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Abstract. Reliable subsurface time-lapse seismic monitoring is crucial for many geo-
physical applications, such as enhanced geothermal system characterization, geologic
carbon utilization and storage, and conventional and unconventional oil/gas reservoir
characterization, etc. We develop an elastic-wave sensitivity propagation method for
optimal design of cost-effective time-lapse seismic surveys considering the fact that
most of subsurface geologic layers and fractured reservoirs are anisotropic instead
of isotropic. For anisotropic media, we define monitoring criteria using qP- and qS-
wave sensitivity energies after decomposing qP- and qS-wave components from the
total elastic-wave sensitivity wavefield using a hybrid time- and frequency-domain
approach. Geophones should therefore be placed at locations with significant qP-
and qS-wave sensitivity energies for cost-effective time-lapse seismic monitoring in an
anisotropic geology setting. Our numerical modeling results for a modified anisotropic
Hess model demonstrate that, compared with the isotropic case, subsurface anisotropy
changes the spatial distributions of elastic-wave sensitivity energies. Consequently,
it is necessary to consider subsurface anisotropies when designing the spatial distri-
bution of geophones for cost-effective time-lapse seismic monitoring. This finding
suggests that it is essential to use our new anisotropic elastic-wave sensitivity mod-
eling method for optimal design of time-lapse seismic surveys to reliably monitor the
changes in subsurface reservoirs, fracture zones or target monitoring regions.
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1 Introduction

The goal of time-lapse seismic monitoring is to reveal the temporal media property
changes of subsurface target regions, such as fracture zones/fault zones in geologic car-
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bon storage reservoirs, geothermal reservoirs and fractured reservoirs. This goal is usu-
ally achieved by subtracting the imaging or inversion results of the target monitoring
regions before and after a certain time interval, using the same source-receiver geometry
configuration. However, the accuracy of this approach can be degraded by numerous fac-
tors, such as random environmental noises, petrophysical environment changes beyond
the detection of existing techniques, data acquisition repeatability, and changes in data
processing flows across time-lapse surveys. To reduce the influence of unpredictable fac-
tors and accurately extract changes in target monitoring regions, it is necessary to design
a seismic source-receiver network to cost-effectively capture the most significant seismic
signals from time-lapse changes in target monitoring regions.

Time-lapse seismic monitoring becomes more complicated when subsurface geologic
layers and the target monitoring region are anisotropic media, such as thin layers and
fracture/fault zones. Naturally occurring cracks and fractures usually exhibit preferen-
tially spatial alignment, resulting in significant velocity and permeability anisotropies
[8–10,12,14–17,19,20]. For example, a set of rotationally invariant fractures sharing a com-
mon symmetry axis could result in transverse isotropy along the symmetry axis, which
may lie horizontally [20], and orthogonally aligned fractures may result in orthotropic
anisotropy [20,24]. Because seismic signals reflected/scattered from these fractures signif-
icantly complicate both data acquisition and subsequent data processing flow, we cannot
determine the media properties of fracture zones as reliably as those of simple geology. In
addition, most sedimentary layers are anisotropic media. Time-lapse seismic monitoring
is crucial for many applications, such as geologic carbon utilization and storage (includ-
ing potential CO2 leakage through fracture/fault zones), geothermal energy production,
conventional/unconventional oil and gas production, waste water injection, and waste
repository, etc. Therefore, the optimal design of time-lapse seismic surveys is essential
for reliable and cost-effective monitoring of subsurface changes.

Conventional time-lapse seismic surveys are usually based on seismic wavefield il-
lumination [5, 11], employing ray-based methods [2, 13] and wave-equation based meth-
ods [1, 25]. However, complex geology limits the practical applications of these meth-
ods. [6] designed optimal time-lapse seismic surveys based on elastic-wave sensitivity
modeling, that is, numerically propagating the sensitivity of an elastic wavefield with re-
spect to medium parameters such as P-wave velocity VP or mass density ρ. This approach
has a significant advantage that the spatial distributions of the elastic-wave sensitivity en-
ergies indicates how much significant information of the time-lapse changes of reservoirs
can be acquired using a given geophone distribution. This approach has been applied to
monitoring CO2 leakage through faults [21]. However, present elastic-wave sensitivity
methods are limited to isotropic media, which can be simply described by the density
ρ, P-wave velocity VP, S-wave velocity VS, and certain derived petrophysical parameters
such as the ratio of fluid saturation. However, additional parameters are needed to char-
acterize anisotropic properties in fracture/fault zones such as elasticity parameters cijkl ,
excess compliance ∆sijkl contributed from fractures [8,17] and Thomsen parameters along
with a reference velocity [23, 24].
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We develop a novel method for numerical modeling of anisotropic elastic-wave sen-
sitivity propagation for optimal design of cost-effective time-lapse seismic surveys. In
this method, we directly simulate propagation of elastic-wave sensitivity wavefields re-
sulting from time-lapse changes in target monitoring regions using the same elastic-wave
equation with a secondary source term. We study how subsurface anisotropic media in-
cluding the fracture anisotropy induced by fracture alignments, affects the detection of
time-lapse changes of anisotropic media. Our method follows the similar strategy used
in the elastic-wave sensitivity propagation in isotropic media [6]. First, we separate the
qP- and qS-waves from the total elastic wavefield. Second, we introduce criteria for mon-
itoring anisotropic fracture zones based on the sensitivities and energies of the qP- and
qS-waves. Third, to adequately model the anisotropy, we simulate the propagation of
anisotropic elastic-wave sensitivity with respect to cijkl and ρ, instead of VP, VS and ρ as
in [6]. When anisotropy parameters vary, the sensitivity wavefields vary, and in conse-
quence the monitoring criteria alter their values. We verify this hypothesis using the fol-
lowing numerical tests. First, we construct an anisotropic model modified from the Hess
vertical transverse isotropic (VTI) benchmark model, where different types of anisotropy
exist in the target fracture zone, in addition to anisotropic sedimentary layers. Receiver
lines locate either horizontally or in vertical wells for time-lapse surface seismic monitor-
ing or time-lapse vertical seismic profiling monitoring. Second, we compute the spatial
distributions of the qP- and qS-waves sensitivity energies. Third, we study how the frac-
ture anisotropy can affect the spatial distributions of anisotropic elastic-wave sensitivity
energies.

We organize the paper as follows. In the Methodology section, we present the theory
of anisotropic elastic-wave sensitivity propagation, and describe the criteria for monitor-
ing time-lapse changes in anisotropic media. In the section of Numerical Results, we
conduct a series of numerical tests involving a modified Hess VTI model, to analyze
how the anisotropic characteristics of fracture zones influence the elastic-wave sensitiv-
ity propagation. We summarize our findings in the Conclusions section.

2 Methodology

The elastic-wave equation in anisotropic media in the stress-velocity form is given by [3]:

∂σij

∂t
=

1

2
cijkl

(

∂vk

∂xl
+

∂vl

∂xk

)

, (2.1a)

∂vi

∂t
=

1

ρ

∂σij

∂xj
+ fi, (2.1b)

where σij=σij(x,t) is the stress tensor, vi=vi(x,t) is the particle velocity vector, cijkl=cijkl(x)
is the fourth-order elasticity tensor, ρ is the mass density. The variable x represents spatial
coordinates. Besides, fi = fi(xs,t)δ(xs) is the external force vector adding to the particle
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velocity wavefield. This external force could also be added to the stress. In the following,
we ignore the external force term without loss of generality.

The concept of elastic sensitivity propagation was introduced in [6,21] to study elastic-
wavefield changes caused by the variation of a certain medium parameter in target mon-
itoring regions during time-lapse seismic monitoring. In contrast to the conventional
data analysis approach where the seismic data are simply compared using the waveform
difference, this approach computes the partial derivative of the elastic wavefield with
respect to the investigated medium parameter, and simulates the propagation of this
quantity using the same formulation as the elastic-wave equation but with a different
source term. The accumulated energy of this elastic-wave sensitivity in time and space
can be used as an indicator of how strongly the elastic wavefield is affected by the change
of the investigated medium parameter, and therefore, facilitates cost-effective time-lapse
seismic survey design.

Specifically, the sensitivity of elastic wavefield with respect to a certain medium prop-
erty parameter ξ (the components of cijkl and the mass density ρ for a linear elastic
medium) is defined as ∂φ/∂ξ, where φ = (σ,v) is the elastic wavefield. By taking the
derivative of Eq. (2.1) with respect to ξ, we obtain the following elastic-wave sensitivity
equations [6, 21], with some modifications:

∂
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[

∂

∂xl

(

∂vk

∂ξ

)

+
∂

∂xk

(

∂vl

∂ξ

)]

+
1

2

∂cijkl

∂ξ

(

∂vk

∂xl
+

∂vl

∂xk

)

δ(xtarget), (2.2a)
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−
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δ(xtarget), (2.2b)

where xtarget indicates the location of target monitoring region(s). It can be either a tar-
get monitoring region or distinctive monitoring regions when applying our method to
design of time-lapse seismic surveys. Therefore, the meaning of δ(xtarget) can be inter-
preted as a spatial mask where the sensitivity source terms are applicable, and only when
the elastic wavefield touches the target monitoring region(s), the elastic-wave sensitivity
wavefield is generated.

Rather than using the elastic-wave sensitivities with respect to P-, S-wave velocities
or mass density ρ as in the isotropic case, we study the elastic-wave sensitivities with
respect to elasticity parameters cijkl and ρ in anisotropic media. These elastic parameters
no longer have simple relationships with the wave velocities in anisotropic media, which
vary along different propagation directions. Using the Voigt notation [3], the fourth-order
cijkl can be converted to an elasticity matrix CI J where I, J=1,2,··· ,6.

In this paper, we focus on the 2D case and assume that the coordinate plane is the
x1x3 coordinate plane. Therefore, I, J=1,3,5, and the elastic-wave sensitivity propagation
equations with respect to the elasticity parameter CI J , e.g., C11, are explicitly written as
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in which the elastic-wave sensitivity wavefields are

Ξ
C11
11 =

∂σ11

∂C11
, Ξ

C11
33 =

∂σ33

∂C11
, Ξ

C11
13 =

∂σ13

∂C11
, WC11

1 =
∂v1

∂C11
, WC11

3 =
∂v3

∂C11
. (2.4)

The elastic-wave sensitivity wavefield with respect to the other CI J parameters and den-
sity ρ can be derived analogously. The above formulation can only simulate qP- and
qSV-waves in 2D space. For 3D applications in anisotropic media, the corresponding
3D elastic-wave sensitivity equation can be derived analogously, where all the wavefield
components, including qP-, qSV- and qSH-waves can be properly simulated.

For generally anisotropic media where C15 and C35 might be nonzero, C11 is generally
not equal to C33, and C13 might not be equal to C11−2C55 as that in isotropic media. The
complexity of these elastic parameters provides a greater flexibility to accurately describe
the anisotropy of fractured reservoirs compared to the isotropic case.

Effective medium theories [18] show that the values of elasticity parameters can be in-
fluenced by the spatial alignment, shape, aspect ratio and density of the fractures. There-
fore, elastic-wave sensitivity may also be influenced with these aforementioned petro-
physical parameters. In this paper, we only study the elastic-wave sensitivity with re-
spect to elasticity parameters CI J .

Multicomponent seismic data acquisition and subsequent data processing flow usu-
ally separate the P- and S-wave components from seismic data to facilitate relevant geo-
logical and petrophysical interpretations. Therefore, we should set the monitoring objec-
tive functions based on separated P- and S-wave sensitivities with respect to the medium
parameter ξ [6, 21].

In anisotropic media, the elastic wavefield consists of qP- and qS-wavefields instead
of pure P- and S-wavefields. We define the time-lapse monitoring criteria based on the
energies of decomposed qP- and qS-wave sensitivity displacement wavefield as

E
ξ
qP(x)=

∫ T

0
|uξ

qP(x,t)|2dt, E
ξ
qS(x)=

∫ T

0
|uξ

qS(x,t)|2dt, (2.5)

where T is the total time duration of wavefield propagation. Because the elastic-wave
equation (2.1) is based on stress and particle velocity wavefield propagation, we obtain
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the displacement sensitivity wavefield by integrating the particle velocity wavefield in
time, i.e.,

uξ(x,t)=
[

u
ξ
1(x,t),uξ

3(x,t)
]

=

[

∫ t

0
W

ξ
1 (x,τ)dτ,

∫ t

0
W

ξ
3 (x,τ)dτ

]

. (2.6)

Conventional time-lapse analyses usually use a portion (a given time window and
a number of traces) of the wavefield interacting with the target monitoring regions. In
comparison, our energy criteria in Eq. (2.5) account for the accumulated spatial distribu-
tion of the energy of elastic-wavefield sensitivities resulting from time-lapse changes in
target monitoring regions. This characteristics provides comprehensive information re-
garding influences of time-lapse changes, such as the spatial paths and distributions of
the wavefield energy.

To compute the energy criteria, we must decompose qP- and qS-sensitivity wavefields
from the total elastic-wave sensitivity wavefield. However, this decomposition is non-
trivial in general anisotropic media, because the wave mode separation cannot be simply
achieved using such as the Helmholtz decomposition as in isotropic media [6, 21]. We
decompose the vector qP- and qS-wave sensitivity wavefield from the total displacement
sensitivity wavefield as

u
ξ
qP(x,t)=LqP[u

ξ(x,t)], u
ξ
qS(x,t)=LqS[u

ξ(x,t)], (2.7)

and uξ(t) is the total elastic-wave sensitivity wavefield with respect to medium param-
eter ξ, and L is a wavefield separator operating on the total elastic-wave sensitivity
wavefield to obtain the vector qP- and qS-sensitivity wavefields. We adopt the low-rank
decomposition scheme developed in [4] to achieve accurate decomposition in complex
anisotropic media. We apply the low-rank decomposition to the total elastic-wave sensi-
tivity wavefield at each time step during wavefield modeling.

For complex anisotropic media, the CPU time consumption of this decomposition
can be even higher than that used for wavefield modeling. We therefore employ a hybrid
time- and frequency-domain modeling approach to elastic-wave sensitivity modeling to
obtain the monitoring criteria. We compute the frequency-domain sensitivity wavefield
during sensitivity wavefield propagation using a discrete Fourier transform [22]:

Uξ(x,ω)=
T

∑
t=0

uξ(x,t)e−iωt, (2.8)

where ω is the angular frequency, T is the maximum wavefield propagation time, and
Uξ(x,ω) is the frequency-domain sensitivity wavefield. We conduct this integration op-
eration during the time-domain modeling. This operation is essentially a grid-wise oper-
ation, i.e., Eq. (2.8) is computed for each spatial grid point independently. Therefore, the
operation can be simply parallelized and consumes trivial additional CPU time.

Because the low-rank decomposition is a purely spatial operation, the qP- and qS-
sensitivity wavefields in the frequency domain are

U
ξ
qP(x,ω)=LqP[U

ξ(x,ω)], U
ξ
qS(x,ω)=LqS[U

ξ(x,ω)], (2.9)
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which leads to

E
ξ
qP(x)=

∫ ωmax

ωmin

|Uξ
qP(x,ω)|2dω, E

ξ
qS(x)=

∫ ωmax

ωmin

|Uξ
qS(x,ω)|2dω, (2.10)

where |Uξ(x,ω)|2=ℜ[Uξ(x,ω)]2+ℑ[Uξ(x,ω)]2, and ωmin and ωmax are the minimum and
maximum frequency of interest, respectively.

Eq. (2.10) indicates that we only need to conduct the qP-qS decomposition for a few se-
lected frequencies, instead of for each time step in the time-domain modeling approach,
and can obtain the band-limited approximate monitoring criteria to those in Eq. (2.5).
With appropriate choices of ωmin, ωmax and the frequency sampling interval ∆ω, the
Nyquist-Shannon sampling theorem tells us that the time-domain monitoring criteria
can be accurately reconstructed. Therefore, the frequency-domain monitoring criteria in
Eq. (2.10) can serve as a computationally cost-effective monitoring criteria. The compu-
tational cost of this hybrid time- and frequency-domain modeling approach is therefore
significantly reduced compared to that based on the time-domain modeling approach for
anisotropic media. In the following numerical example, we find that the computational
time cost using the hybrid time- and frequency-domain approach is only approximately
10 percent of that of the pure time-domain approach.

3 Numerical results

The Hess Corporation built a 2D VTI model for testing finite-difference modeling of
anisotropic wave propagation. This model consists of transversely isotropic media with
a vertical symmetry axis, or VTI media. The original Hess model contains a fairly low
qS-wave velocity. We use a modified Hess model to verify our anisotropic elastic-wave
sensitivity modeling method. We modify the grid size of the original Hess model and
the qS-wave velocities to make it suitable for our numerical modeling of the elastic-wave
sensitivity propagation.

The modified Hess model includes a set of elasticity parameter CI J models and a
density model, as shown in Figs. 1a-e. The model is VTI anisotropic throughout the space
except in the high-velocity salt body in the left half of the model indicated by the red color
region in Figs. 1a-d. To quantitatively compare the influences of background anisotropy
properties on the spatial distribution of sensitivity energies, we also create an isotropic
Hess model using C33=C11 and C13=C11−2C55. The dimensions of the modified model
are 4.8 km in the horizontal direction and 2 km in the vertical direction. We discretize the
modified model using 601 grids in the horizontal direction and 251 grids in the vertical
directions, with a grid interval of 8 m in both directions. For comparison, the grid size of
the original Hess VTI model is 20 ft, i.e., approximately 6.1 m, in both spatial directions.
The original Hess VTI model consists of 1501 grid points in the depth direction, and 3617
grid points in the horizontal direction. Therefore, we roughly shrink the original model
by 4.6 times in both directions.
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Figure 1: The modified Hess anisotropic model: (a)-(d) show the elasticity parameters, and (e) displays the
density. The target monitoring fracture zone is shown in (f). The yellow star indicates the source position, and
the white lines refer to the positions of surface and vertical-well receivers.

We set a target monitoring fracture zone indicated by the red-color regions in Fig. 1f.
We assume the monitoring fracture zone to be isotropic (ISO) or transversely isotropic
with a tilted axis (TTI). Effective medium theories show that the isotropy may result from
randomly distributed fractures with random orientations. The TTI can result from a set
of fractures with tilted fracture surface normal. We assume the tilted angle of this TTI
fracture zone is 45 degrees with respect to the vertical axis. Therefore, we conduct a total
of four sensitivity modeling tests by combining the ISO or the VTI background with the
ISO or the TTI target monitoring zone.
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We perform numerical modeling of elastic-wave sensitivity propagation with an ex-
plosive source at 1,680 m along the horizontal direction with a depth of 80 m. The tem-
poral signature of the sources is a Ricker wavelet with a center frequency of 15 Hz. We
indicate the source locations using yellow stars in Figs. 1a-e. For surface seismic mon-
itoring, we use a total of 550 receivers located from 200 m to 4,592 m in the horizontal
direction with a depth of 80 m. For vertical seismic profiling (VSP) monitoring, we use
three vertical receiver wells to receive the elastic-wave sensitivity. The receiver interval is
8 m for both surface seismic surveys and VSP surveys. We denote these surface and VSP
receivers using the white horizontal and vertical lines in Fig. 1.

We conduct modeling of the anisotropic elastic-wave sensitivity propagation using a
high-order rotated staggered-grid finite-difference method [7]. The total length of wave-
field propagation is 4 s. We then compute the spatial distributions of anisotropic elastic-
wave sensitivity energies using Eq. (2.10) for qP- and qS-wave sensitivities with respect
to elasticity parameters C11 and C55.

To demonstrate the concept of elastic-wave sensitivity, we show the snapshots of the
elastic wavefield and the elastic-wave sensitivity wavefield in Fig. 2. Figs. 2a, c and e
show the snapshots at 0.4, 0.6 and 0.8 s, respectively, of the x3-component of the elastic
displacement wavefield. Once the elastic wavefield touches the target monitoring zone,
the elastic-wave sensitivity wavefield is generated, as shown in Figs. 2b, d and f. As
time evolves, the elastic-wave sensitivity wavefield propagates through the space and
arrives at geophones. In this example, we assume the background is VTI and the fracture
zone is TTI, and the wavefield is stimulated for the elasticity parameter C11. For different
medium properties or target monitoring parameters, the resulting sensitivity wavefields
are generally different, following the elastic-wave sensitivity propagation equation (2.3).

We show the spatial distributions of qP- and qS-wave sensitivity energies with respect
to the elasticity parameters C11 and C55 in Figs. 3 and 4, respectively. These quantities are
computed using the energy criteria in Eq. (2.10). They are computed by integrating the
energies of the qP- and qS-sensitivity wavefields over time.

Figs. 3a-d show the qP-wave sensitivity energies with respect to the elasticity param-
eter C11 where the fracture zone is ISO or TTI, and the background is ISO or VTI. The

spatial distributions of EC11
qP between the cases of ISO and TTI fracture zones are very sim-

ilar in respective ISO and VTI backgrounds. However, different backgrounds obviously
lead to different energy concentrations in space for the same type of fracture zone. For
instance, in the ISO background, the TTI fracture zone leads to a wide energy concentra-
tion at the surface from about 3 to 4.6 km, while the concentration is notably narrower in
the VTI background.

Figs. 3e-h show the qS-wave sensitivity energies with respect to the elasticity param-
eter C11 where the fracture zone is ISO or TTI, and the background is ISO or VTI. Similar

to the qP-wave sensitivity case, the spatial distributions of EC11
qS between the cases of ISO

and TTI fracture zones are similar to each other in respective ISO and VTI backgrounds,
yet different backgrounds result in different energy concentrations in space for the same



K. Gao and L. Huang / Commun. Comput. Phys., 28 (2020), pp. 442-458 451

0 1 2 3 4

Horizontal Position (km)

0

1

D
e
p
th

 (
k
m

)

(a) t=0.4 s

0 1 2 3 4

Horizontal Position (km)

0

1

D
e
p
th

 (
k
m

)

(b) t=0.4 s

0 1 2 3 4

Horizontal Position (km)

0

1

D
e
p
th

 (
k
m

)

(c) t=0.6 s

0 1 2 3 4

Horizontal Position (km)

0

1

D
e
p
th

 (
k
m

)

(d) t=0.6 s

0 1 2 3 4

Horizontal Position (km)

0

1

D
e
p
th

 (
k
m

)

(e) t=0.8 s

0 1 2 3 4

Horizontal Position (km)

0

1

D
e
p
th

 (
k
m

)

(f) t=0.8 s

Figure 2: Wavefield snapshots of the x3-component of the elastic displacement wavefield (a, c, e) and the
x3-component of the elastic-wave sensitivity wavefield (b, d, f). The snapshot time for (a) and (b) is 0.4 s,
0.6 s for (c) and (d), and 0.8 s for (e) and (f). The background is VTI and the fracture zone is TTI. These
wavefields are associated with the change of C11.

type of fracture zone. In this case, however, the qS-wave sensitivity energy distribution
at the surface for the ISO fracture zone in the VTI background, which is approximately
from 3.2 to 3.9 km, is slightly narrower than that with the TTI fracture zone, which is
approximately from 3.0 to 4.3 km.

The surface distributions of EC11
qP and EC11

qS are shown in Figs. 5a and b, respectively, for

the aforementioned four tests. Specially, we find that in the VTI background model, both
the ISO and TTI fracture zones lead to two notable energy concentrations, while the ISO
background model leads to only one notable concentration. More specifically, for the VTI
background model, the locations of the maximum energy distribution for the ISO frac-
ture zone and the TTI fracture zone are exchanged with their second maximum energy
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Figure 3: Spatial distributions of qP- (a, b, c, d) and qS-wave (e, f, g, h) sensitivity energies with respect to
the elasticity parameter C11 for the ISO fracture zone (a, b, e, f) and the TTI fracture zone (c, d, g, h), with
an ISO background (a, c, e, g) and a VTI background (b, d, f, h).
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Figure 4: Spatial distributions of qP- (a, b, c, d) and qS-wave (e, f, g, h) sensitivity energies with respect to
the elasticity parameter C55 for the ISO fracture zone (a, b, e, f) and the TTI fracture zone (c, d, g, h), with
an ISO background (a, c, e, g) and a VTI background (b, d, f, h).
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Figure 5: The normalized qP-wave sensitivity energies with respect to the elasticity parameters C11 in (a) and
C55 in (c), and the normalized qS-wave sensitivity energies with respect to the elasticity parameters C11 in (b)
and C55 in (d), for different fracture zone properties and backgrounds.

concentration locations. This result shows that different fracture zone properties in the
same background model lead to different elastic-wave-sensitivity-energy concentrations.

For the EC11
qS distribution, we find that an anisotropic background leads to a different

energy concentration compared with that in an isotropic background model, and the
difference between the maximum energy concentration locations can be as large as 1 km
in the horizontal direction.

We show the qP- and qS-wave sensitivity energies associated with the elasticity pa-
rameter C55 in Fig. 4. The comparisons on the energy’s spatial distributions among the
four numerical tests resemble to those for the elasticity parameter C11. In this case, how-
ever, the sensitivity energy’s surface concentration is slightly more complicated than that
with respect to C11, as shown in Figs. 5c and d for qP- and qS-wave sensitivity energies,
respectively.

We find that the qP-wave sensitivity distribution for the TTI fracture zone and the VTI
background model is most concentrated at approximately 4 km, while the other three
cases have obviously wider distribution at the surface. Specifically, the energy distri-
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bution associated the TTI fracture zone in the ISO background model has a completely
different maximum energy concentration location at approximately 3.2 km, indicating
that a totally difference receiver deployment should be considered in time-lapse seismic
surveys.

For the qS-wave sensitivity, the sensitivity energy distributions for the VTI back-
ground model with both the ISO and TTI fracture zones have a fairly similar maximum
concentration at approximately 3.5 km. The sensitivity energies for the ISO background
model are obviously separated into to two regions, one at approximately 2.5 to 3.0 km
while the other at approximately 4.2 km, which again indicates a necessity to consider
the properties of background models and target monitoring zones when designing opti-
mal time-lapse seismic surveys.

The isotropic/anisotropic properties of the background model and the fracture zone
are also important for VSP receiver deployment. Figs. 6a and b show the qP-wave sensi-
tivity energies with respect to the elasticity parameter C11 in the three VSP wells, while
Figs. 6c and d show the qS-wave sensitivity energies with respect to the elasticity param-
eter C11 in the three VSP wells. Figs. 6e-h show the corresponding energy distributions of

EC55
qS . The fracture zone is TTI in all the panels of Fig. 6. The background is VTI in Panels

a, c, e and g in Fig. 6, while ISO in Panels b, d, f, h in Fig. 6.

Figs. 6c and d show the energy EC11
qS in the VTI background model and the ISO back-

ground model, respectively. In both cases, the energy EC11
qS in Well 2 has a maximum

concentration at the bottom of the well, while has a maximum concentration at the depth
of approximately 1.2 km in Well 3. In Well 1, the maximum energy concentration is obvi-
ously shallower in the VTI background model compared with that in the ISO background
model.

Similarly, Figs. 6e and f depict the energy EC55
qP in the VTI background model and the

ISO background model, respectively. It is evident that the difference in the anisotropic
property of the background model significantly alters the energy concentration in all the
three wells. For instance, in Well 3, the energy concentration reaches the maximum at
the depth of approximately 1.25 km in the VTI background model, while at the depth of
approximately 0.9 km in the ISO background model, with a wider distribution.

It is evident that although Wells 2 and 3 are both close to the target monitoring frac-
ture zone, the accumulated sensitivity energies in these two VSP wells are fairly different
for both the qP- and the qS-sensitivities because of the different background models. In
different background models, the energy concentration in Well 1 can also vary signifi-
cantly.

4 Conclusions

We have developed a new method for optimal design of cost-effective time-lapse seis-
mic surveys for monitoring subsurface reservoirs in anisotropic media. We numerically
model anisotropic elastic-wave sensitivity propagation, and use the spatial distributions
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Figure 6: The qP- (a, b) and qS-wave (c, d) sensitivity energies with respect to the elasticity parameter C11
in three VSP wells and the qP- (e, f) and qS-wave (g, h) sensitivity energies with respect to the elasticity
parameter C55 in three VSP wells. The fracture zone is TTI in all the panels. The background is VTI in Panels
(a, c, e, g) and ISO in Panels (b, d, f, h).

of the qP- and qS-wave sensitivity energies with respect to various elasticity parameters
to determine the best receiver locations for time-lapse seismic survey design. We achieve
accurate separation of the qP- and qS-wave sensitivities in anisotropic media using a
low-rank decomposition approach in the hybrid time and frequency domain. We verify
the efficacy of our method using a modified Hess elastic model. Our numerical results
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show that the isotropic/anisotropic properties of the target monitoring fracture zone and
the background model may lead to significantly different spatial distributions of elastic-
wave sensitivity energies in space. Therefore, it is important to properly account for the
characteristics of anisotropy properties of target monitoring regions and the background
model for optimal design of cost-effective time-lapse seismic surveys.
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