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Abstract. The accuracy and efficiency of a class of finite volume methods are in-
vestigated for numerical solution of morphodynamic problems in one space di-
mension. The governing equations consist of two components, namely a hydraulic
part described by the shallow water equations and a sediment part described by the
Exner equation. Based on different formulations of the morphodynamic equations,
we propose a family of three finite volume methods. The numerical fluxes are re-
constructed using a modified Roe’s scheme that incorporates, in its reconstruction,
the sign of the Jacobian matrix in the morphodynamic system. A well-balanced
discretization is used for the treatment of the source terms. The method is well-
balanced, non-oscillatory and suitable for both slow and rapid interactions between
hydraulic flow and sediment transport. The obtained results for several morphody-
namic problems are considered to be representative, and might be helpful for a fair
rating of finite volume solution schemes, particularly in long time computations.

AMS subject classifications: 65M08, 76B15, 76M12
Key words: Morphodynamic model, shallow water equations, sediment transport, finite vol-
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1 Introduction

The main concern of morphodynamics is to determine the evolution of bed levels for
hydrodynamic systems such as rivers, estuaries, bays and other nearshore regions
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where water flows interact with the bed geometry. Example of applications include
among others, beach profile changes due to severe wave climates, seabed response to
dredging procedures or imposed structures, and harbour siltation. The ability to de-
sign numerical methods able to predict the morphodynamic evolution of the coastal
seabed has a clear mathematical and engineering relevances. In practice, morphody-
namic problems involve coupling between a hydrodynamic model, which provides a
description of the flow field leading to a specification of local sediment transport rates,
and an equation for bed level change which expresses the conservative balance of sed-
iment volume and its continual redistribution with time. In the current study, the
hydrodynamic model is described by the shallow water equations and the sediment
transport is modelled by the Exner equation. The coupled models form a hyperbolic
system of conservation laws with a source term.

Nowadays, much effort has been devoted to develop numerical schemes for mor-
phodynamic models able to resolve all hydrodynamic and morphodynamic scales.
Special attention has been given to the treatment of the source term and the bed-
load flux. It is well known that shallow water equations on nonflat topography have
steady-state solutions in which the flux gradients are nonzero but exactly balanced by
the source terms. This well-balanced concept is also known by conservation property
(C-property), compare [4, 20] among others. The well-established Roe’s scheme [16]
has been modified in [9] for the sediment transport problems. However, for prac-
tical applications, this method may become computationally demanding due to its
treatment of the source terms. Numerical methods based on Euler-WENO techniques
have also been applied to sediment transport equations in [13]. Authors in [6] ex-
tended the ENO and WENO schemes to sediment transport equations, whereas the
CWENO method has been applied to sediment transport problems in [5]. Unfortu-
nately, most ENO, WENO and CWENO methods that solves real morphodynamic
models correctly are still very computationally expensive. On the other hand, numer-
ical methods using the relaxation approximation have also been applied to sediment
transport equations in [8]. The relaxation schemes employ general higher order recon-
struction for spatial discretization and higher order implicit-explicit schemes or TVD
Runge-Kutta schemes for time integration of the relaxing systems. It is well known
that TVD schemes have their order of accuracy reduced to first order in the presence
of shocks due to the effects of limiters.

The object of this study is to devise a numerical approach able to accurately ap-
proximate solution to morphodynamic problems. Our aim is to develop a family
of finite volume methods based on a non-homogeneous Riemann solver for solving
morphodynamic models. The methods have been investigated in [18, 19] for numer-
ical solution of conservation laws with source terms and are adapted in the current
work for the numerical solution of morphodynamic problems. The proposed finite
volume scheme belongs to the class of methods that employ only physical fluxes and
averaged states in their formulations. To control the local diffusion in the scheme and
also to preserve monotonicity, a parameter is introduced based on the sign matrix
of the flux Jacobian. The main characteristics of such a finite volume scheme are on
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one hand, the capability to satisfy the C-property resulting in numerical solutions free
from spurious oscillations in significant morphodynamic situations, and on the other
hand the achievement of strong stability for simulations of slowly varying bed-load
as well as rapidly varying flows containing also shocks or discontinuities. These char-
acteristics are verified using three test examples of the evolution of an initial bed with
different shapes in a channel. Results presented in this paper show high resolution of
the proposed finite volume schemes and permit the straightforward application of the
method to more complex, physically based morphodynamic models.

Recently, the authors in [2,3] have presented numerical results for two-dimensional
sediment transport problems using only one formulation of the equations. In the cur-
rent study we present numerical results obtained using different formulations of the
equations governing the morphodynamic problems. Some results are presented as
validation examples and others, to the best of our knowledge, are reported for the
first time. In this paper, first the governing equations for the morphodynamic prob-
lems are formulated. Thereafter, a well-balanced finite volume method employed to
solve the morphodynamic problems is presented for different formulations. After ex-
periments with the different approaches for a variety of morphodynamic examples,
accuracy and efficiency of the finite volume schemes are discussed. Concluding re-
marks end the paper.

2 Governing equations for the morphodynamic problems

In practical morphodynamic applications, the hydraulic flow is usually modelled by
the shallow water equations. These equations consist of the conservation of mass and
momentum balance

∂th + ∂x(hu) = 0, (2.1a)

∂t(hu) + ∂x

(
hu2 +

1
2

gh2
)
= −gh∂xB, (2.1b)

where h is the water height above the bottom, u is the water velocity, g is the accel-
eration due to gravity, and B is the function characterizing the bed level. For fixed
bottom topography, i.e., B = B(x), the Eq. (2.1) reduce to the standard shallow water
equations. In the current work, we assume that a sediment transport takes place such
that the bed level depends on time variable as well. This requires an additional equa-
tion for its evolution. Here, the equation used to update the bed-load is given by the
well-known Exner equation

(1 − p)∂tB + ∂xq = 0, (2.2)

where p is the porosity assumed to be constant and q is the sediment transport flux and
it depends on the type of sediment. As an example, we consider the basic sediment
transport flux [10]

q(u) = Au|u|m−1, (2.3)
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where A is a given experimental constant and 1 ≤ m ≤ 4 is a chosen parameter. Note
that the Eq. (2.2) states that the time rate of change of the bed elevation is equal to
the divergence of the sediment flux, which can be expressed in terms of the local flow
properties through the use of the empirical sediment formula (2.3). The typical value
m = 3 is widely used in the literature, see for example [3, 5, 6, 8, 9], and it is used in all
simulations presented in this paper. For simplicity in presentation, the Eqs. (2.1) and
(2.2) can be rearranged in a system of conservation laws with a source term as

∂tW + ∂xF(W) = Q(W), (2.4)

where

W =

 h
hu
B

 , F(W) =

 hu
hu2 + 1

2 gh2

1
1−p q

 , Q(W) =

 0
−gh∂xB

0

 .

It is clear that the system (2.4) is hyperbolic and the associated eigenvalues λk (k =
1, 2, 3) are the zeros of the characteristic polynomial

P(λ) = −λ(λ2 − 2uλ + u2 − gh).

The eigenvalues of the Jacobian matrix are

λ1 = u −
√

gh, λ2 = 0 and λ3 = u +
√

gh. (2.5)

Observe that the Jacobian matrix in (2.4) is singular, which may causes severe numer-
ical difficulties in many finite volume schemes, compare for example [9]. In fact, for a
singular Jacobian matrix, the system becomes ill-conditioned and one cannot guaran-
tee convergence in its numerical solution. For most hyperbolic systems of this type, a
special treatment (known by entropy fix) is required for their finite volume solutions,
see for instance [11] and further details are therein. In order to avoid this singularity, a
modified system can be obtained by incorporating the bed into the flux function and
the resulting system reads

∂tW̃ + ∂xF̃(W̃) = Q̃(W̃), (2.6)

where

W̃ =

 h
hu
B

 , F̃(W̃) =

 hu
hu2 + 1

2 gh2 + ghB
1

1−p q

 , Q̃(W̃) =

 0
gB∂xh

0

 .

As mentioned in [6], using the Exner equation (2.2) to model the sediment transport,
the nonhomegenuous terms in the right-hand side in (2.4) and (2.6) are not standard
source terms but nonconservative products, since they include a derivative of one of
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the variables. The presence of these terms in sediment transport system can cause
sever difficulties in their numerical approximations. In principle, the nonhomegenu-
ous term in these equations can be viewed as a source term and/or a nonconservative
term. In [9] and in all approaches presented in this study these terms are considered
and discretized as source terms.

Again, the system (2.6) is hyperbolic and the associated eigenvalues λ̃k (k = 1, 2, 3)
are the zeros of the characteristic polynomial

P(λ̃) = λ̃3 − 2uλ̃2 + (u2 − g(h + B + hd))λ̃ + ghud, (2.7)

with
d =

1
(1 − p)h

Am|u|m−1.

The analytical expressions of the eigenvalues are

λ̃1 = 2
√
−Q cos

(1
3

θ
)
+

2
3

u, (2.8a)

λ̃2 = 2
√
−Q cos

[1
3
(θ + 2π)

]
+

2
3

u, (2.8b)

λ̃3 = 2
√
−Q cos

[1
3
(θ + 4π)

]
+

2
3

u, (2.8c)

where
θ = arcos

( R√
−Q3

)
,

with

Q = −1
9
(
u2 + 3g(h + B + hd)

)
, R = − u

54
(
− 9g(2h + 2B − hd) + 2u2).

The Eqs. (2.1) and (2.2) can also be formulated using the physical variables as

∂tU + ∂xG(U) = 0, (2.9)

where

U =

 h
u
B

 , G(U) =

 hu
1
2 u2 + g(h + B)

1
1−p q

 .

The eigenvalues µk (k = 1, 2, 3) associated with the Jacobian matrix in (2.9) are the
zeros of the characteristic polynomial

P(µ) = µ3 − 2uµ2 +
(
u2 − g(h + d)

)
µ + gud, (2.10)

with
d =

1
(1 − p)

Am|u|m−1.
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Thus, the eigenvalues of the Jacobian matrix are

µ1 = 2
√
−Q cos

(1
3

θ
)
+

2
3

u, (2.11a)

µ2 = 2
√
−Q cos

[1
3
(θ + 2π)

]
+

2
3

u, (2.11b)

µ3 = 2
√
−Q cos

[1
3
(θ + 4π)

]
+

2
3

u, (2.11c)

where
θ = arcos

( R√
−Q3

)
,

with
Q = −1

9
(
u2 + 3g(h + d)

)
, R =

u
54
(
9g(2h − d)− 2u2).

It should be stressed that the considered morphodynamical systems have to be solved
in a spatial domain and for a time interval endowed with given initial and boundary
conditions. In practice, these conditions are problem dependent and their discussion
is postponed for Section 7 where numerical examples will be presented.

3 A class of finite volume methods

Let us discretize the spatial domain into control volumes [xi−1/2, xi+1/2] with uniform
size

∆x = xi+ 1
2
− xi− 1

2
,

and divide the temporal domain into subintervals [tn, tn+1] with uniform size ∆t. In
order to explain the main ideas of the proposed finite volume method we consider the
scalar equation of conservation law with a source term

∂tW + ∂xF(W) = Q(W). (3.1)

Following the standard finite volume formulation, we integrate the Eq. (3.1) with re-
spect to time and space over the domain [tn, tn+1] × [xi−1/2, xi+1/2] to obtain the fol-
lowing discrete equation

Wn+1
i = Wn

i − ∆t
∆x
(

F(Wn
i+ 1

2
)− F(Wn

i− 1
2
)
)
+ ∆tQn

i , (3.2)

where Wn
i is the space average of the solution W in the control volume [xi−1/2, xi+1/2]

at time tn, i.e.,

Wn
i =

1
∆t∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

W(t, x) dt dx,

and F(Wn
i±1/2) are the numerical fluxes at x = xi±1/2 and time tn. The spatial dis-

cretization of the Eq. (3.2) is complete when a numerical construction of the fluxes
F(Wn

i±1/2) is chosen.
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∆ ∆x x+

Figure 1: Modified Riemann problem in the proposed finite volume method.

In general, this construction requires a solution of Riemann problems at the in-
terfaces xi±1/2. From a computational viewpoint, this procedure is very demanding
and may restricts the application of the method for which Riemann solutions are not
available. Furthermore, since the source term in (3.2) is a nonconservative product,
its discretization may suffer from singular values raised from the Riemann solution
at the interfaces. For details, we refer the reader to the work of [20]. This difficulties
are typical in numerical solution of shallow water equations on non-flat bottom rather
than moving bed. In the current study we adapt a class of finite volume methods pro-
posed in [18, 19] for numerical solution of conservation laws with source terms. The
key idea is to reintegrate the Eq. (3.1) over a control domain [tn, tn + θn

i+1/2]× [x−, x+]
containing the point (tn, xi+1/2) as depicted in Fig. 1. It should be stressed that, the
integration of the Eq. (3.1) over the control domain [tn, tn + θn

i+1/2]× [x−, x+] is used
only at a predictor stage to construct the intermediate states Wn

i±1/2 which will be used
in the corrector stage (3.2). Here, Wn

i±1/2 can be interpreted as an approximation of the
averaged Riemann solution Rs over the control volume [x−, x+] at time tn + θn

i+1/2.
Thus, the resulting intermediate state Wn

i+1/2 is given by

Wn
i+ 1

2
=

1
2
(
Wn

i + Wn
i+1
)
− 1

∆x
θn

i+ 1
2

(
F(Wn

i+1)− F(Wn
i )
)
+ θn

i+ 1
2
Qn

i+ 1
2
, (3.3)

where Wn
i denotes the space average of the solution W at time tn in the cell [x−, x+]

given by

Wn
i =

1
∆x− + ∆x+

∫ x+

x−
W(x, tn)dx, (3.4)

and Wn
i+1/2 is an approximate average of the solution W in the time-space domain

[tn, tn + θn
i+1/2]× [xi, xi+1] defined as

Wn
i+ 1

2
=

1
∆x− + ∆x+

∫ x+

x−
W
(

x, tn + θn
i+ 1

2

)
dx. (3.5)
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In (3.3), Qn
i+1/2 is an approximation of the averaged source term Q, i.e.,

Qn
i+ 1

2
=

1
∆t∆x

∫ tn+θn
i+ 1

2

tn

∫ x+

x−
Q(W) dt dx.

The distance measures ∆x− and ∆x+ appeared in (3.4) and (3.5) are defined as

∆x− =
∣∣x− − xi+ 1

2

∣∣, ∆x+ =
∣∣x+ − xi+ 1

2

∣∣.
Note that in order to complete the implementation of the above finite volume method,
the parameters x−, x+, θn

i+1/2 and Qn
i+1/2 have to be selected. In the present study, a

simple choice of the points

x− = xi and x+ = xi+1,

is selected, but other selections are also possible. Based on the stability analysis re-
ported in [19] for conservation laws with source terms, the variable θn

j+1/2 is selected
as

θn
i+ 1

2
= αn

i+ 1
2
θ̄i+ 1

2
, θ̄i+ 1

2
= ∆x

(
2Sn

i+ 1
2

)−1, (3.6)

where
Sn

i+ 1
2
= max

{
|F′(Wn

i )|, |F′(Wn
i+1)|

}
,

is the local Rusanov’s velocity and αn
i+1/2 is a positive parameter to be calculated lo-

cally. It is clear that, by setting
αn

i+ 1
2
= 1,

the proposed finite volume method reduces to the well-known Rusanov method in
the linear homogeneous case, whereas for

αn
i+ 1

2
=

∆t
∆x

,

one recovers the Lax-Wendroff scheme.
The application of the proposed finite volume method for systems of conservation

laws with source terms has been investigated in [18, 19]. According to the analysis
performed in the abovementioned references, the control parameter αn

j+1/2 has to be
selected as a sign matrix of the Jacobian matrix of the system under consideration. It
should be noted that the finite volume methods proposed in the present work can be
interpreted as a predictor-corrector procedure. In the predictor stage, the averaged
states Wn

i+1/2 are computed whereas, the solution Wn+1
i is updated in the corrector

stage. It is worth pointing out that, for homogeneous systems, i.e.,

Q = 0,

the proposed finite volume method yields the VFRoe scheme studied in [14]. In what
follows we discuss the formulation of the method for solving the morphodynamic
system using different approaches.
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3.1 Approach A

This approach uses the conservative variables in both the predictor and corrector
stages. This results in the following scheme for the morphodynamic system (2.6):

W̃n
i+ 1

2
=

1
2
(
W̃n

i+1 + W̃n
i
)
− 1

2
sgn
[
Ã
(
W̃
)](

W̃n
i+1 − W̃n

i
)
+

1
2

∣∣Ã(W̃)−1∣∣Q̃n
i , (3.7a)

W̃n+1
i = W̃n

i −
∆t
∆x
(
F̃
(
W̃n

i+ 1
2

)
− F̃

(
W̃n

i− 1
2

))
+ ∆tQ̃n

i , (3.7b)

where the averaged state is calculated as

W̃ =


hi+hi+1

2

hi+hi+1
2

ui
√

hi+ui+1
√

hi+1√
hi+

√
hi+1

Bi+Bi+1
2

 , (3.8)

and the sign and inverse matrices are given by

sgn
[
Ã
(
W̃
)]

= R
(
W̃
)
sgn
[
Λ
(
W̃
)]
R−1(W̃),∣∣Ã(W̃)−1∣∣ = R

(
W̃
)∣∣Λ(W̃)∣∣−1R−1(W̃),

with

sgn
[
Λ
(
W̃
)]

=

 sgn
(
λ̃1
)

0 0

0 sgn
(
λ̃2
)

0

0 0 sgn
(
λ̃3
)
 ,

and

∣∣Λ(W̃)∣∣−1
=


∣∣λ̃1
∣∣−1

0 0

0
∣∣λ̃2
∣∣−1

0

0 0
∣∣λ̃3
∣∣−1

 ,

where λ̃k are the eigenvalues in (2.8) calculated at the averaged solutions. The right
and left eigenvector matrices are given by

R
(
W̃
)
=


1 1 1

λ̃1 λ̃2 λ̃3

−c2−gB+α̃
2
1

c2
−c2−gB+α̃

2
2

c2
−c2−gB+α̃

2
3

c2

 , (3.9a)

R−1(W̃) =


c2+gB+λ̃2λ̃3−u2

λ̃12λ̃13
− α̃2+α̃3

λ̃12λ̃13

c2

λ̃12λ̃13

c2+gB+λ̃1λ̃3−u2

λ̃21λ̃23
− α̃1+α̃3

λ̃21λ̃23

c2

λ̃21λ̃23

c2+gB+λ̃1λ̃2−u2

λ̃31λ̃32
− α̃1+α̃2

λ̃31λ̃32

c2

λ̃31λ̃32

 , (3.9b)
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where c =
√

gh is the wave speed and

α̃k = λ̃k − u, λ̃kj = λ̃k − λ̃j, k, j = 1, 2, 3.

3.2 Approach B

In this approach, the physical variables Un
i+1/2 are used to compute the averaged states

in the predictor stage, while the conservative variables W̃n+1
i are updated in the cor-

rector stage. This results in the following scheme for the morphodynamic system (2.6):

Un
i+ 1

2
=

1
2
(
Un

i+1 + Un
i
)
− 1

2
sgn
[
B
(
U
)](

Un
i+1 − Un

i
)
, (3.10a)

W̃n+1
i = W̃n

i −
∆t
∆x
(
F̃
(
W̃n

i+ 1
2

)
− F̃

(
W̃n

i− 1
2

))
+ ∆tQ̃n

i , (3.10b)

where the averaged state is calculated as

U =


hi+hi+1

2

ui
√

hi+ui+1
√

hi+1√
hi+

√
hi+1

Bi+Bi+1
2

 , (3.11)

and the sign matrix is given by

sgn
[
B
(
U
)]

= R
(
U
)
sgn
[
Λ
(
U
)]
R−1(U), (3.12)

with

sgn
[
Λ
(
U
)]

=


sgn
(

µ1

)
0 0

0 sgn
(
µ2

)
0

0 0 sgn
(
µ3

)
 , (3.13)

where µk are the eigenvalues in (2.11) calculated at the averaged solutions. The right
and left eigenvector matrices are given by

R
(
U
)
=


1 1 1
β1
h

β2
h

β3
h

β
2
1−c2

c2
β

2
2−c2

c2
β

2
3−c2

c2

 , (3.14a)

R−1(U) =


c2+β2β3
µ12µ13

− h(β2+β3)
µ12µ13

c2

µ12µ13

c2+β1β3
µ21µ23

− h(β1+β3)
µ21µ23

c2

µ21µ23

c2+β1β2
µ31µ32

− h(β1+β2)
µ31µ32

c2

µ31µ32

 , (3.14b)
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where c =
√

gh is the wave speed and

βk = µk − u, µkj = µk − µj, k, j = 1, 2, 3.

Remark that, since the predictor stage in (3.10a) and (3.10b) uses the physical variables
Un

i+1/2, the source term appears only in the corrector stage.

3.3 Approach C

In this approach, the physical variables are used in both the predictor and corrector
stages. This results in the following scheme for the morphodynamic system (2.9)

Un
i+ 1

2
=

1
2
(
Un

i+1 + Un
i
)
− 1

2
sgn
[
B
(
U
)](

Un
i+1 − Un

i
)
, (3.15a)

Un+1
i = Un

i −
∆t
∆x
(
G
(
Un

i+ 1
2

)
− G

(
Un

i− 1
2

))
, (3.15b)

where the averaged sate U is given in (3.11) and the sign matrix sgn[B(U)] is given
by (3.12)-(3.14b). Note that no source treatment is required in the predictor-corrector
procedure (3.15).

4 Approximation of the source terms

The treatment of source terms in shallow water equations is crucial for the perfor-
mance of most finite volume methods. In the proposed finite volume methods, the
discretization of the source terms is carried out such that it is well balanced with dis-
cretization of the flux gradients using the concept of C-property [4]. Recall that, a
numerical scheme is said to satisfy the C-property for a morphodynamic problem if
the condition

Bn = B̄(x), hn + Bn = C, un = 0, (4.1)

holds for stationary flows. Here, B̄(x) is a fixed bed and C is a constant. Therefore, the
treatment of source terms in the above approaches is reconstructed such that the con-
dition (4.1) is preserved at the discretized level. It should be pointed out that this prop-
erty is fundamental for the correct transport of bed-load by water flows. A numerical
scheme which does not satisfy the C-property may produce nonphysical oscillations
in the bed resulting in poor resolution of shocks and instability problems.

For brevity in presentation we describe the approximation of the source terms only
for the Approach A. For the Approach B a similar procedure applied. Let us assume
a stationary flow at rest, u = 0. Thus, the Exner equation (2.2) yields that the bed B is
constant in time, i.e., B(t, x) = B̄(x), and the morphodynamic system (2.6) reduces to

∂t

(
h
0

)
+ ∂x

(
0

1
2 gh2

)
=

(
0

−gh∂xB

)
. (4.2)
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The matrices R, Λ and R−1 appeared in (3.7) for the approach A are defined as

Rn
i+ 1

2
=

(
1 1
−c c

)
, Λn

i+ 1
2
=

(
−c 0
0 c

)
,
(
Rn

i+ 1
2

)−1
=

1
2

(
1 −c−1

1 c−1

)
,

where

c =

√
g

hn
i + hn

i+1

2
,

is the wave speed calculated at the interface xi+1/2 of the control volume. Applied to
the system (4.2), the predictor stage in (3.7) computes

W̃n
i+ 1

2
=

 hn
i +hn

i+1
2

1
2 cn

i+ 1
2

(
hn

i+1 + Bn
i+1 − hn

i − Bn
i
)
 , (4.3)

while the corrector stage in (3.10a) and (3.10b) updates the solution as

W̃n+1
i = W̃n

i − g
∆t

2∆x

(
0(

hn
i+ 1

2

)2 −
(
hn

i− 1
2

)2

)
− ∆t

(
0(

gh∂xB
)n

i

)
. (4.4)

To obtain a stationary solution W̃n+1
i = W̃n

i , the sum of discretized flux gradients and
source terms in (4.4) should be equal to zero, i.e.,

g
1

2∆x
((

hn
i+ 1

2

)2 −
(
hn

i− 1
2

)2)
= −

(
gh∂xB

)n
i . (4.5)

Using

hn
i+ 1

2
=

hn
i + hn

i+1

2
,

the condition (4.5) is equivalent to

g
1

8∆x
(
hn

i+1 + 2hn
i + hn

i−1
)(

hn
i+1 − hn

i−1
)
= −

(
gh∂xB

)n
i . (4.6)

Since for stationary solution

hn
i+1 − hn

i−1 = Bn
i+1 − Bn

i−1,

the Eq. (4.6) becomes

(
gh∂xB

)n
i = g

hn
i+ 1

2
+ hn

i− 1
2

2
Bn

i+1 − Bn
i−1

2∆x
. (4.7)

Hence, if the source term in the corrector stage of (3.7) is discretized as

Qn
i =


0

g
hn

i+ 1
2
+hn

i− 1
2

2
Bn

i+1−Bn
i−1

2∆x

0

 , (4.8)

then the proposed finite volume method satisfies the C-property.
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5 Extension to the second-order accuracy

Obviously, the proposed finite volume method is only first-order accurate in both
space and time. To extend its accuracy to a second-order scheme, we use a MUSCL
method incorporating slope limiters in the spatial discretization and a two-step Runge-
Kutta method for time integration. The MUSCL discretization uses an approximation
of the solution state W by a linear interpolation at each cell interface, see for exam-
ple [11]. In the present work, we consider a second-order scheme incorporating lim-
iters in its reconstruction. Thus, the numerical flux (3.3) becomes

Wn
i+ 1

2
=

1
2
(
Wn−

i+ 1
2
+ Wn+

i+ 1
2

)
− 1

∆x
θn

i+ 1
2

(
F(Wn+

i+ 1
2
)− F(Wn−

i+ 1
2
)
)

+ θn
i+ 1

2
Qn

i+ 1
2
, (5.1)

where the states states Wn+
i+1/2 and Wn−

i+1/2 are defined as

Wn−
i+ 1

2
= Wn

i +
1
2

Φ(ri)(Wn
i+1 − Wn

i ), (5.2a)

Wn+
i+ 1

2
= Wn

i+1 −
1
2

Φ(ri+1)(Wn
i+2 − Wn

i+1), (5.2b)

with the slope ri is given by

ri =
Wn

i − Wn
i−1

Wn
i+1 − Wn

i
.

Note that, for the morphodynamic system (2.4), the second-order reconstruction (5.1)
has to be performed for the physical variables h, u and B. In (5.2), Φ(r) defines the
slope limiter function such as the Minmod function

Φ(r) = max
{

0, min{1, r}
}

, (5.3)

or the van leer function

Φ(r) =
|r|+ r
1 + |r| . (5.4)

Remark that other slope limiter functions from [11] can also apply. Remark that if we
set Φ = 0, the spatial discretization (5.1) reduces to the first-order scheme.

6 Numerical results and examples

Three test examples are selected to check the accuracy and the performance of the
proposed finite volume schemes. As with all explicit time stepping methods the theo-
retical maximum stable time step ∆t is specified according to the Courant-Friedrichs-
Lewy (CFL) condition

∆t = Cr
∆x

max
k=1,2,3

(∣∣λn
k
∣∣) , (6.1)
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where Cr is a constant to be chosen less than unity. In all our simulations, the fixed
Courant number Cr = 0.8 is used and the time step is varied according to (6.1). For
the considered test examples, the channel is of length 1000m and the initial water level
and initial velocity are given as

h(0, x) = 10m − B(0, x) and u(0, x) =
10m/s2

h(0, x)
.

Furthermore, the porosity constant p = 0.4 and two values A = 0.001 and A = 1
are used in the sediment transport flux (2.3). Note that, large or small values of A
characterize respectively, a fast or slow interaction between the bed-load and the water
flow in the morphodynamical problem. It is worth remarking that, for the considered
value of the discharge Q = 10m2/s, the Froude number Fr = u/

√
gh ≈ 0.1. To obtain

realistic initial data for the morphodynamic equations, we first solve the shallow water
equations (2.1) keeping the channel bed fixed until an equilibrium state is reached.
The computed solutions h and u are then used for moving bed simulations. In all our
computations, unless stated, the spatial stepsize ∆x = 10m and the Van leer limiter
function is used.

6.1 Example 1

We consider the test example of the evolution of an initially hump-shaped bed in a
channel studied in [9]. The initial bed is defined as

B(0, x) =

{
sin2

(
(x−300)π

200

)
, if 300 ≤ x ≤ 500,

0, elsewhere.

In Fig. 2 we present the initial bed-load along with the initial water height. In the first
run for this test example we set A = 0.001 resulting in a slow interaction between the
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Figure 2: Initial bed-load and water height for Example 1.
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Figure 3: Bed-load (a) and water height (b) for Example 1 with A = 0.001 at t = 238000s.
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Figure 4: Bed-load (a) and water height (b) for Example 1 with A = 1 at t = 238s.

bed-load and the water flow. In Fig. 3 we display the bed profiles and water height at
time t = 238000s computed using the three approaches. In all considered approaches,
the upper front of the hump travels faster than the lower base so that the propagat-
ing bed-load creates a shock at the front after a certain time. The obtained results
demonstrate the ability of the presented finite volume scheme to capture traveling
fronts without generating spurious oscillations. It is evident that the results obtained
using Approach B and Approach C are more diffusive than those obtained using Ap-
proach A. Next, results obtained for A = 1 at t = 238s are displayed in Fig. 4. In
this later case, no pronounced differences are detected between the results obtained
using the three approaches. The finite volume scheme performs well for this sediment
transport problem since it does not diffuse the moving bed and no spurious oscilla-
tions have been observed when the water flows over the bed profile. Furthermore, the
obtained results compare favorably with those reported in [9] for the same sediment
transport problem.
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Figure 5: Free surface for Example 1 with A = 0.001 at t = 238000s (a) and with A = 1 at t = 238s (b).

To examine the performance of the proposed approaches in preserving the C-
property we present in Fig. 5 the free surface with A = 0.001 at time t = 238000s
and with A = 1 at time t = 238s. It can be noted the perturbations occurring in the
computational domain are slightly different for all approaches and extend to regions
far from the bed-load. This can be interpreted by the fact that the velocity field is not
entirely uniform across the channel with high-amplitude velocities occurring in the
center. These variations in the velocity field across the channel produce variations in

Table 1: Relative errors for Example 1 with A = 0.001 at t = 5000s.

Approach A
N L1-error Rate L∞-error Rate L2-error Rate
50 4.90240E-05 — 3.53989E-04 — 9.84635E-05 —
100 2.50423E-05 0.97 1.92992E-04 0.88 5.66608E-05 0.80
200 1.21406E-05 1.04 9.48070E-05 1.03 2.95266E-05 0.94
400 6.00069E-06 1.02 4.76398E-05 1.00 1.49603E-05 0.98
800 3.00783E-06 1.00 2.40495E-05 0.99 7.49793E-06 1.00

Approach B
N L1-error Rate L∞-error Rate L2-error Rate
50 5.58887E-05 — 3.87988E-04 — 1.18881E-04 —
100 2.57356E-05 1.12 1.93998E-04 1.00 6.00037E-05 0.99
200 1.23546E-05 1.06 9.59990E-05 1.01 3.01062E-05 0.99
400 6.05556E-06 1.03 4.81047E-05 1.00 1.50481E-05 1.00
800 3.02656E-06 1.00 2.43552E-05 0.98 7.53506E-06 1.00

Approach C
N L1-error Rate L∞-error Rate L2-error Rate
50 1.10740E-03 — 1.32646E-03 — 1.12601E-03 —
100 5.88571E-04 0.91 7.05562E-04 0.91 5.98523E-04 0.91
200 2.79634E-04 1.07 4.05870E-04 0.80 2.84973E-04 1.07
400 1.21627E-04 1.20 2.55959E-04 0.67 1.24256E-04 1.20
800 3.95572E-05 1.62 1.75985E-04 0.54 4.09563E-05 1.60
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the morphology of the bed given the fact that the sediment transport flux is a func-
tion of u3. We also note that the velocity field evolves along with the morphological
changes.

Our next concern is to perform a convergence study for the proposed finite volume
method for this test example. This problem cannot be solved analytically and therefore
a numerical solution, computed on a fine mesh of 1600 gridpoints, is adopted as the
reference solution. The relative L1, L∞ and L2 errors are listed in Table 1 for A = 0.001
at t = 5000s using different numbers of gridpoints N. All the errors are measured by
the difference between the pointvalues of the reference solution and the reconstructed
pointvalues of the computed solution. For sake of comparison, we have also included
the convergence rates in Table 1. It is clear that increasing the number of gridpoinds in
the space domain results in a decrease of all error-norms for all approaches. In terms
of all considered error-norms, the Approach A could be the most accurate among the
other approaches for solving morphodynamic problems. A slower decrease in these
error-norms has been observed in Approach C than those obtained using Approach B
and Approach A. This behavior in Approach C may be attributed to the use of the non-
conservative form of the sediment transport problem resulting in an absence of any
numerical treatment of the source term in (3.15). It is worth remarking that for large
values of A, faster decay on the errors has been detected in the considered approaches.

6.2 Example 2

This test problem considers the evolution of an initially discontinuous bed in a channel
proposed in [6]. Due to this discontinuity in the initial bed profile, this test example is
more challenging than the previous example. The initial bed is defined as

B(0, x) =
{

1, if 300 ≤ x ≤ 500,
0, elsewhere.

This initial bed-load and the initial water height are presented in Fig. 6. The evolution
of the bed profile and the water height with A = 0.001 at time t = 580000s is depicted
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Figure 6: Initial bed-load and water height for Example 2.
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Figure 7: Bed-load (a) and water height (b) for Example 2 with A = 0.001 at t = 580000s.
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Figure 8: Bed-load (a) and water height (b) for Example 2 with A = 1 at t = 624s.
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Figure 9: Free surface for Example 2 with A = 0.001 at t = 580000s (a) and with A = 1 at t = 624s (b).

in Fig. 7. The results with A = 1 at time t = 624s are included in Fig. 8 for the three
approaches. The computed water free surfaces are plotted in Fig. 9 for both test cases.
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Figure 10: Comparison between results obtained using different limiters for bed-load (a) and water height
(b) for Example 2 with A = 0.001 at t = 580000s.

Again the proposed finite volume scheme performs accurately for this test example. It
is clear that the results computed using Approach B and Approach C are roughly the
same, whereas the results obtained using Approach A are slightly more accurate. The
proposed finite volume method performs very satisfactorily for this nonlinear coupled
problem since it does not diffuse the moving bed fronts and no spurious oscillations
have been detected near steep gradients of the flow field in the computational domain.

We now turn our attention to examine the limiters used for the second-order recon-
struction (5.1). To this end we illustrate in Fig. 10 the bed profile and the water height
with A = 0.001 at time t = 580000s obtained using the Minmod and Van leer limiter
functions. The first-order results are also included in this figure. The high accuracy of
the second-order finite volume over its first-order counterpart is clearly demonstrated
in both, bed-load and water height variables. Similar behavior has been detected for
the other test examples. In all our simulations, the results obtained using the Minmod
limiter are more diffusive than those obtained using the Van leer limiter.
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Figure 11: Initial bed-load and water height for Example 3.
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6.3 Example 3

Our final test example is the problem of a sediment transport with backward/forward
step. Here the initial bed is defined as

B(0, x) =



1, if 0 ≤ x ≤ 96,
−x+181

85 , if 96 ≤ x ≤ 181,
0, if 181 ≤ x ≤ 638,
x−638

85 , if 638 ≤ x ≤ 723,
1, if 723 ≤ x ≤ 1000.

A similar test example was studied in [7] for sedimentary flows. Fig. 11 illustrates the
initial bed-load and the initial water height. We display in Fig. 12 the bed-load and
the water height with A = 0.001 at time t = 250000s. Fig. 13 reports the obtained
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Figure 12: Bed-load (a) and water height (b) for Example 3 with A = 0.001 at t = 250000s.
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Figure 13: Bed-load (a) and water height (b) for Example 3 with A = 1 at t = 482s.
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Figure 14: Free surface for Example 3 with A = 0.001 at t = 250000s (a) and with A = 1 at t = 482s (b).

results with A = 1 at t = 482s. The free surface with A = 0.001 at time t = 250000s
and with A = 1 at time t = 482s are shown in Fig. 14. As in the previous test ex-
amples, all the considered approaches exhibit similar structures for both water flow
and bed profile. Note that the performance of the proposed finite volume method is
very attractive since the computed solutions remain stable and oscillation-free even
for relatively coarse grids without solving nonlinear systems or Riemann problems.

Finally, analysis of computational cost has been carried out in the considered test
examples. Table 2 summarizes the computational cost of the three approaches for the
considered test examples with A = 0.001. As can be observed, there is little differ-
ence between the three approaches applied to the same test example. However, it is
clear that the Approach C required less CPU time than Approach A and Approach B.
Therefore, bearing in mind the slight change in the results from all approaches at the
expense of rather small increase in CPU times, the considered approaches are believed
to be adequate to obtain accurate and efficient results for practical morphodynamic
problems. It is worth mentioning that the CPU times in the considered approaches
can be drastically reduced by considering implicit time integration scheme along with
multigrid techniques to speed up the convergence in the solution of linear systems,
see [12] among others. This type of methods can be executed with time steps much
more larger than for the explicit methods. This fact allows much fewer time steps to
be taken for the same period of simulation, thereby reducing the total computational
cost tremendously.

Table 2: CPU times (in minutes) for the simulations with A = 0.001 for the three examples.

Example 1 Example 2 Example 3
t = 238000s t = 580000s t = 250000s

Approach A 8.27 20.03 9.56
Approach B 7.38 18.05 7.93
Approach C 6.90 16.83 7.17
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7 Conclusions

In this paper we have studied the accuracy and efficiency of a class of finite vol-
ume methods for numerical solution of morphodynamic problems in coastal regions.
The proposed finite volume method consists of two stages which can be viewed as a
predictor-corrector procedure. In the first stage, the scheme reconstructs the numeri-
cal fluxes using the sign matrix of the flux Jacobian in the morphodynamic equations.
This stage results in an upwind discretization of the characteristic variables and avoids
the singularity that may occur in the Jacobian matrix for the conservative form of the
morphodynamic equations. In the second stage, the solution is updated using a spe-
cial treatment of the bed bottom in order to obtain a well-balanced discretization of the
flux gradient and the source term. Three approaches have been discussed depending
on the form of morphodynamic equations used in the predictor procedure. To increase
the accuracy of the finite volume methods we have incorporated slope limiters.

The methods have been numerically examined for several test examples in mor-
phodynamic problems with different initial beds in a channel. We have compared the
numerical results obtained for three finite volume approaches. In most cases, the pro-
posed methods have exhibited accurate prediction of both, the free surface and the
bed-load with correct C-property, and stable representation of free surface response to
the movable bed. The results make it promising to be applicable also to real situations
where, beyond the many sources of complexity, there is a more severe demand for ac-
curacy in predicting the morphological evolution, which must be performed for long
time. Future work will concentrate on developing efficient time integration schemes
for the finite volume discretization and extension of these approaches to morphody-
namic flow problems in two space dimensions.
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