. Then the waveform data are used for
the fine-scale structure (high-wavenumber components). This is the recently developed
waveform envelope inversion or seismic envelope inversion (SEI) [13–17]. Envelope in-
version can partly solve the starting-model dependence problem of FWI (full waveform
inversion). However, for case of strong-nonlinear FWI caused by strong-scattering, such
as the waveform inversion involved large salt-structures, the conventional SEI is still
helpless. The newly-introduced direct envelope inversion (DEI) [18–24] opens a new
door for strong-nonlinear waveform inversion. Envelope data has rich ULF (ultra-low
frequency) information which is critical for the gross structure recovery. Direct envelope
inversion (DEI) is based on the strong-scattering physics and envelope data can be consid-
ered as transformed (by demodulation operator) from waveform data to energy reflection
data [24]. In this paper, I try to establish the link and similarity between the Schrödinger
inverse-scattering and the direct envelope inversion. As we can see that both GLM inversion
and envelope inversion belong to a category of strong-scattering inversion, and the prob-
lem can be related to the inverse problem for Schrödinger equation (inverse Schrödinger
scattering). For this purpose, I’ll first review the GLM theory and the recent development
when applied to seismic impedance inversion. The connection and comparison between
GLM theory and direct envelope inversion is preliminary, but hope to shed some light for
future development of 3D strong-scattering inversion in both theory and applications.



44 R. S. Wu / Commun. Comput. Phys., 28 (2020), pp. 41-73

The paper is organized as follows. Section 1 is the introduction. In Section 2, I will
discuss the GLM theory for 1-D Schrödinger equation and its application to acoustic
impedance inversion. In order to apply the GLM theory to impedance inversion includ-
ing discontinuities, a singular function is introduced to deal with singularities. Some
numerical examples are given to demonstrate the recovery of impedance profile espe-
cially the long-wavelength components. Liouville transform and it inverse are discussed
as a renormalization procedure. In Section 3, the three-dimensional impedance inversion
is discussed and a 3-D Schrödinger-like equation is introduced through the Kirchhoff ap-
proximation (physical optics approximation). The success of the method is demonstrated
by numerical examples for the SEG/EAGE salt model. Then the link between the direct
envelope inversion and GLM theory for inverse Schrödinger scattering is discussed, es-
pecially the similarity of envelop data with the time-series of scattering amplitude (reflec-
tion coefficient) in the 1-D case. Finally, discussion and conclusion are given in Section
4.

2 Exact 1-D inversion by GLM theory

2.1 Acoustic wave equation and impedance Schrödinger equation

For the acoustic wave problem, the 1-D wave equation in the time domain is

∂

∂z

(

1

ρ(z)

∂

∂z
p(z,t)

)

− 1

κ(z)

∂2

∂t2
p(z,t)=0, (2.1)

where z is the spatial coordinate (depth), p is the pressure field, ρ and κ are the density
and bulk modulus of the medium, respectively.

Following Ware and Aki [25], we can change the above wave equation into a
Schrödinger equation with certain potential representing the parameter variations. First
we change the space variable z into a traveltime-correspondent location parameter ς ac-
cording to

dς=dz/c(z), (2.2)

where c(z) is wave propagation speed defined as

c=
√

κ/ρ. (2.3)

This z−ς transform is the Liouville transform which incorporates the velocity variation
along the path into the ς variable (coordinate stretching-shrinking according to local ve-
locity). The other variable transform is to change the pressure field p(z,t) into an energy-
flux normalized field which observes the energy conservation law when interacting with
boundaries,

ψ(z,t)= p(z,t)/
√

ρ(z)c(z)= p(z,t)η(z), (2.4)
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where ρc is the impedance and

η(z)=1/
√

ρ(z)c(z). (2.5)

With the variable transforms of (2.2) and (2.4), the acoustic equation (2.1) can be trans-
formed into

(

∂2

∂ς2
− ∂2

∂t2

)

ψ(ς,t)−
(

1

η(ς)

∂2

∂ς2
η(ς)

)

ψ(ς,t)=0. (2.6)

This is a Schrödinger impedance equation (Chadan and Sabatier, [26]). The above equation
can be also written as a typical Schrödinger equation for scattering potential

(

∂2

∂ς2
− ∂2

∂t2

)

ψ(ς,t)=q(ς)ψ(ς,t)+s(ς,t),

q(ς)=

(

1

η(ς)

∂2

∂ς2
η(ς)

)

,

(2.7)

where q(ς) is the scattering potential, q(ς)ψ(ς,t) is the scattering secondary source and
s(ς,t) is the real source (primary source).

Before discussing the GLM theory, let us first discuss the important differences be-
tween the Schrödinger equation and the wave equation. In the frequency domain, the
Schrödinger equation (2.7) becomes

(

∂2

∂ς2
+ω2

)

ψ(ς,ω)=q(ς)ψ(ς,ω). (2.8)

The RHS term is the equivalent source generated by scattering potential q(ς). We
note that the potential q is independent of frequency. So for h-f’s the scattering term
q(ς)ψ(ς,ω) will be much smaller than the background term ω2ψ(ς,ω), and therefore the
Born term (single-reflection approximation) will be dominant. In the limiting case, the
Born approximation at h-f will be accurate enough for the solution, and no l-f information
is needed. This is very different from the wave question,

(

∂2

∂ς2
+ω2

)

ψ(ς,ω)=ω2ε(ς)ψ(ς,ω), (2.9)

where ε(ς)=n2(ς)−1=c2
0/c2(ς)−1 is the medium perturbation function (in this case, we

set c0 = 1 and take ς as the space variable). In the case of wave equation, the potential
ω2ε(ς) is frequency-dependent and increases rapidly with frequency. In this case, to the
contrary of Schrödinger equation, Born approximation of wave equation is valid only for
low-frequencies.

The peculiar behavior of the Schrödinger equation (2.7) derived from the wave equa-
tion makes the inversion easier. We see that for the wave equation, the equivalent source
is f-dependent, so the source inversion problem becomes a tough problem; while for the
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Schrödinger equation, the source inversion problem becomes overdetermined, a relat-
edly easy one. The key in converting the wave equation to Schrödinger equation is the
Liouville transform, which changes the forward-scattering into a phase accumulation
by renormalization. This will be discussed later in Section 2.6. Unfortunately, Liouville
transform is not available in the 3-D case.

2.2 GLM theory for potential and impedance inversions

The GLM (Gel’fand-Levitan-Marchenko) theory [26–31] offers an exact solution for in-
verse problem of the 1-D Schrödinger equation in a form of integral equation (see also
[32, 33])

K(ς,t)=−R(t+ς)−
∫ ς

−ς
K(ς,τ)R(t+τ)dτ, ς≥0, −ς≤ t≤ς, (2.10)

where R(t) is the reflection record (reflection time series) on the surface, K(ς,t) is an
integral transform kernel (K-matrix in discrete form). Here we consider only the half-
space (z≥ 0) problem with reflection time-series measured on the surface (assuming an
absorbing boundary condition on the surface z = 0 so that no reflection at the surface).
The scattering potential can be recovered by

q(ς)=2
dK(ς,ς)

dς
. (2.11)

Taking the diagonal of K(ς,t) is the focusing operation (time-focusing) in 1-D. This can
be seen from Eq. (2.10) that K(ς,ς) is obtained from R(2ς) after some multiple-scattering
correction. t=2ς is just the reflection travel-time of potential located at ς. For the focusing
of multiple-reflections, see the discussion of Rose’s focusing operator in Section 2.5. The
impedance parameter can be obtained from the scattering potential or from time-integral
of K(ς,t) (see Section 2.2).

From the definition in of scattering potential in (2.7), we see that the impedance
function η(ς) needs to be continuous and twice-differentiable [25, 34]. Although the
Schrödinger equation (2.7) has an exact inverse solution for the potential based on the
GLM (Gel’fand-Levitan-Marchenko) theory, this requirement of differentiability severely
limits its applicability to seismic imaging/inversion where the reflected waves mostly
coming from the reflections of sharp boundaries. In order to expand the applicability, we
can expand the differentiability to include the Dirac type singularity. Let’s decompose
the scattering potential into a regular part and a singular part so we can have a mixed
potential-impedance Schrödinger equation,

(

∂2

∂ς2
− ∂2

∂t2

)

ψ(ς,t)−qsig(ς)ψ(ς,t)−qreg(ς)ψ(ς,t)=0, (2.12)

where qreg(ς) is the regular part potential in which the η(ς) is smooth and twice-
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differentiable, and qsig(ς) is the singular part defined as

qsig(ς)=

(

1

η(ς)

∂2

∂ς2
η(ς)

)

, (2.13)

where η(ς) contains jumps (step function) and spikes (delta function). In fact we can
derive the GLM integral equation from the mixed impedance-potential equation (2.12)
which is also a Schrödinger type equation. To see this, we follow T. Tao’s approach for
derivation of time-domain GLM equation [35], Introduce the dual fundamental solution in
time domain

f (ς,t)=δ(t−ς)+K(ς,t). (2.14)

For the dual solution, the role of time and space is reversed, so the causality is also reversed
(dual causality). The Fourier transform of the dual solution is the Jost solution which is
the frequency domain fundamental solution. Substitute (2.14) into Eq. (2.12), we can
derive the GLM integral equation for the mixed impedance-potential equation (2.12) if
the following condition is satisfied

2
d

dς
K(ς,ς)=qreg(ς)+

(

1

η(ς)

∂2

∂ς2
η(ς)

)

. (2.15)

This can be verified by substituting the above dual fundamental solution into Eq. (2.12).
Since the δ-function is a solution for the Schrödinger equation without potential, and the
[K(ς,t)] operator is symmetric with respect to ς and t but has discontinuity along diago-
nal, the above result is easy to understand. Remember that in Eq. (2.15), qreg(ς) represents
the smooth part of potential, which can generate reflections only for low-frequency in-
cident waves; while in this paper we are mainly interested in strong scattering which
represents the reflections by impedance jumps. Therefore we will deal only with the sin-
gular part qsig by dropping the regular potential qreg(ς). In terms of scattering physics
and seismic imaging reality, the smooth regular potential can produce only very weak
signal for low-frequencies, while low-frequency seismic sources are usually not avail-
able, so the smooth-potential problem does not bear too much practical interest. On the
contrary, scattering and inverse-scattering of singular potential, i.e. the potential repre-
senting impedance discontinuities, should attract both academic and practical interests.
That is also to say that we will try to apply the GLM theory to solve the Schrödinger
impedance equation (2.6) for the strong-scattering case.

In scattering and inverse-scattering problems of quantum physics and plasma
physics, the task is to recover the potential from reflection measurement, so the stan-
dard approach is to solve first the GLM equation to get the K-matrix, and then apply
differential operation for recovering the potential. From (2.7) we see that potential cor-
responds the second order derivative of impedance, so the potential recovery does not
care the long-wavelength structure of impedance profile. From (2.11) we also see that the
potential inversion takes use of only the high-wavenumber components of K(ς,t). For
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impedance inversion we are interested in the recovery of low-wavenumber components
of K(ς,t).

From (2.7) and (2.11), K operator, potential qsig and impedance ηare related by

qsig(ς)=2
d

dς
K(ς,ς)=

(

1

η(ς)

∂2

∂ς2
η(ς)

)

. (2.16)

From the above equation, we can have two methods for the recovery of impedance η(ς).
One is to solve a differential equation for η(ς) with the boundary conditions after solving
the potential qsig which is used in Ware and Aki [25]. However, since qsig uses only
the diagonal of the K-matrix, which resembles a layer-stripping method, the impedance
recovery is unstable due to the singularity handling and error propagation problem. Let
us look at the orders of singularity of η, K and qsig for the case involving impedance
jumps. To deal with parameter jumps, we define a unit step function Θ(x)

Θ(x)=







0, for x<0
1/2, for x=0

1, for x>0







. (2.17)

Then a discontinuity impedance profile can be expressed as

ηsig(ς)=
N

∑
i=1

∆ηiΘ(ς−ςi). (2.18)

Then the differentiation of ηsig(ς) can be done symbolically,

∂

∂ς
ηsig(ς)=

N

∑
i=1

∆ηiδ(ς−ςi),
∂2

∂ς2
ηsig(ς)=

N

∑
i=1

∆ηiδ
′(ς−ςi), (2.19)

leading to

qsig(ς)=

[

N

∑
i=1

∆ηi

ηi
δ′(ς−ςi)

]

, (2.20)

where δ(ς) and δ′(ς) are the unit delta function (the ”unit impulse” ) and it’s derivative
(the ”unit doublet”). From above equation, we see that the impedance function and K-
matrix involve the step function and delta function; while the potential qsig involves
the derivative of delta function, and therefore has higher order singularities. In order
to avoid singular operations involving qsig, we choose another approach to recover the
impedance without involving the potential.

Since impedance profile involves only step function singularity, we can use the low-
frequency components of the K-matrix, namely the integration method, resulting in a
stable inversion. We see that impedance also satisfies the following equation

∂2

∂ς2
η(ς)−q(ς)η(ς)=0. (2.21)
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As pointed out by Berryman and Greene [32], the above equation in fact is a zero-frequency
Schrödinger equation, and the boundary conditions are η(0)=1/

√

(ρ0c0); η′(0−)=0. The
zero-frequency fundamental solution can be easily obtained by Fourier transforming
equation (2.14) and setting ω=0. Then the solution of Eq. (2.21) can be seen as

η(ς)=η(0)

[

1+
∫ ς

−ς
K(ς,t)dt

]

. (2.22)

We see that in this way, the solution (2.22) for the impedance equation (2.6) not only keeps
the low-frequency information in K-matrix, but also boosts the l− f information in it by
integration over t. After recovering η(ς), we can recover impedance from (2.5). In the
case of known density, it is possible to reconstruct the velocity structure.

Now we further discuss the stability of impedance recovery based on (2.22), which
can be also written as

1+
∫ ς

−ς
K(ς,t)dt=

η(ς)

η(0)
=

√
ρ0c0√
ρςcς

=

√

Yς√
Y0

, (2.23)

where Y = 1/ρc is the admittance (reciprocal of impedance). For a N layered medium,
the above equation can be written as

1+
∫ ςN

−ςN

K(ςN ,t)dt=
η(ςN)

η(0)
=

√
YN√

YN−1

√
YN−1√
YN−2

···
√

Y1√
Y0

=

√
YN√
Y0

. (2.24)

Form the above equation, we see that it is possible to recover the impedance (or ad-
mittance) layer by layer once you have resolved the potential, which is the usual layer-
stripping method and may suffer from the error-propagation problem. On the other
hand, use the K-integral as shown by (2.23) can recover the impedance directly from
K(ς,t) and therefore avoids the error-propagation problem.

2.3 Handling singularities in GLM method

As we know that classic GLM theory requires the solution of Schrödinger equation to be
continuous with a continuous derivative. However, when dealing with the impedance
equation in seismic inversion, this requirement becomes a serious problem for practical
applications (see Ware and Aki [25]). Think about the scattering physics. For reflection
seismograms in one-dimensional acoustic media the most energetic reflection arrivals
are from the discontinuities, while smooth variation of the media can produce only weak
low-frequency reflections! Due to the frequency-band limitation of seismic sources, usu-
ally l− f reflection signals are not observable. This renders the only useful reflection
arrivals for inversions are those from discontinuities (interfaces, boundaries and faults).
In this paper, I only discuss the discontinuity reflections for the purpose of impedance
and velocity inversion and leave the mixed problems involving both continuous and dis-
continuous impedance changes for future research.
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To deal with discontinuity reflection, we need to treat the Dirac’s delta function (or
distributions) and it’s derivative. Chadan and Sabatier [26, Section 17.4], introduced the
”singular data function” to treat the mixed potential and impedance equation. Here
we will concentrate on the impedance equation. The discontinuous impedance equa-
tion becomes a chain of Schrödinger equations with some continuity conditions at the
boundaries. Using the singular data function, the equation system is transferred to a
Schrödinger equation having continuous solution so the GLM theory can be applied.
However, in geophysics, impedance inversion for layered media has been handled by
the layer matrix approach with the aid of z-transform [25, 36, 37]. In this work, I will use
the approximate Dirac delta function to handle the analysis and numerical calculations.
From the theory of generalized function (or distribution), we can define the approximate
delta functions as Gaussian, sampling function or other type smooth, differential func-
tions. Here I adopt the Gaussian impulse, since it resembles a narrow delta impulse (see
Korn and Korn [38]]):

δ(t,a)=
a

π
e−a2t2

, as a→∞. (2.25)

In this way, the step function, representing impedance discontinuity, can be approxi-
mated by the integral of the Gaussian impulse, while the derivative of delta function (the
doublet) can be approximated by δ′(a,t). Then the GLM equation can be analytically
or numerically implemented using this approximation. When the Gaussian impulse is
narrow enough, we can use it as a symbolic unit delta function δ(t) satisfying

∫ b

a
f (τ)δ(τ−t)dτ=







0, if t< a or t>b
f (t), if a< t<b

1
2 f (t), if t= a or t=b







. (2.26)

In numerical simulations, if the source impulse is narrow enough and the reflection
pulses do not have overlaps, then the approximate delta can be used in the numeri-
cal calculations, and the correct amplitude of the reflection pulses can be obtained by
the integration over the pulse width. Now let us see what information is contained in
K(ς,t), especially in the diagonal elements of K(ς,ς). We need to understand the scatter-
ing physics involved in the mathematical operations. Fig. 1 shows a schematic diagram
of the K operator. For our 1-D scattering problem, we chose the positive as downward for
z-coordinate. ς(z) is the traveltime-equivalent z-coordinate after the Liouville transform.
Seismic reflection data R(t) are recorded on the surface ς= 0. The red line (diagonal of
the right-lower quadrant) marks the diagonal line of the K-operator K(ς,ς). Since K(ς,t)
is a triangle matrix, satisfying K(ς,t),−ς≤ t≤ ς, so the solution of K(ς,t) (satisfying the
Schrödinger equation) only exist in the purple shaded area. K(ς,ς) can be looked as the
first-arrival event-line in space-time (ς,t), similar to Einstein’s ”light-cone”. The first re-
flection signals can be observed along the event-line K(ς,ς) (the location of reflectors).
Therefore, the yellow triangle on the right (with the horizontal-axis as its bisect) is the
area of causal solution, and any events of multiple scattering (later arrivals) can be seen
in this area, with R(t) as an example (observed on the surface). We can say that the yellow
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Figure 1: Schematic diagram of the K operator and its region of definition (purple area).

area is the ”future area”. On the contrary, or complementarily, the purple area is the ”past
area”, where the events in the past are recorded. In the future area, the event is seen by
forward propagation; while in the past area, the events can be met by back-propagation
(reverse-time). Since K(ς,t) is a dual fundamental solution, dual causality (the role of time
and space is reversed) is observed. We know K(ς,ς) is the line of first-reflection arrivals,
the past record K(ς,t) is a single-reflection record which has been solved by the GLM
equation. This is consistent with Snieder’s analysis that only the Born data (single reflec-
tion data) contribute to the recovery of the scattering potential. Here we show that it is
also only the single-reflection data contributing to the impedance recovery (Eq. (2.22)).
Note that since the Schrödinger equation in our context is second order in time, so the
Born solution includes also the anti-causal single-reflections. This becomes clearly seen
in the following numerical examples.

2.4 Liouville transform, the forward-scattering renormalization and velocity
inversion

First, we prove that the Liouville transform eliminates the forward scattering, so there is
only backscattering in action for Schrödinger impedance equation.

In the process of reducing the wave equation to the Schrödinger impedance equation,
we perform change of both independent and dependent variables. The dependent vari-
able change is to have a energy-flux normalized field variable so that the scattering matrix
becomes unitary and therefore the impedance can be recovered by reflection data alone.
The independent variable change from z to ς is by the Liouville transform which incor-
porates the velocity change into the traveltime converted ς. In this one-dimensional scat-
tering problem, this corresponds to a forward-scattering renormalization. The Born series
divergence has been well-known and thoroughly studied in quantum field theory and
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solved by the renormalization theory/method (see, e.g., Delamotte [39]). In exploration
geophysics, the multiple-forescattering single-backscattering (MFSB) approximation or
the De Wolf approximation (DWA) has been introduced as a renormalization solution to
the divergent Born series (for a review, see e.g. [24, 40]. The main idea is to split the scat-
tering operator into forward scattering and backscattering parts and substitute it into the
Born series. Then we can have all combinations of higher order forward and backward
scattering terms. The De Wolf approximation [8, 9, 41, 42] corresponds to neglecting multiple
backscattering (reverberations), i.e. dropping all the terms containing two or more backscat-
tering terms but keeping all the multiple forward scattering terms in the series. Then sum
up all the multiple forward-scattering terms resulting in a mass operator which includes
all the nonlinear interactions of the point perturbations on the forward path. We know
that the Born series divergence is mainly caused by the coherent summation of forward
scattering responses from each point along the path such that the scattering amplitude
increases infinitely in the forward direction (infra-red catastrophe). The renormalization
procedure solves the divergence problem. It has been proved that by a renormalization
procedure based on the renormalization group (RG) theory, the forward scattering effect
can be transformed into phase accumulation (integration) along the forward propagation
path [43]. In 1-D problem, the split of forward and backward scattering is easy to do, so
the Liouville transform

ς(z)=

{

z/c0, for z≤0,
∫ ς

0 dz/c(z), for z≥0,
(2.27)

which incorporates the forward scattering effect (phase variation due to velocity change)
into the traveltime variable, so the resulted Schrödinger equation can only have backscat-
tering (quantified by reflection and transmission coefficients) effect. We may make a
remark here that transmission is also a backscattering effect. Due to backscattering, inci-
dent wave loses energy, and the transmitted wave is only incident field subtracting the
reflected energy.

2.5 GLM solution, focusing operator, and multiple-scattering removal

Next we explain the multiple-reflection removal of the GLM equation proved by Snieder
[44] and it’s relation with focusing operator of J. Rose [45]. In the paper, Snieder pointed
out and proved the following. If you expand the scattering response R(t) into a Born
series from forward modeling of the Schrödinger equation, and in the same way expand
K(x,t) into a Taylor series for Eq. (2.10), then it was shown that only the Born data (first
term of the Taylor series) contributes to the reconstruction of the potential, and all the
higher order terms in the data do not contribute. It means that the nonlinear components
in the data, i.e. the multiple-scattering effects in the data, are eliminated by solving the
GLM integral equation: the second-order Born term is being cancelled by an internal in-
teraction (second order scattering) of the first order scattering; the higher order terms are
cancelled by the interaction of the all the lower-order terms (multiple-scattering). In the
end of the process (de-scattering process), there left only the first order term (Born data)
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contributing to the potential recovery. Since the potential recovery is from the diagonal
elements of K matrix, we can consider K(ς,t) as composed of only the single-reflected
waves (including both casual and anticausal waves). Therefore, by using the GLM solu-
tion K(ς,t), potential and impedance inversions become linear operations. The demon-
stration by Snieder [44] has profound implication to the theory and method of waveform
inversion. In higher dimensions (2D or 3D), similar strategy should hold.

Now I will use the concept of J. Rose’s focusing source or focusing operator [45, 46] to
further explain that the GLM equation can focus the wave to the selected point ς by pick-
ing the first-reflection arrival R(t+ς) at the time t+ς on the surface and removing all
the multiple-reflections (the tail) through solving the GLM equation. ”Focusing source”
means you set up a specific ”incident wave” (a source time-function) for a specified point
at depth ς0, then the wavefield propagate and focus only atς0 at t=0. The focusing source
do not have any radiation to other points than ς0 due to mutual cancellation by interfer-
ence. The ”focusing operator” means an operator applying to the reflection data (impulse
response) yields focused image at subsurface scattering sources (scattering potential).

The focusing source function (the incident wave needed for the focusing) is defined by
Rose [45] as

f (ς0,t−τ)=δ(t−τ+ς0)+K(ς0,t−τ). (2.28)

Here ς0is the point to focus and τ is the corresponding time-shift for the focusing.
In fact, this is also the dual fundamental solution (see Eq. (2.14)). When we apply this
source to the Schrödinger equation (2.7) as the source term (primary source), the wave-
field radiated by this source will focus on ς0 and vanishes at all other locations. The delta
function (wavefront) of the above source function is to put the pulse into the correct loca-
tion (the focus); the long tail of the source function, K(ς0,t),(−ς0 ≤ t≤ ς0), is to cancel all
other reflection signals, including primary and multiple reflections by scattering poten-
tial above depth ς0. This magic ”tail” is proved to be the solution of GLM equation (or
Marchenko equation) [45]. From this we can see that K(ς0,t) has an important role for
multiple removal. Now we discuss the focusing operator F(ς,t) with the focusing source
time-function f (ς0,t−τ)= f (ς0,t−ς) as its kernel (remembering that the wave speed is
1 in GLM theory). What will happen when we apply the operator to the reflection data
R(t), namely the impulse response measured on the surface? It will focus the reflection
pulses in the data back to the scattering sources in the medium. It can be explained as the
follows. It is known that the focusing operator is the complex-conjugate or time-reversal of
the point-response function which generates the reflection seismogram from a point scat-
terer in the known medium. The measured impulse response is just the linear superpo-
sition of the point-response function of all the point scatterers in the medium. Therefore,
applying the focusing operator to the impulse response of the medium yields an image
field or generalized holographic field (GHF) h(ς,t−ς) inside the medium [47–49]. Invoking
the imaging principle by coinciding the local incidence and reflection, we obtain the scat-
terer’s image h(ς,ς), which is a collection of all the scattering points. In operator form it
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reads

h=FR=(I+K)R, (2.29)

where I is the identity matrix, F is the focusing operator, and h, R are vectors. Substitute
the kernel (2.28) into the operator and write into explicit form, yielding

h(ς,t)=R(t+ς)+
∫ ς

−ς
K(ς,τ)R(t+τ)dτ. (2.30)

Rose [45] has proved that the image field h(ς,t)=−K(ς,t). So the tail of the focusing source
function can be found by solving the GLM equation (or Marchenko equation).

From the above analysis, we see that K(ς,t) can be considered as the trailing part of
a focusing operator which is the solution of GLM equation. It is interesting to look at
the other aspect of K(ς,t), as a holographic image field of the reflectors. K(ς,t) contains the
Born refection data extracted from the real seismogram. Of course, this ”data” set is not
an actually recorded casual records. It is composed of both casual and anti-casual Born
solutions to the Schrödinger equation. This view is consistent with the above explanation
as a holographic field.

According to Snieder [44, equation 15], the nth order coefficient of Taylor series Kn of
K(ς,t) can be related to the corresponding multiple-scattering series Rn of surface data
R(t). However, we may replace the surface reflection data with the scattered field in the
whole medium U(ς,t), then we have the two perturbation series

K=
∞

∑
n=1

εnKn, U=
∞

∑
n=1

εnUn, (2.31)

where ε is a smallness parameter and U =U++U− with U+ and U− as the casual and
anti-casual parts of the scattered field, respectively. The surface data is related to the
scattered field U(ς,t) through the time-shift relation R(t)=U+(0,t) and R(t+ς)=U+(ς,t)
where U+(ς,t) is the casual part of the scattered field. With this replacement, we repeat
Snieder’s derivation, resulting in

K1=−U1,

K2=−U2+U1U1,

K3=−U3+U2U1+U1U2−U1U1U1,

···

Kn=−Un+
n−1

∑
m=1

(−1)m
∑

i1+···+im=n−1

Ui1 ···Uim
.

(2.32)

The above equation means that the potential is completely determined by the first
Born data K1 =−U1, the higher order reflections (higher order coefficients of the Born
series to the Schrödinger equation) have no contributions to the image K(ς,ς) due to the
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mutual cancellations as shown in (2.32). This is consistent with the discussion on focus-
ing source function and the focusing operator. The kernel (focusing source function) of
the focusing operator removes all multiples produced by the potential above the focus-
ing point, then the focusing operator will remove all the multiples during the recursive
process in solving the GLM equation. Therefore, only the Born data (single reflection
data) make real contribution in the final stage of impedance inversion in GLM approach.
Remember that the single-reflection data K1(ς,t) have both casual and anti-casual events.

The single-reflection data in K(ς,t) is the basis of potential recovery by differentiation
(2.16) and the impedance recovery by integration (2.22). Impedance recovery is more
important in seismology. The scattered field U in Schrödinger equation in fact is like
reflected energy-flux when interacting with potential or impedance. The flux is focused
at the focal depth, and beneath the focal depth, the flux splits into casual and anti-casual
components. Due to the anti-symmetry U−=−U+, the integration of all the defocused
scattered fields becomes null, and only the flux at the focal point has net contribution to
the impedance recovery (2.22).

2.6 Recovery of velocity structure: inverse Liouville transform and
de-renormalization

From reflection data we recovered the impedance jumps at different traveltime points.
For a constant density medium or if we know the density distribution, in principle we
can recover the velocity structure layer-by-layer by an inverse Liouville transform (time
to depth conversion)

z(ς)= z0+
∫ ς

0
c(τ)dτ. (2.33)

At each upper face of a jump, you derive the velocity jump from the impedance inver-
sion (with known density), then you know the velocity at the lower face of jump and the
spatial location of the next jump. Of course this layer-stripping method have the error
propagation problem and there is no other information to stabilize the inversion in the
1-D case. However, in the 2-D and 3-D cases, the situation can be improved, since the
velocity structure can be checked by a time-space focusing operator (remember that in
1-D case, there is only time focusing, and no spatial focusing available). If the veloc-
ity structure is correct, the focusing of the next impedance jump will be perfect so an
optimization algorithm can be set up to get the best estimate of velocity or the bound-
ary location. These techniques are the focusing analysis and velocity analysis in seismic
exploration (see, e.g., Stolt and Bensen [50]). This is also the reason why seismic direct
envelope inversion (DEI) can successfully invert for velocity structure of layered media
by a two-dimensional acquisition geometry (see next section).

As we stated in the previous section that the Liouville transform is a forward scatter-
ing renormalization, then this inverse Liouville transform is a reverse renormalization or
de-renormalization. Renormalization changes the Born volume scattering into a traveltime
perturbation along the path. In the 1-D case, this is done recursively slab-by-slab. In the
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de-renormalization process, the traveltime change is changed back to slab scattering. In
the case of constant velocity-jump, it is changed to the thickness variation, so the location
of next jump can be determined. However, in the 1-D case, there is no spatial focusing,
and the time-focusing is only a traveltime pickup. For this reason, there is no method
to stabilize the layer stripping inversion in the 1-D case. Nevertheless, the principle of
inverse Liouville transform can be applied to the high-dimensional strong-scattering in-
version as we will demonstrate in the next section.

2.7 Numerical tests on the impedance and velocity inversion by GLM method

To demonstrate acoustic impedance inversion using GLM theory, we use a simple 1-D
acoustic model of a slab with ρ = 1, c = 2 embedded in a homogeneous background of
ρ= 1, c= 1 (Fig. 2a). For forward modeling, we use the propagator matrix method (see,
e.g., Aki and Richards [34, Chapter 12]) to produce the frequency domain seismogram
and then transform to the time domain. The singularities are handled by the approximate
delta functions as illustrated in previous section. The time domain reflection seismogram
is plot in Fig. 2b.

(a) (b)

Figure 2: One-dimensional impedance model (left) and the reflection seismogram (right).

After solving the GLM integral equation by an iterative method [33], the final solu-
tion of K(ς,t) is plot in Fig. 3, and the time-profiles at different ς locations of K(ς,t) are
shown in Fig. 4. We see that at the locations above and below the slab boundaries, the
integration of the K(ς,t) along time is zero, and only within the slab the integration gives
a finite value corresponding to the impedance. The result of impedance recovery by us-
ing (2.22) is shown in Fig. 5a. By inverse Liouville transform with known density ρ, we
can recover the velocity c distribution as shown in Fig. 5b. As we pointed out already,
the inverse Liouville transform has a layer-stripping procedure and may have some error
accumulation problem which needs further investigation.
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Figure 3: Final solution of K(ς,t) by solving GLM integral equation.

Figure 4: K(ς,t) as time-series for different location ς. The two boundaries of the slab are at ς=0.5 (z=0.5)
and ς=0.75 (z=1.0).
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Figure 5: Impedance (ρc) and velocity (c) recovery of the model in Fig. 2.

3 Strong-scattering inversion in 3-D by DEI (Direct Envelope

Inversion)

In general, the inverse-scattering process based on wave equation is complicated and del-
icate. It is because that the scattering process in complex media is a strongly nonlinear
with respect to the parameter changes. The process involves strong interference between
the Born scattering and multiple scatterings. Such as for boundary reflection, strong
constructive interference forms a sharp reflection pulse; meanwhile strong destructive
interference diminishes all the single-scattering contributions from volume elements in-
side the boundary. Inverse-scattering process tries to reverse the scattering process, such
as to regenerate all the already destroyed waves to restore the Born data from the tangled
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nonlinear data. This is doomed to be not an easy job. It is like the resurrection of dead
waves. This is the reason why IBS for wave equation can easily diverge or fall into wrong
solutions.

Seismic envelope inversion has been introduced and developed to recover the long-
wavelength background velocity structure without relying on the ultra-low frequency
source [13, 16, 17, 19, 24]. Traditional envelope inversion was still based on the weak-
scattering theory and borrowed the wavefield Fréchet derivative from the waveform in-
version for the indirect envelope inversion. Therefore, the traditional approach is not ap-
plicable to the strong-nonlinear case such as the inversion involved with salt structures.

Recently, multi-scale direct envelope inversion (MSDEI) has been proposed [18–21,51]
to tackle the difficult task of strong-scattering inversion. The envelope operator (or de-
modulation operator) transforms waveform data into envelope data and conduct a non-
linear filtering in the envelope domain. Removing of multiple forward-scattering effect
seems much easier in dealing with envelope data, since there is no interference. In the
early stage of development, energy scattering is taken as the physical model for envelope
data without polarity [18–21, 51]. In order to compensate the lack of polarity informa-
tion, a joint misfit functional for envelope data plus the conventional waveform data is
adopted to recover the large-scale sharp-contrast structure. The recent introduction of
the signed envelope data obtained by the signed demodulation operator [51–53] leads to
a more compatible envelope data for the theory/method of DEI (direct envelope inver-
sion). It will be shown in this paper that the signed envelope trace is in fact a filtered
version of the reflection time-series in GLM theory for inverse Schrödinger scattering.
In this section, I first point out the problem of using the indirect sensitivity operator in
the traditional envelope inversion in the strong-scattering case, Then I derive the Kirch-
hoff integral representation for the strong-scattering case and show its equivalence to the
Schrödinger-like system of equations. This will pave the way to connect DEI to the GLM
theory of solving the inverse Schrödinger scattering.

3.1 The problem in linearization of envelope inversion using indirect
sensitivity operator for strong-scattering case

In waveform inversion, the waveform sensitivity operator (Fréchet derivative) can be ex-
pressed in an operator form

δp=Fpδv=
∂p

∂v
δv=G0Q0δv, (3.1)

where δp (vector) is the wavefield variation due to velocity perturbation δv (vector), Fp

is the waveform Fréchet derivative (operator), G0 is the background Green’s operator, and
Q0 is the virtual source operator (VSO), which transforms δv into an equivalent source
(scattering source) field. From the above definition, we can see that the Fréchet derivative
is a linearized sensitivity operator which is only valid when the velocity perturbation is
small and therefore the scattered wavefield is also small. Similar to above equation for
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the waveform inversion, we can formulate the envelope sensitivity operator (ESO) in a
form

δe=FEδv=
∂e

∂v
δv=GEQEδv, (3.2)

where FE is the envelope sensitivity derivative, GE is the envelope Green’s operator, and

QE =Q
(e)
0 is the envelope VSO. In this way, we derive the envelope sensitivity operator

(Fréchet derivative) directly based on envelope scattering theory, and therefore no weak
scattering assumption or weak nonlinearity of waveform sensitivity operator is imposed.
However traditionally envelope Fréchet derivative (indirect envelope sensitivity operator) is
derived from a chain rule of functional derivatives, and the implementation is relied on
the use of waveform Fréchet derivative (WFD). In operator form, the indirect envelope
Fréchet derivative (∂e/∂v)indir can be written as

(

∂e

∂v

)

indir

≃ ∂e

∂p

∂p

∂v
=

∂e

∂p
Fp. (3.3)

The chain rule of differentiation is in fact making linearization to both the nonlinear par-
tial derivatives (∂e/∂p)NL and FNL

p =(∂p/∂v)NL, that may destroy the advantage of the
new data functional FE=∂e/∂v which has better linear relationship between data and pa-
rameter perturbations. Since FNL

p is strong-nonlinear [3], (∂e/∂p)NL must also be strong-
nonlinear. This may be further explained by expanding both nonlinear operators into
Taylor series around the points of interests:

(

δe

δp

)

NL

=
δe

δp
+

1

2!

δ2e

δp2
δp+··· ,

(

δp

δv

)

NL

=
δp

δv
+

1

2!

δ2p

δv2
δv+··· .

(3.4)

Then the indirect envelope sensitivity operator becomes

(

δe

δv

)

indir

=

(

δe

δp

)

NL

(

δp

δv

)

NL

=
δe

δp

δp

δv
+

1

2!

[

δe

δp

δ2p

δv2
δv+

δ2e

δp2
δp

δp

δv

]

+··· . (3.5)

Taking only the first order term, it becomes the chain rule of differentiation which is a
double linearization and only valid for weak nonlinearity. In the case of strong nonlinear-
ity, the nonlinear functional derivative (sensitivity operator) becomes model dependent.
Furthermore, for strong-scattering case, the nonlinearity may be so strong such that the
Taylor series becomes divergent and the linear approximation becomes meaningless. On
the other hand, the direct envelope sensitivity operator has a direct linear relationship to the
impedance contrast for boundary scattering. This is the physical basis for impedance
inversion using inverse Schrödinger scattering by solving the GLM equation. The GLM
equation is to remove the effect of multiple-reflections. As we showed in Section 2.5,
the recovery of potential or impedance by GLM solution uses only the single-scattered
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data (Born data of Schrödinger scattering). Although DEI do not remove the multiple-
reflections, the better linear relationship of envelope to impedance jump is a major ad-
vantage of DEI.

3.2 From wave equation to Schrödinger-like equation in 3D for strong-
scattering case

To use direct envelope Fréchet derivative means to linearize directly the envelope vari-
ation due to medium perturbation without relying on functional derivative. We know
that in large strong-contrast media, such as salt structures, the strong reflection signals are
from boundary scattering which can be considered as frequency-independent. This is the
feature of potential scattering or impedance scattering in Schrödinger equation. Now we
derive the integral representation of boundary scattering and show that the correspond-
ing differential equation is a Schrödinger-type equation. I will compare the common
feature of envelope inversion with the GLM inverse-scattering for the 1-D Schrödinger
equation and discuss their differences.

For the sake of simplicity, we deal with only the scalar wave equation to demonstrate
the principle. First we express the wave equation in an operator form

L0δp=−(L−L0)p=Qp, (3.6)

where

L=

[

∇2− 1

v2(x)

∂2

∂t2

]

,

L0=

[

∇2− 1

v2
0(x)

∂2

∂t2

]

,

(3.7)

and Q is the scattering potential operator for the wave equation with its kernel

Q(x,x′,t)=
[

1

v2(x)
− 1

v2
0(x)

]

∂2

∂t2
δ(x−x′). (3.8)

We see that the scattering potential for wave equation is time-dependent, so in the
frequency-domain, frequency-dependent. As we discussed for the 1-D case, renormaliza-
tion process for strong scattering can change the potential into time-independent. From
the partial differential equation (3.6), we can derive the corresponding integral equation,
Lippmann-Schwinger equation (LSE),

δp= L−1
0 Qp=G0Qp, (3.9)

where G0 is the Green’s operator.
Now let us treat the strong scattering case. Scattered waves from boundary scattering

can be modeled as a summation of reflected waves from all the sharp boundaries inside
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the considered volume. Assume Ω as the collection of boundaries surrounding different
domains, Γ≡{Γn}, n=1,2,··· ,N. Each domain has smooth velocity variation inside the
domain. For any curved boundary (interface) Γ1, the scattered waves can be formulated
by a representation integral (Kirchhoff integral),

δp(x)=−
∫

Γ1

{ps(x0)∇nGF(x;x0)−GF(x;x0)∇n ps(x0)}ds(x0), (3.10)

where GF is forward-scattering approximated Green’s function in the exterior region (for
smooth exterior media, GF = G0), ds(x0) is a boundary element at x0 on the boundary
Γ1, ps(x0) is the scattered field at that point, n̂ is the local outward normal and ∇n is the
normal gradient at that point. ps(x0) can be obtained by solving the boundary integral
equation (BIE). We know that the scattered wave on the outer boundary is proportional
to the local impedance contrast. In this paper, we further simplify the relation to the case
of small-angle reflections. In modern seismic exploration with full coverage of shot array
and large-aperture receiver array for each shots, data redundancy is true for most of the
cases. In DEI (direct envelope inversion) or inverse Schrödinger scattering, we use only
the reflection signals and better linearity is expected between reflection coefficients and
impedance jumps for small-angle reflections. Hence limiting to small-angle reflections
is reasonable. By this approximation, the scattered field ps(x0) on the boundary for a
delta-pulse source can be approximated as

ps(x0)=γ(x0,n̂)p0(x0)=γ(x0,n̂)G0(x0,xs), (3.11)

where xs is the source location, γ(x0,n̂) is a factor dependent on the local impedance-
contrast and the incident angle. Considering that ∇nGF(x0;xs)

.
=−∇nGF(xg;x0) for small

reflection angles, where xg is the receiver location, we derive the approximation of (3.10),

δp(xg,xs)≃2
∫

Γ1

GF(xg;x0)∇nγ(x0,n̂)GF(x0;xs)ds(x0). (3.12)

In order to be consistent with the volume integral formulation, we may change the
surface integral into volume integral by assuming zero-reflection outside all the real
boundaries Γ≡{Γn}. For acoustic media, reflection coefficient by a plane boundary is

γ=
Y
(n)
1 −Y

(n)
2

Y
(n)
1 +Y

(n)
2

=
Z
(n)
2 −Z

(n)
1

Z
(n)
2 +Z

(n)
1

, (3.13)

where Z(n) is the normal component of acoustic impedance, and Y(n) is that of admittance
(inverse of impedance), and

Y(n)=
1

ρc
cosθ, Z(n)=

ρc

cosθ
, (3.14)
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where θ is the reflection angel. For small angle reflection (cosθ≃1), we have

γ≈ Z2−Z1

Z2+Z1

=
Y1−Y2

Y2+Y1

=
−∆Y

2Y0+∆Y
, (3.15)

where Y0=Y1 and ∆Y=Y2−Y1. Since we discuss only small-angle reflections, Y or Z will
be same as its normal component. In this way, the admittance jump can be related to the
reflection coefficient,

∆Y=
−2γ

1+γ
. (3.16)

In this way, the reflection singular function is related to the admittance jump (similar to
(2.18) and (2.19) for the 1-D case). By handling the singularities, (3.12) can be written into
a volume integral,

δp(xg,xs)
.
=2

∫

V
GF(xg;x0)∇n[γΓ(x)GF(x;xs)]dv(x), (3.17)

where γΓ(x) exists only on the boundary Γ, defined as

γΓ(x),γ(x,n̂(x))δ(x−x0), x∈V; (x0,n̂)∈Γ, (3.18)

and the volume element dv(x) depends on the local surface normal since it is converted
from the surface integral (3.12). Since we use the small-angle reflection assumption and
the boundary reflection physics, δp(xg,xs) in above equation in fact is scattering ampli-
tude, which is proportional to the energy-flux (with sign or polarity).

Here we make some remarks on the Kirchhoff integral representation for scattered
field from boundary scattering (reflection). From (3.10) and (3.12), we see that the scat-
tered field from boundary scattering is frequency-independent in contrast to the volume
scattering derived from wave equation. In order to use the concept of local reflection
coefficient (3.11), the boundary should be smooth compared with the wavelength, so the
Kirchhoff representation in fact is a high-frequency approximation. This is consistent with
the analysis for Schrödinger equation for acoustic impedance scattering (see the discus-
sion around Eq. (2.8)). In the Kirchhoff integral (3.17), GF(x0;xs) is the incident field,
so γΓ(x) plays the role of scattering potential (singular potential). Therefore, Eq. (3.12)
or (3.17), and the related system of boundary integral equations can be viewed as a
system of Schrödinger equations. Kirchhoff approximation is also called physical-optics ap-
proximation [54], which means propagates like waves but interacts with boundary like
rays (geometric-optics approximation). This is similar to the duality of quantum field
in Schrödinger equation. This also explains the difference between the energy-scattering
formulation [18–21, 51] and the latest signed envelope (envelope with polarity) inver-
sion based on energy-flux formulation [25, 52, 53, 55]). Although good results have been
obtained by this new approach in salt structure inversion, this paper is the first pa-
per in trying to establish the physical-mathematical foundation of DEI with signed en-
velopes. Even though some approximation is involved, the transfer from wave equation
to Schrödinger-like equation system has paved the way to treat strong-scattering inversion
with methods radically different from the weak-scattering based methods.
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3.3 Envelope data and reflection time-series

Now let us discuss the link between the solution of Schrödinger equation and the enve-
lope data in envelope inversion, especially in direct envelope inversion. Here comes the
second important attribute of strong-scattering inversion: sparse reflections. From scatter-
ing theory, these two attributes, frequency-independence and sparse reflection are the conse-
quences of the same strong-scattering physics. If a slab is thick enough compared with
the dominate wavelength (strong-scattering), then pulse-split (”cycle-skipping) must
happen, resulting in sparse reflections. I have pointed out that Schrödinger equation
or the corresponding integral equation form has a h-f asymptotic solution. In fact,
Schrödinger scattering is better behaved for high-frequencies. For broad-band cases, the
reflected wave δp(xg,xs) in time-domain is consisted of marrow pulses. In the limiting
case, the pulses approach delta-functions, which is similar to the data used in the GLM
theory. Using a delta pulse as source, the reflection records become R(t), a reflection
time-series. However, in seismic reflection experiments, we do not have delta-pulse as
source. Due to the limited bandwidth of our acquisition system, the seismograms become
oscillating traces, consisting of a series of wavelets. Normally this kind of seismograms
cannot be converted to a series of reflection spikes due to the strong interference be-
tween different wavelets. However, for the case of strong-scattering, the reflection spikes
should be ”sparse” and therefore satisfy the sparsity requirements of separability (see the
mathematical theory of super-resolution by Candes and Fernandez-Granda [56]. After
the reflection time-series is reconstructed from the received waveform data, such as by a
convex optimization algorithm, the theory and method of solving schrodinger equation
can be applied to the strong-scattering inversion (inverse-scattering). In envelope inver-
sion, instead, an envelope operator, such as the demodulation operator based on Hilbert
transform, is used to obtain the envelope traces (envelograms). For sparse reflections,
which has the same criterion for strong-scattering, the individual reflection wavelets do
not have strong interference such that they can be separated into different events, each
has a recoverable envelope. In demodulation theory, this means the envelope signal and
the carrier signal satisfy the Bedroisin-Brown theory of separability. As a result, demodu-
lation operator transforms the waveform trace into an envelope trace. The latter is similar
to a series of approximate delta pulses (envelogram). The polarity of reflection can be ob-
tained from the instantaneous phase in Hilbert transform based moethd [22, 52, 57]. In
this way, the envelope traces can be treated as approximate solutions of the correspond-
ing Schrödinger equation.

We understand that the equation involved is not an exact 3D Schrödinger equation,
since the above equation is only an exterior equation (such as in the exterior region
of salt domes), and γΓ(x,n̂) has to be solved by a coupled equation system for both
exterior and interior (inside salt domes) equations, and the interior equation has dif-
ferent Green’s function from the exterior problem. The other difference from the 1-D
Schrödinger potential equation is that the Liouville transform is no longer available in
the 3-D case, so the knowledge of the internal velocity structure becomes another task.
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Figure 6: Comparison of envelope data with and without polarity. The synthetic trace is generated with 10
reflectors convolved with a 20Hz Ricker wavelet. (a) is the Hilbert envelope (the red line), and (c) is the
polarity-bearing envelope (green curve). The dotted spikes are the reflection time-series, the black curve is the
original waveform data; (b) and (d) are the corresponding spectra.

Nevertheless, since the potential does not depend on frequency, it has many features
of Schrödinger impedance equation. So we can borrow many techniques from the 1-D
inverse Schrödinger scattering to the theory/method of 3-D envelope inversion.

In the following we demonstrate the new feature of signed envelope (envelope with
polarity) with an example.

Standard envelope data are obtained by taking instantaneous amplitude of the ana-
lytical signal derived from the waveform data through analytical transform based on the
Hilbert transform (we will refer it as ”Hilbert envelope”) [13, 58]. However, the Hilbert
envelope does not have the polarity information. It is possible to put the polarity in-
formation into the envelope data, so that the polarity-bearing envelope (or simply the
signed envelope) will have much resemblance to the reflection time-series. There are two
approaches in combining the polarity into the envelope data. One is to use the signed de-
modulation method [22,55,57], the other is the smoothed apparent polarity method [52].
One example of comparison between Hilbert envelope and signed envelope is shown
in Fig. 6. It can be seen that the signed envelope in fact is a filtered version of the re-
flection series in Schrödinger scattering. Comparing the spectra of Hilbert envelope and
the signed envelope (Fig. 6b and 6d), we see that the signed envelope keeps the use-
ful ULF (frequencies below the source frequency band) unchanged, but removes most
of the near-zero frequency components, and therefore reduces substantially the artifacts
by the near-zero frequencies. Due to the strong similarity of envelope inversion to the
1-D Schrödinger impedance inversion, especially when the signed envelope is used, the
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GLM theory and method will certainly shed some light for future development of direct
envelope inversion.

3.4 Direct envelope inversion (DEI)

With the direct envelope Fréchet derivative (sensitivity operator), we can directly back-
propagate (refocusing) the envelope residual to the model space without losing too much
low-frequency information of the envelope data. To recover the long-wavelength (or low-
K) velocity structure from the envelope data, we perform a nonlinear filtering in the data
domain. The multi-scale direct envelope inversion (MSDEI) [18–22, 59] or the signed envelope
inversion [52, 53, 55] take this approach. The nonlinear operator is referred to the enve-
lope data reduction from the waveform data, since the Hilbert envelope is nonlinear to
the waveform data. After the Hilbert envelope data or the signed envelope data are ob-
tained, a linear filter is applied to the envelope data to extrapolate the data to get the
ULF (ultra-low-frequency) component for recovering the long-wavelength background
velocity structure. Fig. 7 gives an example of the signed envelope data from the SEG 2D
salt model (see Fig. 9a) shown by the green curve. Fig. 8 shows the frequency spectra
of different types of envelope data compared with the waveform data for seismic traces
from SEG salt model. The red line is for the signed demodulated (SD) envelope, and the
pink and green lines are for the low-passed SD envelopes. We see that the low-passed
SD envelopes have much lower frequencies. These low-frequency components will be
backpropagated (re-focused) to become the long-wavelength structure of the salt bodies.
The data domain low-K recovery for envelope data is much simpler that the nonlinear
operation for the waveform data or for the waveform inverse sensitivity operator. To say
this in mathematical language, we use the nonlinear implicit function theorem as follows.

From (3.2), we derive the nonlinear envelope SO (sensitivity operator),

(
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)

NL
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(
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)
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)

NL

, (3.19)

where e is the envelope data, and p is the waveform data. The subscript ”NL” means
”nonlinear”. This equation is a generalization of the chain rule of differentiation. From
the above relation, we can derive
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where
(

δe
δp

)−1

NL
is the inverse envelope operator. The above equation is the implicit func-

tional theorem for nonlinear case [43]. Then we obtain the waveform inverse sensitivity
operator
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Figure 7: The signed envelope data are similar to filtered reflection time-series; One trace of data from the SEG
salt model. (waveform data: red, Hilbert envelope data: blue; and signed envelope data: green)

Figure 8: Spectra of envelope data with singed demodulation: Black line is for the waveform data, blue is for
Hilbert envelope, red, green and pink are for the signed envelopes with different low-pass filters.

As we discussed in Section 3.1, (δe/δv)NL has much weaker nonlinearity than the wave-
form sensitivity operator, which we mark as (δe/δv)wNL , where ”wNL” denotes weak
nonlinear . On the other hand, we mark strong nonlinear as ”sNL”. Then the above equa-
tion can be rewritten as

F−1
p ≡

(

δp

δv

)−1

sNL

=

(

δe

δv

)−1

wNL

(

δe

δp

)

sNL

. (3.22)

In terms of functional derivative, the above equation shows that an inverse strong-
nonlinear functional derivative (inverse waveform sensitivity kernel) can be imple-
mented via a weak-nonlinear inverse functional derivative (inverse envelope sensitivity
kernel) applying to a nonlinearly transformed data set based on the nonlinear implicit
theorem. In gradient method, we use the adjoint operator to substitute the inverse oper-
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Figure 9: MS-DEI using envelope data with polarity (envelope by signed demodulation) for SEG/EAGE 2D salt
model: a) True model, b) Initial model, c) Result of conventional FWI, d) Result of envelope inversion using
indirect sensitivity operator derived from chain rule, e) MS-DEI result using direct envelope sensitivity operator
using envelope data by signed-demodulation. f) MS-DEI result by direct envelope sensitivity operator using
envelope phase-data for polarity information.

ator for weak-nonlinear operator. Therefore, linear-filtering the envelope data is equiv-
alent to applying a strong-nonlinear inverse sensitivity operator to the nonlinear wave-
form data. Even though the filtering procedure in envelope data domain and the inverse
nonlinear sensitivity operation applying to the waveform data have same final goal, the
filtering procedure on envelope data is much easier due to absence of interference.

We know that the strongest nonlinearity for FWI exists in the recovery of large-
scale strong-contrast structure (the low-wavenumber components). Therefore the low-
wavenumber recovery can be accomplished by DEI using a nonlinear data functional,
the envelope function. After recovering the low-wavenumber component of velocity
structure, the rest of inversion becomes weak-nonlinear and can be carried out by con-
ventional FWI. Fig. 9 shows the results of envelope inversion (for large-scale structure)
plus conventional FWI (to add high-wavenumber component to the inversion) for the
SEG salt model. We use a Ricker wavelet with a dominant frequency of 9 Hz as source
in the test (cut from 4Hz below). Fig. 9a is the true model, and Fig. 9b is the initial model
for inversion. Fig. 9c is the result of conventional FWI, and Fig. 9d is the result using
conventional envelope-inversion (using the indirect sensitivity operator derived by the
chain rule). The last two figures (Figure 9e and 9f) are the results by Direct envelope
inversion (DEI). Fig. 9e is MS-DEI using signed envelopes [22, 52, 55]; Fig. 9f is MS-DEI
by a joint phase-amplitude inversion through time-frequency analysis [53]. We see that
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DEI using the signed envelope can obtain good recovery of the salt structure (Figs. 9e,
9f). The DEI method using envelope-phase with normalized envelope-amplitude can en-
hance the signal from deep structure reflections, so the inversion has better recovery of
deep structures (Fig. 9f). Some results have also been obtained for source-independent
MS-DEI [23].

4 Discussion and conclusion

After analyzing the GLM theory and the direct envelope inversion (DEI) (especially the
multi-scale DEI), I point out the similarity and differences between the two approaches.
These methods belong to a category of strong-scattering inversion or inverse Schrödinger
scattering (inversion problem for Schrödinger equation). This method untangles the
strong nonlinearity to remove the multiple-scattering effect from the data so that the
transformed data will have better linearity to the model parameter change. However,
the traditional GLM theory/method deals mostly on potential inversion which is a high-
wavenumber inversion and is quite different from the impedance inversion and velocity
inversion in acoustics and seismology. In this work, following the work in seismic liter-
ature on layered media, summarized in the book of Aki and Richards (Volume II) and
the work by Sabatier (in Chadan ad Sabatier [26]), I introduce the singular function for
impedance jumps and then apply the GLM theory to impedance and velocity inversion,
especially to the long-wavelength structure recovery by solving the GLM equation.

When we look at the three-dimensional impedance inversion problem, things become
quite different from the case of one-dimensional. Although the beautiful GLM theory for
1-D inverse scattering emerged a long time ago, 3-D exact inverse-scattering solution is
still in the developing stage (see the books by Newton [60], Chadan and Sabatier [26],
Pike and Sabatier [61]). As pointed out by Roger Newton in the preface of his book [60],
the data (observations) are 5-dimensional (two incident angles, two receiving angles, one
frequency or time), but the potential is only 3-dimensional. To figure out a one-to-one cor-
respondence between observables and potential parameters becomes much more com-
plicated. This ”large degree of over-determination in higher-dimensional inverse scattering
problems”, is the major source of difficulty in finding exact solutions; On the other hand,
this may turn out to be very favorable for optimization based inversion methods. More
data redundancy, more stable the solution will be by minimizing the misfit-functional of
observations versus predictions. From this point of view, the direct envelope inversion
(DEI) tries to incorporate the advantages of both approaches into the direct envelope in-
version for strong-scattering inversion. The derivation, examples and discussions in this
paper may serve as the first attempt in this direction, and many questions and problems
remain to be answered and solved in future researches.

For three-dimensional scattering problems, there is another significant difference be-
tween quantum scattering and seismic scattering (classical wave scattering). Schrödinger
equation is devised by Schrödinger to model the wave-particle duality in quantum me-
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chanics. When propagating, the wave function of particles such as photons, behaves like
waves; however, when interacting with atoms, nucleus, and molecules, behaves like par-
ticles. This is similar to the physical optics approximation or Kirchhoff approximation in
optics: propagating as waves but reflecting by sharp boundary like particles. This is why
we can borrow some techniques from inverse Schrödinger scattering for envelope inver-
sion. Nevertheless, there is significant differences in the application goals. As stated in R.
Newton’s book, when applying the inverse Schrödinger scattering to atoms and nucleus,
the potentials to be solved mainly are central potentials. Only for molecular scattering,
non-central potentials have to be involved. On the contrary, in 3-D seismic impedance in-
version, inclusions are irregular, sharp-contrast bodies, central potential inversion seems
have very little applications. For irregular boundaries of strong-contrast inclusion, the
impedance jumps have more dimensions than three, since the normal vectors of bound-
ary elements (n̂) need another two dimensions to specify. This demonstrate the difference
between the potential inversion and the impedance inversion.

Direct envelope inversion (DEI) combines some features from GLM theory and the
Newton’s local optimization algorithm for the estimate of focusing operator in the ve-
locity inversion, therefore opened a new approach for 3-D strong-scattering inversion.
An example for the SEG/EAGE salt model demonstrates the validity of direct envelope
inversion. The success of direct envelope inversion raises also some interests to under-
stand its link to the 3-D inverse Schrödinger scattering problem. It is also conceivable
that the combination of strong-scattering inversion (inverse Schrödinger scattering) and
weak-scattering inversion (local optimization based inversion) may create some inversion
methods working for a whole range of inversion problems in geophysical exploration.
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