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Abstract. Numerically solving 3D seismic wave equations is a key requirement for
forward modeling and inversion. Here, we propose a weighted Runge-Kutta dis-
continuous Galerkin (WRKDG) method for 3D acoustic and elastic wave-field mod-
eling. For this method, the second-order seismic wave equations in 3D heteroge-
neous anisotropic media are transformed into a first-order hyperbolic system, and
then we use a discontinuous Galerkin (DG) solver based on numerical-flux formu-
lations for spatial discretization. The time discretization is based on an implicit di-
agonal Runge-Kutta (RK) method and an explicit iterative technique, which avoids
solving a large-scale system of linear equations. In the iterative process, we introduce
a weighting factor. We investigate the numerical stability criteria of the 3D method in
detail for linear and quadratic spatial basis functions. We also present a 3D analysis of
numerical dispersion for the full discrete approximation of acoustic equation, which
demonstrates that the WRKDG method can efficiently suppress numerical dispersion
on coarse grids. Numerical results for several different 3D models including homoge-
neous and heterogeneous media with isotropic and anisotropic cases show that the 3D
WRKDG method can effectively suppress numerical dispersion and provide accurate
wave-field information on coarse mesh.
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1 Introduction

Accurate and efficient numerical method is necessary in computational geophysics for
the purpose of resource explorations and understanding the earth. In recent years, there
has been a strong interest for the discontinuous Galerkin method (DGM) in seismic nu-
merical simulation. The DGM was first introduced in the early 1970s for solving the lin-
ear neutron transport equations [1], and later extended to solve hyperbolic conservation
problems by employing discontinuous flux formulations and varies temporal discretiza-
tions. The work by Cockburn and Shu [2, 3] formulated the total variation diminishing
(TVD) RK discontinuous Galerkin method into a complete mathematical framework. In
computational seismology DGM has rapid developments [4–14]. For instance, an ar-
bitrary high-order derivatives DGM proposed by Dumbser and Käser has been widely
used in computational geophysics [6–11]. In 3D seismic modeling, the complex geologic
geometry and large velocity contrast bring up many challenges to numerical methods
due to the large amount of computations and storage requirements. However, the DGMs
have been proved successfully to be efficient and high-order accurate in modeling seis-
mic elastic wave propagating in complex media [5,12], even with viscoelastic attenuation
media [7].

The main difference between the DGM and traditional FEM is that the basis function
can be discontinuous across elements in DGM. In general, DGM has the following advan-
tages: (i) it maintains good properties with respect to conservation, stability, and conver-
gence; (ii) it is easy to deal with domains with complex structures and non-conforming
meshes, allowing for hanging nodes; (iii) the solution can be discontinuous across the
element interfaces; (iv) complete localization means that DGM avoids dealing with large
global mass matrices and is therefore especially suitable for parallel computing; (v) it is
flexible for DGM to deal with locally varying polynomial degrees and element shapes
(hp-adaptivity).

Many developed DGMs are based on the semi-discrete approach, wherein they em-
ploy the discontinuous Galerkin formulations for the spatial discretization, transforming
the original partial differential equations (PDEs) into a system of ordinary differential
equations (ODEs). After that, a time-stepping method is carried out to advance the so-
lution in time, such as RK schemes [2], arbitrary high-order derivatives time stepping
method [6] or the Lax-Wendroff method [15]. Explicit time-stepping scheme is widely
used since it is easy to program. Alternatively, implicit solvers, such as diagonal implicit-
RK [16,17] and Newton iterative methods [18,19], are used in time discretization because
they permit to use longer time steps. However, the shortcoming of fully implicit solvers
is the extremely high computational cost induced by solving the large-scale linear alge-
braic equations. For this reason, explicit techniques such as the truncated differentiator
series method and the predictor-corrector method have been developed (e.g., [20–22]),
which turn to be robust methods to convert implicit methods into explicit ones and may
preserve the good stability inherent in implicit schemes. In our research these techniques
will be considered.
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Numerical dispersion in seismic modeling has been studied by many researchers as
an important issue. Grid dispersion in the DGM has been analyzed by Hu et al. [23], us-
ing flux formulation DGM and Legendre basis functions to give a semi-discrete numeri-
cal dispersion relation for the scalar wave equation. Afterwards, Ainsworth et al. [24, 25]
carried out an analysis of the acoustic wave equation based on spatial discretization for
1D and 2D cases. De Basabe et al. [26] presented a comprehensive analysis of the 2D
dispersion for high-order DGMs for acoustic and elastic wave equations based on leap-
frog time discretization. Antonietti et al. [27] gave some detailed numerical dispersion
results for 2D discontinuous Galerkin spectral elements method using simplicial meshes
for elastic equations. Afterwards, Ferroni et al. [28] conducted a dispersion-dissipation
analysis of 3D continuous and discontinuous spectral elements method on both tetrahe-
dral and hexahedral elements, which gave the first 3D quantitative numerical dispersion
analyses. To the best of our knowledge, there has not yet any quantitative dispersion
results for 3D flux formulation DGMs. We will discuss and present our results in this
work.

In this paper, we propose a weighted RKDG (WRKDG) method to solve 3D acoustic
and elastic equations, which is actually a generalization for the 2D case [13]. The spatial
discretization is carried out using the local Lax-Friedrichs numerical flux formulations,
and an implicit diagonal RK method is employed to solve the semi-discrete ODEs. We
employ a weighted two-step iterative process to make the implicit diagonal RK method
explicit. As a result, the scheme is easy to implement and permits to use relatively longer
time steps. The paper is organized as follows. In Section 2, we transform the second-
order 3D heterogeneous anisotropic wave equations into a first-order hyperbolic system.
In Section 3, we derive the 3D WRKDG method in detail. In Section 4, detailed analyses of
stability conditions and numerical dispersion relationship are deduced for the 3D acous-
tic equation. In the analyses, we consider regular hexahedral elements using orthogonal
Legendre basis functions. Some numerical experiments based on regular hexahedrons
are presented in Section 5. Section 6 summarizes the conclusions of the research.

2 Transformation of the wave equations

In a 3D heterogeneous elastic medium, the seismic wave equation can be written as:















ρ ∂2U
∂t2 =∇·σ+ f ,

σ=C : ε,

ε= 1
2

[

∇U+(∇U)T
]

,

(2.1)

where ρ=ρ(x,y,z) is the density, U=(u1,u2,u3)
T is the displacement vector, σ and ε are the

stress and strain tensors, respectively. C=
{

cijkl

}

is the stiffness tensor, and f =( f1, f2, f3)
T

is the external force-source vector. We can then write the stress-strain relation as follows
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by using the reduced Voigt notation:

















σ11

σ22

σ33

σ23

σ13

σ12

















=

















c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66

































ε11

ε22

ε33

2ε23

2ε13

2ε12

















, (2.2)

where cij(x,y,z) are the elastic constants with cij = cji. There are 21 independent elastic
constants in full anisotropic case. For an isotropic elastic medium, there are two inde-
pendent constants λ and µ, known as the Lamé parameters, and the stress-strain relation
(2.2) can be degraded as follows
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,

where c11 = λ+2µ, c12 = λ,c44 = µ. For homogeneous vertically transversely-isotropic
medium, c11,c12,c13,c33,c44 are five independent elastic constants, c66 =(c11−c12)/2 , and
Eq. (2.2) can be written as

















σ11

σ22

σ33

σ23

σ13

σ12

















=

















c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

































ε11

ε22

ε33

2ε23

2ε13

2ε12

















.

We rewrite Eq. (2.1) in the following form

ρ
∂2U

∂t2
=D ·U+ f , (2.3)

where D is the second-order partial differential operator. For example, for the 3D coupled
elastic anisotropic case, D is defined by

D=
∂

∂x

(

C1
∂

∂x
+C2

∂

∂y
+C3

∂

∂z

)

+
∂

∂y

(

C4
∂

∂x
+C5

∂

∂y
+C6

∂

∂z

)

+
∂

∂z

(

C7
∂

∂x
+C8

∂

∂y
+C9

∂

∂z

)

,

where C1,C2,C3,C4,C5,C6,C7,C8,C9 are parameter matrices related to the elastic constants
cij. To transform Eq. (2.3) into a 1st-order linear hyperbolic system, we introduce three
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vectors P= (p1,p2,p3)
T

, Q= (q1,q2,q3)
T

and R= (r1,r2,r3)
T

such that ∂P
∂t =

∂U
∂x , ∂Q

∂t = ∂U
∂y ,

∂R
∂t =

∂U
∂z . Using Eq. (2.3) and the definitions of P, Q and R, Eq. (2.3) can be rewritten as:



























ρ ∂U
∂t =

∂
∂x (C1P+C2Q+C3R)+ ∂

∂y (C4P+C5Q+C6R)+ ∂
∂z (C7P+C8Q+C9R)+ f̃ ,

∂P
∂t = ∂U

∂x ,

∂Q
∂t = ∂U

∂y ,

∂R
∂t = ∂U

∂z ,
(2.4)

where f̃ denotes the integral of the external force-source f with respect to t. Further, let

W=









U
P
Q
R









, F(W) =−









C1
ρ P+ C2

ρ Q+ C3
ρ R C4

ρ P+ C5
ρ Q+ C6

ρ R C7
ρ P+ C8

ρ Q+ C9
ρ R

U 0 0
0 U 0
0 0 U









,

f̂ =









f̃
/

ρ
0
0
0









,

then Eq. (2.4) has a simple form:

∂W

∂t
+ ∇·F(W) = f̂ , (2.5)

where F(W) is the called the flux vector.
For the 3D acoustic equation

utt−c2
(∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

= f (t), (2.6)

Eq. (2.5) has the following concise form









u
p
q
r









t

+∇·









−c2p −c2q −c2r
−u 0 0
0 −u 0
0 0 −u









=









f̃
0
0
0









, (2.7)

where

W=









u
p
q
r









, F(W) =









−c2 p −c2q −c2r
−u 0 0
0 −u 0
0 0 −u









, f̂ =









f̃
0
0

0









,

and c is the acoustic velocity.
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3 Numerical scheme

3.1 Spatial discretization

Using classical notations, the computational domain Ω ∈ R
3 is partitioned into non-

overlapping sub-elements {Ωi}. The scalar test function broken space of the DGM is

Vh=
{

v∈L1(Ω) : v|Ωi
∈P(Ωi)

}

,

where P(Ωi) is a polynomial space defined on Ωi. Let v be a time-independent scalar test
function, then an approximate solution W of Eq. (2.6) satisfies

∫

Ωi

(

v
∂W

∂t
+v∇·F(W)

)

dV =
∫

Ωi

f̂ v dV, (3.1)

Using Green’s formula, Eq. (3.1) is recast as

∫

Ωi

(

v
∂W

∂t
−F(W)·∇v

)

dV+
∫

∂Ωi

vF(W)·n dS =
∫

Ωi

f̂ v dV, (3.2)

where ∂Ωi is the boundary of Ωi, and n denotes the unit outward normal vector to ∂Ωi.
Since W may be discontinuous across the boundary ∂Ωi, we must replace the flux by a
numerical flux F̂(Wint,Wext,n), where Wintand Wext are the traces of W on ∂Ωi taken from
the interior and exterior of Ωi, respectively. By incorporating the Lipschitz, consistent
and monotone numerical fluxes [29, 30], the DG schemes are known to be stable and
convergent. Here, we use a standard local Lax-Friedrichs flux [2, 3], which reads

F̂(Wint,Wext,n)=
1

2

[

F(Wint)+F(Wext)
]

·n−C∂Ωi

2
(Wext−Wint), (3.3)

where the numerical viscosity constant C∂Ωi
can be chosen to be the biggest eigenvalue

(in absolute value) of ∂
∂W F(Wint)·n and ∂

∂W F(Wext)·n.

Let
{

wi
l

}l=dloc−1

l=0
be a set of time-independent polynomial basis functions of Vh. Possi-

ble examples for
{

wi
l

}l=dloc−1

l=0
include the Legendre polynomials for regular elements [2,3]

or the simple monomial functions for triangular elements [31] or tetrahedral elements.
The variable dloc is the local dimension of the basis functions for typical 3D elements.
In this study, we employ the 3D Legendre polynomials as basis functions, which is con-
structed by the tensor-product of 1D Legendre polynomials. The numerical solution of
Eq. (3.2) can be written as the following numerical approximation:

W |Ωi
=

dloc−1

∑
l=0

ci
l(t)w

i
l , (3.4)
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in which
{

ci
l(t)
}dloc−1

l=0
are coefficients, or called degrees of freedom (DOF). With Eq. (3.4),

we replace v with wi
l′ in Eq. (3.2), so that Eq. (3.2) reads as

dloc−1

∑
l=0

∂ci
l(t)

∂t

∫

Ωi

wi
lw

i
l′ dV−

∫

Ωi

F

(

dloc−1

∑
l=0

ci
l(t)w

i
l

)

·
(

∂wi
l′

∂x
,
∂wi

l′

∂y
,
∂wi

l′

∂z

)

dV

+∑
j

∫

Ωi∩Ωj

wi
l′ F̂

((

dloc−1

∑
l=0

ci
l(t)w

i
l

)

,

(

dloc−1

∑
l=0

c
j
l(t)w

j
l

)

,n

)

dS=
∫

Ωi

f̂ wi
l′ dV. (3.5)

3.2 Time discretization

As can be seen from Eq. (3.5), we are left to solve a semi-discrete ODE system. To sim-
plify the expression, we introduce a coefficient vector Ci(t) to represent the coefficients
{

ci
l(t)
}dloc−1

l=0
, and omit the superscript i and the argument t. Then, the semi-discrete

Eq. (3.5) reads
∂C

∂t
= L(C)+ F̄, (3.6)

where L is the linear operator with respect to C. F̄ denotes the source excitation item.
The ODE system (3.6) can be advanced by means of an explicit treatment, e.g., the

classic TVD RK time discretization [2, 3]. To expect to improve the CFL stability condi-
tions, following the techniques by He et al. [13], we employ the following implicit diago-
nal RK method to solve the semi-discrete system, which reads as

C(n+1)=C(n)+
∆t

2
(K(n)+K̄(n)), (3.7)

where

K(n)= L(C(n)+r∆tK(n))+ F̄(tn+r∆t), (3.8a)

K̄(n)= L(C(n)+(1−2r)∆tK(n)+r∆tK̄(n))+ F̄(tn+(1−r)∆t), (3.8b)

where r=
(

3−
√

3
)

/6.

In the above algorithm, we need to compute K(n) and K̄(n) to obtain C(n+1) in Eq. (3.7).
However, K(n) and K̄(n)are provided implicitly, which means that we have to solve a set
of linear algebraic equations to determine K(n) and K̄(n) at each time advance. This will
result in a great increase in computational cost. To avoid this, we try to convert the
implicit scheme into an explicit one by means of iterative procedure. For this purpose,
we first rewrite Eq. (3.8a) and ignore the source item, to obtain

K(n)= r∆tL(K(n))+L(C(n)). (3.9)

If ‖r∆tL‖<1, then Eq. (3.9) implies that the following iterative process can be used:

K
(n)
k+1= r∆tL(K

(n)
k )+L(C(n)),
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where the subscript k is the iterative number. Always, we can implement more iterations
to achieve higher time accuracy. However, when taking the amount of computation into
account, we favor the use of a few steps of iterations to save computational costs. We

choose L(C(n)) as the initial value of K
(n)
0 , and apply two iterations, then we obtain the

following scheme:














K
(n)
0 = L(C(n)),

K
(n)
1 = r∆tL(K

(n)
0 )+L(C(n)),

K
(n)
2 = r∆tL(K

(n)
1 )+L(C(n)).

(3.10)

K
(n)
1 and K

(n)
2 can be suitable approximations of K(n). For simplicity, we can take K

(n)
2 as an

approximation of K(n). However, to enrich the numerical method, a better alternative is

to take an intermediate value between K
(n)
2 and K

(n)
1 for the approximation of K(n), which

reads

K(n)=ηK
(n)
2 +(1−η)K

(n)
1

= L(C(n))+r∆tL2(C(n))+η(r∆t)2 L3(C(n)), (3.11)

where η∈[0,1]. The above stepping scheme is of second order accuracy in time discretiza-
tion, unless η=1 gives third order of accuracy. To compute K̄(n) in Eq. (3.8b), we define
T(n)=C(n)+(1−2r)∆tK(n). If we ignore the source term, Eq. (3.8b) can be rewritten as:

K̄(n)= r∆tL(K̄(n))+L(T(n)).

We can implement the same process as (3.10) to obtain K̄(n), if we take L(T(n)) as the
iterative initial value for K̄(n).

4 Stability and numerical dispersion

4.1 Von Neumann analysis

We conduct a Von Neumann analysis in order to derive the numerical stability conditions
and dispersion errors of the 3D WRKDG. We focus on the 3D acoustic wave equation in
an isotropic medium and further suppose that the medium is unbounded and source-
free. These hypotheses have been widely used [23–28]. We recall that the flux F(W) is
linear, then we can rewrite the flux vector in Eq. (2.7) in the following format [23]:

F(W)=(A1W,A2W,A3W),

where

A1=









0 −c2 0 0
−1 0 0 0
0 0 0 0
0 0 0 0









, A2=









0 0 −c2 0
0 0 0 0
−1 0 0 0
0 0 0 0









, A3=









0 0 0 −c2

0 0 0 0
0 0 0 0
−1 0 0 0









.
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After some algebraic operations, the numerical flux F̂(Wint,Wext,n) in Eq. (3.3) can be
written in the following form:

F̂(Wint,Wext,n)= ÂintWint+ ÂextWext, (4.1)

where

Âint=
1

2
(A1n1+A2n2+A3n3+C∂Ωi

I),

Âext=
1

2
(A1n1+A2n2+A3n3−C∂Ωi

I), (4.2)

n=(n1,n2,n3)
T,

where I is the identity matrix.

Next, the domain is partitioned into regular hexahedral elements En,m,k=[xn,xn+1]×
[ym,ym+1]×[zk ,zk+1], with sides parallel to the coordinate axes with δx = xn+1−xn, δy =
ym+1−ym and δz = zk+1−zk. In order to facilitate the analysis, it is usually assumed that
δx=δy=δz=h. The approximation of W inside En,m,k can be written as

W |En,m,k =
dloc−1

∑
l=0

Cn,m,k
l (t)wn,m,k

l ,

where Cn,m,k
l (t) are DOF for the solution, and wn,m,k

l are the local basis set in the element

En,m,k(t). According to the numerical flux in Eqs. (4.1) and (4.2), Eq. (3.5) can be rewritten
as

dloc−1

∑
l=0

{

∂Cn,m,k
l

∂t

∫

En,m,k
wn,m,k

l wn,m,k
l′ dV−

3

∑
k=1

AkCn,m,k
l

∫

En,m,k
wn,m,k

l

∂wn,m,k
l′

∂xk
dV

+
6

∑
i=1

ÂintCn,m,k
l

∫

Fi

wn,m,k
l wn,m,k

l′ dS+
6

∑
i=1

ÂextCn′,m′,k′
l

∫

Fi

wn′,m′k′
l wn,m,k

l′ dS

}

=0,

l′=0,··· ,dloc−1, (4.3)

where Fi (i=1,··· ,6) denotes the six faces of En,m,k.

Let Cn,m,k(t)=(Cn,m,k
0 ,Cn,m,k

1 ,··· ,Cn,m,k
dloc−1)

T
, then Eq. (4.3) can be written as:

Q
∂Cn,m,k

∂t
+

2

δx

[

N0Cn,m,k+N−1Cn−1,m,k+N+1Cn+1,m,k
]

+
2

δy

[

M0Cn,m,k

+ M−1Cn,m−1,k+M+1Cn,m+1,k
]

+
2

δz

[

K0Cn,m,k+K−1Cn,m,k−1+K+1Cn,m,k+1
]

=0, (4.4)

wherein the explicit forms of these matrices are shown in Appendix A.
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We choose the following plane-wave solution

Cn,m,k(t)=C(t)exp[i(κsinθcos ϕnδx+κsinθsinϕmδy+κcosθkδz)],

which represents a plane wave with wave number κ and propagation direction deter-
mined by θ and ϕ. θ∈ [0,π] denotes the angle between the propagation direction and the
z-axis, and ϕ∈ [0,2π] denotes the angle between the projection of the propagation direc-
tion into the x−y plane and x-axis. By substituting the wave expression into Eq. (4.4), we
get

∂C(t)

∂t
=−Q−1

[

2

h
(N0+N−1e−iκsinθcosϕh+N+1eiκsinθcos ϕh)+

2

h
(M0+M−1e−iκsinθsinϕh

+M+1eiκsinθsin ϕh)+
2

h
(K0+K−1e−iκcosθh+K+1eiκcosθh)

]

C(t). (4.5)

We introduce a variable S to simplify the RHS of Eq. (4.5), which is now written as

∂C(t)

∂t
=SC(t), (4.6)

where

S=−Q−1

[

2

h
(N0+N−1e−iκsinθcos ϕh+N+1eiκsinθcosϕh)

+
2

h
(M0+M−1e−iκsinθsin ϕh+M+1eiκsinθsin ϕh)+

2

h
(K0+K−1e−iκcosθh+K+1eiκcosθh)

]

.

In order to solve Eq. (4.6), we use the weighted RK time discretization method intro-
duced in Subsection 3.2. After some algebraic operations, we obtain

Cn+1=

(

I+
∆t

2
(G1+G1G2)

)

Cn, (4.7)

where

G1=S+r∆tS2+η(r∆t)2
S3,

G2= I+(1−2r)∆tG1.

Next, we assume that Cn = C0e−iωn∆t, where ω is the numerical angular frequency,
and C0 is an arbitrary constant vector. Then Eq. (4.7) can be written as

e−iω∆tC0 =

(

I+
∆t

2
(G1+G1G2)

)

C0. (4.8)

Let Λ denote the eigenvalue of the matrix on the RHS of Eq. (4.8), i.e.,

e−iω∆t=Λ. (4.9)

We remark that Λ and ω are complex numbers. Eqs. (4.7)-(4.9) imply the stability and
dispersion relationship. Λ relates to the numerical stability condition, and ω leads to the
numerical dispersion relationship.
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4.2 Stability conditions

We now consider the stability conditions of the WRKDG based on the above plane wave
analysis. Note that the value of Λ relates to the wave number κh, propagation direction
θ and ϕ, Courant number α, and the weight η. From Eq. (4.7) and the definition of Λ, we
know that to keep the scheme stable, Λ must satisfy |Λ| ≤ 1. Moreover, the modulus of
all the eigenvalues of Eq. (4.8) must be no more than 1 for all the wave numbers κh∈[0,π]
and all the propagation directions θ∈ [0,π] and ϕ∈ [0,2π], which can be described by an
optimization problem:

max α

s.t. |Λ(κh,α,θ,ϕ)|≤1 for κh∈ [0,π], θ∈ [0,π] and ϕ∈ [0,2π],

α≥0

The solution for this problem can be numerically obtained. We resolve it for the linear
and quadratic regular hexahedral cases, whose spatial accuracy is 2nd- and 3rd-order,
respectively. Fig. 1 plots the different maximal Courant numbers for different weights η
from 0 to 1. If we denote a spatial interpolation of the polynomial of degree at most N
by PN , then for the P1 case, the maximal Courant number αmax varies from 0.4 to 0.888,
as the weight η increases from 0 to 1. For example, the stability condition with η=0.36 is
given by

∆t≤αmax
h

c
≈0.888

h

c
. (4.10)

For the P2 case, the maximal Courant number αmax varies from 0.217 to 0.310, as the
weight η increases from 0 to 1. For example, the stability condition with η=0.56 is given
by

∆t≤αmax
h

c
≈0.310

h

c
. (4.11)

For comparison purpose, we also give the detailed stability conditions of the 3rd-
order DGM with the 3rd-order TVD RK time discretization for the homogeneous acoustic
equation. For the P1 case, the stability condition is given by

∆t≤αmax
h

c
≈0.260

h

c
, (4.12)

and for the P2 case, the stability condition is given by

∆t≤αmax
h

c
≈0.136

h

c
. (4.13)

Comparing the stability conditions in Eqs. (4.10)-(4.13) for the P1 and P2 elements,
respectively, we can see that the stability conditions of the WRKDG methods are more
relaxed than those of the 3rd-order DGM with the TVD RK time discretization. In partic-
ular, there is a about 3.4-fold difference in the maximal Courant number for P1 element



X. He, D. Yang and X. Ma / Commun. Comput. Phys., 28 (2020), pp. 372-400 383

0 0 2. 0 4. 0 6. 0 8. 1

0 2.

0 3.

0 4.

0 5.

0 6.

0 7.

0 8.

0 9.

m
a

x

P1

P
2

Figure 1: The maximal Courant numbers of the 3D WRKDG method for P1 and P2 elements for weighting
factors η varying from 0 to 1.

and a 2.3-fold difference for P2 element between the two numerical methods. The results
is comparable with the 2D WRKDG method in [13]. It should be noted that the computa-
tional cost for each time-marching is 2 times larger than the TVD RK time discretization,
hence the weighted RK time stepping scheme still achieve a 1.7 times superiority for P1

element and is comparable to the TVD RK time discretization for P2 element in compu-
tational efficiency.

Note that the stability conditions for heterogeneous media cannot be directly deter-
mined but could be approximated using local homogeneous cases. Our conjecture is that
Eqs. (4.10) and (4.11) are approximately correct for heterogeneous media if the maximal
wave velocity c is used. The basis functions used here is order-complete Legendre basis.
If we use other nonorthogonal basis, the above analysis approach is still applicable.

4.3 Dispersion analysis

It is well known that numerical dispersion is a major artifact when numerical methods are
used to model wave fields. In this subsection, we investigate the numerical dispersion of
the 3D WRKDG by using the above plane wave analysis, including the effects of the space
and time discretization. We have already stated that Λ and ω in Eqs. (4.8) and (4.9) are
usually complex numbers. We therefore write ω=ωr+iωi and Λ=Λr+iΛi, in which Λr

and Λi are the real and imaginary parts of Λ. ωr, the real part of ω, is related to numerical
dispersion, while ωi (the imaginary part) is related to the numerical damping inherent in
the discretization process. A stable numerical scheme always has a non-positive ωi value,
which represents that the energy does not increase. Substituting the decomposition of Λ

and ω into Eq. (4.9), we have

Λr+iΛi= e−i(ωr+iωi)∆t= eωi∆t(e−iωr∆t)= eωi∆t(cos(ωr∆t)−isin(ωr∆t)) .
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Solving for ωr∆t, we then have

ωr∆t=arctan
(

− Λi

Λr

)

.

The numerical dispersion R is defined by the ratio of numerical velocity cnum and
physical velocity c:

R=
cnum

c
=

ωr

cκ
=

ωr∆t

ακh
,

where α=c∆t/h is the Courant number. If we adopt the definition of the spatial sampling
ratio proposed by Moczo et al. [32], Sp=κh/(2π) , then we get

R=
ωr∆t

2παSp
.

Figs. 2 and 3 shows how the numerical dispersion R varies with sampling ratio Sp ∈
[0,0.5] for propagation directions θ =π/2 and θ =π/4 , respectively, when α= 0.29. We
give the results for four cases ϕ=0

◦
, 15

◦
, 30

◦
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◦
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Figure 2: Numerical dispersion R as a function of sampling rate Sp for the different methods when θ =π/2

and ϕ=0
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: (a) WRKDG method for P1 element, (b) WRKDG method for P2 element, and (c) the

4th-order SG method.
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4th-order SG method.
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and 3 are the values using the P1 and P2 WRKDG method with η = 0.5, respectively,
whereas Fig. 2(c) and Fig. 3(c) illustrate the values for the 4th-order staggered-grid (SG)
method [32] for comparison. We can see that as Sp increases, the curves for the three
methods deviate from R=1, which indicates that coarser sampling gives larger numerical
dispersion. The two figures also suggest that the numerical dispersive error with θ=π/4
is much less than θ =π/2 . In the three methods, the P2 WRKDG method produces the
smallest numerical dispersion, while the P1 WRKDG method and the SG method are al-
most equivalent. We also observe that for the P2 WRKDG method and SG method, as ϕ
increase, the numerical dispersion decreases, while the deviation is minimal at θ=π/4 .
In addition, for the P2 WRKDG method, the numerical dispersion R>1, which means the
waves are slightly advanced; for the SG method, the numerical dispersion R< 1, which
means the waves are slightly delayed; while for the P1 WRKDG method, the numerical
dispersion oscillates around R=1, which implies that the waves are delayed or advanced
in different propagation directions. From Figs. 2 and 3 we can observe that the numerical
dispersion is related to the propagation direction. In other words, numerical dispersion is
anisotropic. In order to have some insights into the numerical dispersion anisotropy, we
give some results about the influence of θ and ϕ at Sp=0.5. Fig. 4 shows how the numer-

ical dispersion R varies for different propagation angles ϕ∈ [0,π] for θ=0
◦
, 15

◦
, 30

◦
, 45

◦
.

We can see that the anisotropy curves for the three methods are symmetric about ϕ=π/2,
while the numerical dispersion reaches its extreme points at θ=π/4 and θ=π/2. Fig. 5
shows how the numerical dispersion R varies for different propagation angles θ ∈ [0,π]
for ϕ=0

◦
, 15

◦
, 30

◦
, 45

◦
. We can see that for the P2 WRKDG method and SG method, as ϕ

increase from 0
◦
to 45

◦
, the numerical dispersion decreases, while the deviation is minimal

at ϕ=π/4 , which is consistent with the results in Figs. 2 and 3. Figs. 4 and 5 also sug-
gest that the P1 WRKDG method and the SG method have greater numerical dispersion
anisotropy than the P2 WRKDG method.

For further comparisons, we give the maximum numerical dispersive error |1−R|
for these methods for different Courant numbers, for different weighting factors, for
Sp ∈ [0,0.5], θ ∈ [0,π], ϕ ∈ [0,2π] in Table 1. A blank entry means that the numerical
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Figure 5: Numerical dispersion R as a function of propagation direction θ for the different methods when Sp=0.5
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: (a) WRKDG method for P1 element, (b) WRKDG method for P2 element, and (c) the

4th-order SG method.

method is unstable for that specific Courant number. We can see from the table, for exam-
ple, when α=0.16, the maximum numerical dispersion errors for the P1 and P2 WRKDG
method with η = 0.5 are 8.883% and 2.182%, respectively, while that of the SG method
is 25.290%. Table 1 demonstrates that the WRKDG method can effectively suppress nu-
merical dispersion than SG method. By comparing with the numerical dispersion results
in [13], we conclude that the numerical dispersive error has only a little difference be-
tween 3-D and 2-D cases.

Table 1: The maximum numerical dispersive errors for different Courant numbers for Sp∈ [0,0.5], θ∈ [0,π] and
ϕ∈ [0,2π] (%).

α
WRKDG P1 WRKDG P2

SG
η=0.0 η=0.5 η=1.0 η=0.0 η=0.5 η=1.0

0.1 8.844 9.038 9.030 2.051 1.817 1.582 25.558

0.16 8.487 8.883 9.060 2.787 2.182 1.577 25.290

0.29 10.487 7.964 9.286 - 3.543 - 24.232

0.5 - 13.746 - - - - 20.699

5 Numerical simulations

In this section, we present some numerical examples to further illustrate the accuracy
and capability of the 3D WRKDG method. Overall, considering the computational cost
and accuracy, we use the P2 WRKDG method for the numerical modeling. Since the
amount of the computation and storage is huge for 3D models, stand-alone work has
been unable to meet the needs. All the numerical tests are implemented with Message
Passing Interface (MPI) parallel programming technology.
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5.1 Convergence test

To investigate the convergence rate of the WRKDG method, we consider the 3D homo-
geneous acoustic wave equation in Eq. (2.7), with the following exact solution


































u(t,x,y,z)=cos
(

2π f0t− 2π f0

c sinθ0cos ϕ0x− 2π f0

c sinθ0sinϕ0x− 2π f0

c cosθ0z
)

,

p(t,x,y,z)=− sinθ0 cos ϕ0

c cos
(

2π f0t− 2π f0

c sinθ0cos ϕ0x− 2π f0

c sinθ0sinϕ0x− 2π f0

c cosθ0z
)

,

q(t,x,y,z)=− sinθ0 sin ϕ0

c cos
(

2π f0t− 2π f0

c sinθ0cos ϕ0x− 2π f0

c sinθ0sinϕ0x− 2π f0

c cosθ0z
)

,

r(t,x,y,z)=− cosθ0
c cos

(

2π f0t− 2π f0

c sinθ0cosϕ0x− 2π f0

c sinθ0sinϕ0x− 2π f0

c cosθ0z
)

,

(5.1)
where c is the acoustic velocity, θ0 and ϕ0 denotes the incident direction at time t = 0,
and f0 is the frequency. We choose the solution in Eq. (5.1) with time t= 0 as the initial
condition. The computational region is 0 ≤ x,y,z ≤ 1.8 km and the time step size is set
to be ∆t= 0.1ms, such that the time discretization errors can be ignored. We choose the
parameters c = 4 km/s, f0 = 10 Hz, θ0 = π/4 , ϕ0 = π/4 , and perform the numerical
experiment on regular hexahedral mesh. We run 3000 steps to study the numerical errors
of the WRKDG method. We use the P2 WRKDG method with a weighting factor of η=0.5
in the numerical experiment. In our numerical test, we find that the value of the weight
η has little effect on the numerical errors.

In order to investigate the convergence of this method, we define the continuous L2

norm error between the numerical solution uh and the exact solution u:

EL2 =‖uh−u‖L2 =

(

∫

Ω
|uh−u|2dΩ

) 1
2

.

If we choose two different mesh spacing hs and hs−1 for the computational domain, then
the convergence orders are computed through

OL2 = log

(

Es
L2

Es−1
L2

)

/

log

(

hs

hs−1

)

.

Fig. 6 shows the numerical error and the convergence result for the displacement u.
We test for two cases: f0=20 Hz and f0=10 Hz. We observe that with the decrease of the
spatial incrementh, the numerical error decreases, which implies the proposed method is
convergent. In particular, we can see that the convergence order is about 3.

5.2 Homogeneous isotropic acoustic model

In this example, we employ the 3D WRKDG method to simulate the wave propagation
for the homogeneous medium. The velocity is 4 km/s. The computational region is
0≤ x,y,z≤11 km. The explosive source in Eq. (2.7) is a Ricker wavelet

f (t)=−9.6 f0(0.6 f0t−1)×exp[−8(0.6 f0t−1)2], (5.2)
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Figure 6: Numerical errors versus mesh size for f0=20 Hz and f0=10 Hz.

with frequency f0 = 20 Hz. The source is located at the center of the computational do-
main with a receiver 2.2 km far from the source to observe the waveforms. We choose
a cubic element mesh of size 55 m × 55 m × 55 m with ∆t= 3 ms for the computation,
resulting in about 3.64 elements per minimum wavelength. Fig. 7 gives the snapshots in
the x-y plane through the source at T=1.155 s, as generated by the P2 WRKDG method
and the 4th-order SG method, respectively. It can be seen that the snapshot generated
by the WRKDG method (Fig. 7(a)) is very clear and has no visible numerical dispersion,
whereas the 4th-order SG method (Fig. 7(b)) suffers from serious numerical dispersion.
To illustrate the problem more precisely, we also show the waveforms at the receiver.
Fig. 8 shows the normalized waveforms computed by the P2 WRKDG and the 4th-order
SG method, compared with the exact solution of the acoustic wave equation computed by
the Cagnidard-de Hoop method [33]. From Fig. 8, we can see that the numerical solution
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Figure 7: Snapshots of the seismic wave fields at time T = 1.155 s for homogeneous isotropic acoustic medium
using a coarse grid (55 m × 55 m × 55 m) generated by: (a) WRKDG method for P2 element and (b) the
4th-order SG method.
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3 WRKDG
rd

Figure 8: Comparisons of normalized waveforms at time T = 1.155 s for homogeneous isotropic acoustic
medium using a coarse grid (55 m × 55 m × 55 m): (a) WRKDG method for P2 element versus analytic
solution and (b) the 4th-order SG method versus analytic solution.

computed by WRKDG method matches well with the analytic solution, while the wave-
forms computed by the SG method show some small waves behind the principal wave,
which indicates the WRKDG method can suppress numerical dispersion more efficiently
than the SG method.

5.3 Two-layer acoustic model

In this experiment, we employ the 3D WRKDG method to simulate the wave propagation
in the medium with large velocity contrast. The velocities are 2 km/s and 4 km/s in the
upper and lower layers, respectively, which introduces a velocity contrast of 2 times. The
computational region is 0≤ x,y,z ≤ 7.2 km, with an interface at z = 3.6 km. The source
is located at this point (3.6 km, 3.6 km, 2.91 km), and the source function is the same
as that used in Eq. (5.2) with a peak frequency of f0 = 20 Hz. The mesh size is 30 m ×
30 m × 30 m and ∆t= 1.9 ms for the computation, resulting in about 3.33 elements per
minimum wavelength. Fig. 9 shows the snapshots in the x-y, x-z, and y-z plane through
the source at T = 1.2 s, as generated by the P2 element WRKDG method and 4th-order
SG method, respectively. It can be seen that the snapshots generated by the WRKDG
method (Figs. 9(a-c)) are very clear and have no visible numerical dispersion, whereas
the 4th-order SG method (Figs. 9(d-f)) suffers from serious numerical dispersion, which
demonstrates that the 3D WRKDG method behaves well even when there is large velocity
contrast between the adjacent layers.

5.4 Homogeneous isotropic elastic model

In this example, we use the 3D WRKDG method to simulate the elastic wave propagating
in the homogeneous isotropic medium. The Lamé parameters are set to be λ=4.704 GPa,
µ= 8.4 GPa, and the density is 2100 kg/cm3, resulting in the P-wave velocity 3.2 km/s
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Figure 9: Snapshots for the two-layer acoustic medium in the x-y plane, x-z plane and y-z plane through the
source at T=1.2 s, as generated by (a-c) 3D WRKDG method and (d-f) 4th-order SG method, respectively.

and the S-wave velocity 2 km/s. The computational region is 0 ≤ x,y,z ≤ 6.0 km. The
source is located at the center of the domain, with a body source function:

f1(t)= f2(t)= f3(t)= f (t). (5.3)

The peak frequency is 20 Hz. The mesh size is 25 m × 25 m × 25 m with a time step ∆t=2
ms for the computation, resulting in about 4 elements per minimum wavelength. Fig. 10
shows the snapshots in the x-y, x-z, and y-z plane through the source for the displacement
vector (u1,u2,u3) at T=0.85 s, in which the propagation for the P-wave and S-wave are
clearly observed with no visible numerical dispersion.

5.5 Two-layer elastic model

In this example, we use the 3D WRKDG method to simulate the elastic waves prop-
agating in the two-layer medium. The computational region is 0 ≤ x,y,z ≤ 6.0 km. A
horizontal interface is set at the depth of z= 3.75 km. The source is located at (3 km, 3
km, 3.4 km) whose body source function is the same as Eq. (5.3) with a peak frequency
of 20 Hz. The Lamé parameters, the density, and elastic wave velocities are shown in
Table 2 for the two-layer model. In this experiment, we choose the spatial increments of
∆x=∆y=∆z=20 m and the time step ∆t=1.9 ms.
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Figure 10: Snapshots for homogeneous isotropic elastic medium in the x-y plane, x-z plane and y-z plane
through the source at T=0.85 s generated by 3D WRKDG method, in which (a-c), (d-f) and (g-i) are for u1,
u2 and u3, respectively.

Table 2: Parameters for two-layer elastic medium.

λ (GPa) µ (GPa) ρ (g/cm3) VP (km/s) VS (km/s)

Upper layer 1.5 2.5 1.5 2.08 1.29

Lower layer 4.5 8.5 2.1 3.20 2.01

Fig. 11 shows the wave-field snapshots of displacement vector (u1,u2,u3) at T=0.95
s in the x-y, x-z, and y-z planes through the source. The propagation for the direct P-
wave and direct S-wave are clearly observed. Similarly, the reflected, transmitted, and
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Figure 11: Snapshots for two-layer elastic medium in the x-y plane, x-z plane and y-z plane through the source
at T=0.95 s generated by 3D WRKDG method, in which (a-c), (d-f) and (g-i) are for u1, u2 and u3, respectively.

converted waves caused by the interface can be clearly identified from the snapshots by
means of the difference in amplitude and different wave phases shown in Fig. 12. The
snapshots are clear with no visible numerical dispersion. These results show that the 3D
WRKDG method performs well for complicated wave-propagation phenomena.

5.6 Vertical transversely isotropic (VTI) model

In the final example, we simulate the elastic wave propagating in the homogeneous VTI
medium (Eq. (2.3)). The elastic parameters are set to be c11=20 GPa, c33=17.5 GPa, c12=6
GPa, c13 =4.5 GPa, c44 =4 GPa, ρ=1800 kg/cm3, c66 =7 GPa. The computational region
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Figure 12: Snapshot for the reflected, transmitted, and converted waves caused by the interface for displacement
component u1 in the x-z plane (a larger version of Fig. 11(b)). We use the notations for these reflected,
transmitted, and converted waves: P, direct P wave; S, direct S wave; PP, reflected P wave; PS, reflected
P-to-converted S wave; SS, reflected S wave; SP, reflected S-to-converted P wave; Pp, transmitted P wave;
Ps, transmitted P-to-converted S wave; Ss, transmitted S wave; Sp, transmitted S-to-converted P wave.

is 0≤x,y,z≤6.0 km. The source is located at the center of the domain whose body source
function is the same as Eq. (5.3) with a peak frequency of 20 Hz. In this experiment, we
choose the spatial increments of ∆x=∆y=∆z=25 m and the time step∆t=2.5 ms.

Fig. 13 shows the wave-field snapshots of the displacement vector (u1,u2,u3) at T=
0.85 s in the x-y, x-z, and y-z planes through the source. We can observe the anisotropic
characteristics for the elastic wave propagation. Since the elastic wave for the VTI model
in the x-y plane is isotropic, we observe some concentric circles from Figs. 14(a), 14(d) and
14(g). However, the P- and S-waves show anisotropic in x-z and y-z planes, and from the
wav-field snapshots we can clearly observe the cusps, triplications and S-wave splitting.

6 Discussion and conclusions

In this article, we suggest a 3D WRKDG method and apply it for the 3D seismic wave field
modeling. The DGM inherits the FEM framework and can deal with curve boundaries
by using irregular grids, hence it is suitable for handling surface tomography problems
and some special structural such as media with caves and fractures. The word ”discon-
tinuous” in DGM implies that we can implement broken basis functions across element
interfaces and therefore the method is especially suitable for solving the physical prob-
lems with discontinuous characteristics such as shock, complex interfaces between solids
and fluids, etc.
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Figure 13: Snapshots for VTI model in the x-y plane, x-z plane and y-z plane through the source at T=0.85 s
generated by 3D WRKDG method, in which (a-c), (d-f) and (g-i) are for u1, u2 and u3, respectively.

For the proposed 3D WRKDG method, we employ the numerical flux formulae of
DGM, and the time discretization is based on an implicit diagonal RK method, which is
then transformed into an explicit method by a two-step iterative process. In addition, the
introduction of a weighting factor in the time discretization process enriches the method.
The stability conditions of the proposed method are investigated and compared with
those of the classic TVD RK DGM. We conclude that the CFL stability conditions of the
3D WRKDG for the acoustic case are more relaxed compared to that of the 3D TVD RK
DGM. In particular, the maximal Courant numbers for the P1 and P2 element methods
are 0.888 and 0.310, respectively, which are roughly 3.4 and 2.3 times larger than that
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of the 3D TVD RK DGM, respectively. Although the computational cost for each time-
marching is 2 times larger than the TVD RK time discretization, the weighted RK time
stepping scheme still achieve a 1.7 times superiority forP1 element and is comparable to
the TVD RK time discretization for P2 element in computational efficiency.

The numerical dispersion of the 3D WRKDG method is investigated and compared
with the conventional 4th-order SG methods. Results of the analyses show that for
Sp∈ [0,0.5], θ∈ [0,π], ϕ∈ [0,2π], the numerical dispersion error of the P2 WRKDG method
is no larger than 3.543%, which is much smaller than that of the SG method. Moreover,
we observe much smaller dispersive anisotropy for our proposed method. Thereupon the
WRKDG method is very suitable for wave simulations since we can reduce both the com-
putational cost and the memory requirement by using a coarser spatial grid increment to
achieve the same accuracy as those of other method on a finer grid increment. To fur-
ther test the capability of the 3D WRKDG scheme to suppress the numerical dispersion,
we conduct several typical 3D seismic models, including homogeneous and heteroge-
neous media, isotropic and anisotropic cases on coarse grids. Two-layer acoustic model
and elastic model indicate that 3D WRKDG can provide accurate wave-field without any
special treatment at the interfaces. The wave-field snapshots for VTI model clearly show
the cusps, triplications and S-wave splitting, indicating that the 3D WRKDG method is
able to simulate complicated wave propagation.

Based on the above analyses and numerical results for the proposed 3D WRKDG
method, we can introduce some deep insights. As we known, when compared to tradi-
tional FEMs and other numerical methods, the stencil for DG method is completely com-
pact. The stencil is independent of the space discretization order, and is also independent
of complexity of the model. This means that all the calculations in a discretization ele-
ment are limited only to this element and its immediate neighbors. The compactness
of the stencil makes DGM especially suitable for parallelization and local refinement of
approximated polynomial degrees and element shapes, which can efficiently reduce the
communication burden when employing MPI or graphics processing unit (GPU) paral-
lel programming, and can efficiently provide more accurate information for some local
complicated structures. Moreover, in the proposed 3D WRKDG method, we introduce
some additional variables to transform the second-order wave equations to a first-order
hyperbolic system, hence it is also suitable for the velocity-stress form of the seismic
wave equations. The additional variables increase the DOF and calculation burden in
each element, but they can effectively reduce the numerical dispersion and be used di-
rectly in seismic tomography and migration, avoiding the numerical reconstructions of
these information. In our view, the 3D WRKDG can play a significant role in large-scale
seismic modeling, reverse time migration, and inversion based on the wave equations,
particularly in regard to simulations in complex media.

It should be noted that we have restricted our stability conditions and numerical dis-
persion analyses for the 3D acoustic case with polynomials of degree one and two spa-
tial interpolations, therefore the conclusions are not applicable for the elastic case and for
high-order interpolations. However, the analysis approach is general and can be straight-



396 X. He, D. Yang and X. Ma / Commun. Comput. Phys., 28 (2020), pp. 372-400

forwardly extended to high-order interpolations and the elastic case. In addition, in this
paper the 3D WRKDG is applied to wave propagation simulations using regular hexahe-
drons, the irregular hexahedral meshes or tetrahedral meshes are not yet applied. We are
currently working on the extensions of irregular grids and its parallel programming tech-
nology. In conclusion, 3D WRKDG method is a promising and potential method worth
continuing research in the future.
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Appendices

A The matrix expressions in Eq. (4.4)

Hu et al. [23] gave detailed expressions for the matrices used in Eq. (4.4) for the 2D case.
In this paper, we generalize these matrices to the 3D case. The time-independent polyno-
mial basis functions, denoted as {wl(x,y,z)| l=0,1,··· ,dloc−1} , are defined on the refer-
ence element E=[−1,1]×[−1,1]×[−1,1]. For example, for the Legendre basis functions,
{wl(x,y,z)| l=0,1,··· ,dloc−1} are:

{

1, x, y, z, xy, xz, yz,
3

2
x2− 1

2
,

3

2
y2− 1

2
,

3

2
z2− 1

2
, ···
}

.

dloc is the number of the basis functions in element E. Then, the entries of the matrices in
Eq. (4.4) are:

{Q}ij =δαβ

∫ 1

−1

∫ 1

−1

∫ 1

−1
wl′wldxdydz,

{N0}ij =

{

A1+CF1
I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(1,y,z)wl(1,y,z)dydz

−
{−A1+CF2

I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(−1,y,z)wl(−1,y,z)dydz

−{A1}αβ

∫ 1

−1

∫ 1

−1

∫ 1

−1

∂wl′

∂x
wl dxdydz,
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{N+1}ij =

{

A1−CF1
I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(1,y,z)wl(−1,y,z)dydz,

{N−1}ij =

{−A1−CF2
I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(1,y,z)wl(−1,y,z)dydz,

{M0}ij =

{

A2+CF3
I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(x,1,z)wl(x,1,z)dxdz

−
{−A2+CF4

I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(x,−1,z)wl(x,−1,z)dxdz

−{A2}αβ

∫ 1

−1

∫ 1

−1

∫ 1

−1

∂wl′

∂y
wl dxdydz,

{M+1}ij =

{

A2−CF3
I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(x,1,z)wl(x,−1,z)dxdz,

{M−1}ij =

{−A2−CF4
I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(x,−1,z)wl(x,1,z)dxdz,

{K0}ij =

{

A3+CF5
I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(x,y,1)wl(x,y,1)dxdy

−
{−A3+CF6

I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(x,y,−1)wl(x,y,−1)dxdy

−{A3}αβ

∫ 1

−1

∫ 1

−1

∫ 1

−1

∂wl′

∂z
wl dxdydz,

{K+1}ij =

{

A3−CF5
I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(x,y,1)wl(x,y,−1)dxdy,

{K−1}ij =

{−A3−CF6
I

2

}

αβ

∫ 1

−1

∫ 1

−1
wl′(x,y,1)wl(x,y,−1)dxdy,

where

δαβ=

{

1, if α=β,

0, otherwise,

and i=ml′+α, j=ml+β; α,β=0,1,···m−1; l′,l=0,1,··· ,dloc−1, in which m is the number
of the unknown variables in W. The other parameters are defined in the subsection on
the plane wave analysis.

B Quadrature formula

Let D be the sub-element we are considering, in which a quadrature rule is defined
through a linear combinations of values on internal nodes {Xi} and weights {wi}, which
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reads:
∫

D
f ≈∑

i

wi f (Xi).

Through some basis variable substitutions, we can transform the integral on En,m,k =
[xn,xn+1]×[ym,ym+1]×[zk,zk+1] into an integral on reference element E=[−1,1]×[−1,1]×
[−1,1]:

∫ xn+1

xn

∫ ym+1

ym

∫ zk+1

zk

g(x,y,z)dxdz=
∆x

2

∆y

2

∆z

2

∫ 1

−1

∫ 1

−1

∫ 1

−1
g(x̂,ŷ, ẑ)dx̂dŷdẑ. (B.1)

Since our basis functions are defined by 3D Legendre polynomials which is con-
structed by the tensor-product of 1D Legendre polynomials, we apply the 1D Gauss-
Legendre quadrature rule in each direction independently for the integral in Eq. (B.1).
For example, for the integral in x-direction, the Gauss-Legendre quadrature rule reads:

∫ 1

−1
g(x̂)dx̂≈

q

∑
i=1

wig(xi),

where xi is the Gaussian-Legendre nodes defined in the interval [−1,1], q is the number
of Gaussian-Legendre nodes, and wi is the weight for xi. q,wi,xi are defined in Table 3.

Table 3: Gauss-Legendre and weights for Gauss-Legendre integral.

q wi si

1 2.000000000000 0.000000000000

2
1.000000000000 0.577350269189

1.000000000000 0.577350269189

3

0.555555555555 -0.774596669241

0.888888888888 0.000000000000

0.555555555555 0.774596669241

··· ··· ···
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