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Abstract. In this paper, we study an adaptive finite element method for a class of
nonlinear eigenvalue problems resulting from quantum physics that may have a
nonconvex energy functional. We prove the convergence of adaptive finite element
approximations and present several numerical examples of micro-structure of mat-
ter calculations that support our theory.
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1 Introduction

In this paper, we study adaptive finite element approximations for a class of nonlinear
eigenvalue problems: find (λ, u)∈R × H1

0(Ω) such that
(
− α∆ + V +N (u2)

)
u = λu, in Ω,∫

Ω
|u|2 = Z,

(1.1)

where Ω⊂R3, Z∈N, α∈(0, ∞), V : Ω→R is a given function, N maps a nonnegative
function over Ω to some function defined on Ω.

Many physical models for micro-structures of matter are nonlinear eigenvalue
problems of type (1.1), for instance, the Thomas-Fermi-von Weizsäcker (TFW) type
orbital-free model used for electronic structure calculations [15, 31, 41] and the Gross-
Pitaevskii equation (GPE) describing the Bose-Einstein condensates (BEC) [4, 42]. In
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the context of simulations of electronic structure calculations, the basis functions used
to discretize models like (1.1) are traditionally plane wave bases or typically Gaus-
sian approximations of the eigenfunctions of a hydrogen-like operator. The former is
very well adapted to solid state calculations and the latter is incredibly efficient for
calculations of molecular systems. However, there are several disadvantages and lim-
itations involved in such methods. For example, the boundary condition does not
correspond to that of an actual system; extensive global communications in dealing
with plane waves reduce the efficiency of a massive parallelization, which is nec-
essary for complex systems; and the generation of a large supercell is needed for
non-periodic systems, which certainly increases the computational cost. The finite
element method uses local piecewise polynomial basis functions, which does not in-
volve problems mentioned above and has several advantages. Although it uses more
degrees of freedom than that of traditional methods, strictly local basis functions pro-
duce well structured sparse Hamiltonian matrices; arbitrary boundary conditions can
be easily incorporated; more importantly, since ground state solutions oscillate obvi-
ously near the nuclei, it is relatively straightforward to implement adaptive refinement
techniques for describing regions around nuclei or chemical bonds where the electron
density varies rapidly, while treating the other zones with a coarser description, by
which computational accuracy and efficiency can be well controlled. Thus it should be
natural to apply adaptive finite element methods to solve nonlinear eigenvalue prob-
lems resulting from modeling electronic structures. Indeed the adaptive finite element
method is a powerful approach to computing ground state energies and densities in
quantum chemistry, materials science, molecular biology and nanosciences [5, 30].

The basic idea of a standard adaptive finite element method is to repeat the follow-
ing procedure until a certain accuracy is obtained:

Solve → Estimate → Mark → Refine.

Adaptive finite element methods have been studied extensively since Babuška and
Rheinboldt [3] and have been successful in the practice of engineering and scientific
computing. In particular, Dörfler [21] presented the first multidimensional conver-
gence result, which has been improved and generalized, see, e.g., [6, 8, 32–35, 38] for
linear boundary value problems, [11, 16, 20, 27, 28, 39] for nonlinear boundary value
problems, and [12, 18, 22–24] for linear eigenvalue problems. To our best knowledge,
there has been no work on the convergence of adaptive finite element approximations
for nonlinear eigenvalue problems, though some a priori error analyses of finite di-
mensional Galerkin discretizations for such nonlinear eigenvalue problems have been
shown in [9, 10, 13, 29, 42, 43].

In this paper, we shall present a posteriori error analysis of an adaptive finite ele-
ment method for a class of nonlinear eigenvalue problems and prove that the adaptive
finite element algorithm will produce a sequence of approximations that converge to
exact ground state solutions. As an illustration, we shall also report several numerical
experiments on electronic structure calculations based on the adaptive finite element
discretization [5, 15, 30], which support our theory. Since the nonlinear term occurs,
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especially the nonlocal convolution integration part, there are several serious difficul-
ties in the numerical analysis. Moreover, the associated energy functional for this type
of problems is usually nonconvex, which particularly brings troubles in convergence
analysis. In our analysis, we shall apply some nonlinear functional arguments and
special techniques to deal with the local and nonlocal terms carefully.

This paper is organized as follows. In the coming section, we give an overview of
the nonlinear eigenvalue problem and provide an analysis for the nonlocal term. In
Section 3, we describe the finite element discretization and present an a posteriori error
analysis. In Section 4, we design an adaptive finite element algorithm and prove the
convergence of the algorithm. In Section 5, we show some numerical results for micro-
structure computations that support our theory. Finally, we give several concluding
remarks.

2 Preliminaries

Let Ω⊂R3 be a polytypic bounded domain. We shall use the standard notation for
Sobolev spaces Ws,p(Ω) and their associated norms and seminorms, see, e.g., [1, 17].
For p=2, we denote

Hs(Ω) = Ws,2(Ω) and H1
0(Ω) =

{
v ∈ H1(Ω) : v|∂Ω = 0

}
,

where v|∂Ω=0 is understood in the sense of trace, ∥ · ∥s,Ω=∥ · ∥s,2,Ω, and (·, ·) is the
standard L2 inner product. The space H−1(Ω), the dual of H1

0(Ω), will also be used.
For convenience, the symbol . will be used in this paper. The notation A.B means
that A≤CB for some constant C that is independent of mesh parameters. We shall use
P(p, (c1, c2)) to denote a class of functions that satisfy the growth condition:

P(p, (c1, c2)) =
{

f : ∃a1, a2 ∈ R, such that c1tp + a1 ≤ f (t) ≤ c2tp + a2, ∀ t ≥ 0
}

,

with c1∈R and c2, p∈[0, ∞).
The weak form of (1.1) reads as follows: find (λ, u)∈R × H1

0(Ω), such that{
α(∇u,∇v) + (Vu +N (u2)u, v) = λ(u, v), ∀v ∈ H1

0(Ω),
∥u∥2

0,Ω = Z.
(2.1)

We assume that the nonlinear term N may be split into local and nonlocal parts:

N (ρ) = N1(ρ) +N2(ρ),

where ρ=u2, N1 : [0, ∞)→R is a given function dominated by some polynomial, and
N2 is represented by a convolution integration

N2(ρ) = ρq−1
∫

Ω
ρq(y)K(· − y)dy,
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for some given function K and q∈R.
The associated energy functional with respect to this nonlinear eigenvalue problem

is expressed by

E(u) =
∫

Ω

(
α|∇u(x)|2 + V(x)u2(x) +F (u2(x))

)
dx +

1
2q

DK(u2q, u2q), (2.2)

where F : [0, ∞)→R is associated with N1:

F (s) =
∫ s

0
N1(t)dt,

and DK(·, ·) is a bilinear form defined by

DK( f , g) =
∫

Ω

∫
Ω

f (x)g(y)K(x − y)dxdy.

Remark 2.1. In the orbital-free model for electronic structure calculation [15, 41], the
first term in energy functional (2.2) represents von Weizsäcker kinetic energy, the sec-
ond term is the interaction energy with the external potential V, the third term denotes
the Thomas-Fermi kinetic energy and exchange-correction energy, and the last term is
the electrostatic interaction energy of electrons and the nonlocal kinetic energy.

The ground state solution of problem (1.1) is obtained by minimizing energy func-
tional (2.2) in the admissible class

A =
{

ψ ∈ H1
0(Ω) : ∥ψ∥2

0,Ω = Z, ψ ≥ 0
}

.

In our discussion, we assume that

(i) V ∈ L2(Ω).

(ii) F ∈ P(p, (c1, c2)) with one of the following conditions:

1. c1 ∈ (0, ∞);

2. p ∈ [0, 4/3];

3. c1 ∈ (−∞, 0), p ∈ (4/3, ∞) and

|c1|
α

Zp−1 < inf
u∈H1

0 (Ω)

∥u∥0,Ω=1

∫
Ω |∇u|2∫
Ω |u|2p . (2.3)

(iii) N1(t) ∈ P(p1, (c1, c2)) for some p1 ∈ [0, 2) and tN ′
1(t) ∈ P(p2, (c̃1, c̃2)) for some

p2 ∈ [0, 2).

(iv) K ∈ L2(Ω̃), where Ω̃ = {x − y : x, y ∈ Ω}. Moreover, K is some nonnegative even
function and q ∈ [1, 3/2).
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Note that these assumptions are satisfied by typical physical models for micro-structures
of matter (see, e.g., [7, 15, 19, 30, 31]) and condition (2.3) first appeared in [7].

It is known that under Assumptions (i)-(iv), there exists a nonnegative minimizer
of energy functional (2.2) [13, 31, 43]. Moreover, E(v) is bounded below over A under
these assumptions [13, 43], namely, there exist positive constants C and b such that

E(v) ≥ C−1∥∇v∥2
0,Ω − b, ∀v ∈ A. (2.4)

In general, however, the uniqueness of the nonnegative ground state solution is un-
known, of which the main reason is that energy functional (2.2) is nonconvex with
respect to ρ=u2 for almost all molecular models of practical interest. As a result, we
introduce the set of ground state solutions by

U =
{

u ∈ A : E(u) = min
v∈A

E(v)
}

. (2.5)

If u∈U is a ground state solution, then there exists a corresponding Lagrange multi-
plier λ∈R such that (λ, u) solves (2.1) and satisfies

Zλ = E(u) +
∫

Ω

(
N1(u2(x))u2(x)−F (u2(x))

)
dx +

(
1 − 1

2q

)
DK(u2q, u2q).

We define the set of ground state eigenvalues by

Λ =
{

λ ∈ R : (λ, u) solves (2.1), u ∈ U
}

.

The following estimate of the nonlinear term will be used in our analysis.

Lemma 2.1. Let χ, w∈H1(Ω) satisfy

∥χ∥1,Ω + ∥w∥1,Ω ≤ C̄,

for some constant C̄. If the Assumptions (iii) and (iv) are satisfied, then there exists a constant
C̃>0 depending on C̄, the volume of Ω and constants and parameters involved in Assumptions
(iii) and (iv) such that∫

Ω

(
N (χ2)χ −N (w2)w

)
v ≤ C̃∥χ − w∥1,Ω∥v∥1,Ω, ∀v ∈ H1

0(Ω). (2.6)

Proof. We first prove that∫
Ω

(
N1(χ

2)χ −N1(w2)w
)
v . ∥χ − w∥1,Ω∥v∥1,Ω, ∀v ∈ H1

0(Ω), (2.7)

which is valid when p1, p2∈(0, 2) in Assumption (iii). For p1, p2∈(0, 2), there exists
ξ=χ + δ(w − χ) with δ∈[0, 1], such that∫

Ω

(
N1(χ

2)χ −N1(w2)w
)
v

=
∫

Ω

(
N1(ξ

2) + 2ξ2N ′
1(ξ

2)
)
(χ − w)v

≤∥N1(ξ
2)∥0, 3

p1
,Ω∥χ − w∥0, 6

5−2p1
,Ω∥v∥0,6,Ω

+ ∥2ξ2N ′
1(ξ

2)∥0, 3
p2

,Ω∥χ − w∥0, 6
5−2p2

,Ω∥v∥0,6,Ω. (2.8)
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From Assumption (iii), there exist constants a1, a2, ã1 and ã2 such that

a1 + c1ξ2p1 ≤ N1(ξ
2) ≤ a2 + c2ξ2p1 , (2.9a)

ã1 + c̃1ξ2p2 ≤ ξ2N ′
1(ξ

2) ≤ ã2 + c̃2ξ2p2 , (2.9b)

which together with (2.8) and the Sobolev inequality imply∫
Ω

(
N1(χ

2)χ −N1(w2)w
)
v ≤

(
a2|Ω|

p1
3 + c2∥ξ2p1∥0, 3

p1
,Ω

)
∥χ − w∥1,Ω∥v∥1,Ω

+
(

2ã2|Ω|
p2
3 + 2c̃2∥ξ2p2∥0, 3

p2
,Ω

)
∥χ − w∥1,Ω∥v∥1,Ω,

where |Ω| is the volume of Ω. Note that

∥ξ∥0,6,Ω . ∥χ∥0,6,Ω + ∥w∥0,6,Ω . ∥χ∥1,Ω + ∥w∥1,Ω ≤ C̄,

we get that (2.7) holds for p1, p2∈(0, 2). Similar arguments show that (2.7) is also true
when p1 p2=0.

For nonlocal term N2, we obtain from Assumption (iv), the Young’s inequality, and
the Hölder inequality that

∥K ∗ (χ2q − w2q)∥0,∞,Ω .∥K∥0,Ω̃∥χ2q − w2q∥0,Ω

.∥K∥0,Ω̃∥ξ2q−1∥0, 6
5 ,Ω∥χ − w∥0,6,Ω

.∥χ − w∥1,Ω.

Hence, for all v∈H1
0(Ω), we have∫

Ω
K ∗ (χ2q − w2q)χ2q−1v .∥K ∗ (χ2q − w2q)∥0,∞,Ω∥χ2q−1∥0,Ω∥v∥0,Ω

.∥χ − w∥1,Ω∥χ∥2q−1
0,2(2q−1),Ω∥v∥0,Ω

.∥χ − w∥1,Ω∥v∥1,Ω, (2.10)

where q∈[1, 3/2) as in Assumption (iv). Similarly, for all v∈H1
0(Ω), there holds∫

Ω
K ∗ w2q(χ2q−1 − w2q−1)v .∥K ∗ w2q∥0,∞,Ω∥χ2q−1 − w2q−1∥0,Ω∥v∥0,Ω

.∥ξ2q−2∥0, 3
q−1 ,Ω∥χ − w∥0, 6

5−2q ,Ω∥v∥1,Ω

.∥χ − w∥1,Ω∥v∥1,Ω. (2.11)

Taking (2.10), (2.11), and identity

N2(χ
2)χ −N2(w2)w = K ∗ (χ2q − w2q)χ2q−1 + K ∗ w2q(χ2q−1 − w2q−1),

into account, we obtain∫
Ω

(
N2(χ

2)χ −N2(w2)w
)
v . ∥χ − w∥1,Ω∥v∥1,Ω, ∀v ∈ H1

0(Ω),

which together with (2.7) leads to (2.6). This completes the proof. �
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3 Finite element discretizations

Let dΩ be the diameter of Ω and {Th} be a shape regular family of nested conforming
meshes over Ω with size h∈(0, dΩ): there exists a constant γ∗ such that

hT

ρT
≤ γ∗, ∀T ∈ Th,

where, for each T∈Th, hT is the diameter of T, ρT is the diameter of the biggest ball
contained in T, and h=max{hT : T ∈ Th}. Let Eh denote the set of interior faces of
Th. And we shall also use a slightly abused of notation that h denotes the mesh size
function defined by

h(x) = hT, x ∈ T, ∀T ∈ Th.

Let Sh(Ω)⊂H1(Ω) be a corresponding family of nested finite element spaces consist-
ing of continuous piecewise polynomials over Th of fixed degree n≥1 and

Sh
0(Ω) = Sh(Ω) ∩ H1

0(Ω).

Set
Vh = Sh

0(Ω) ∩A.

Under Assumptions (i)-(iv), we can obtain the existence of nonnegative ground state
solutions in Vh (see, e.g., [43]). We do not have any uniqueness result for this discrete
problem since the energy functional and the admissible set are nonconvex. We define
the set of ground state solutions in Vh by

Uh =
{

uh ∈ Vh : E(uh) = min
v∈Vh

E(v)
}

. (3.1)

We have from (2.4) that ∥uh∥1,Ω is uniformly bounded

sup
h∈(0,dΩ )

uh∈Uh

∥uh∥1,Ω ≤ C, (3.2)

with some constant C.
It is seen that a minimizer uh∈Uh solves{

α(∇uh,∇v) + (Vuh +N (u2
h)uh, v) = λh(uh, v), ∀v ∈ Sh

0(Ω),
∥uh∥2

0,Ω = Z,
(3.3)

with the corresponding finite element eigenvalue λh∈R satisfying

Zλh = E(uh) +
∫

Ω

(
N1(u2

h(x))u2
h(x)−F (u2

h(x))
)
dx +

(
1 − 1

2q

)
DK(u

2q
h , u2q

h ). (3.4)

Define

Λh =
{

λh ∈ R : (λh, uh) solves (3.3), uh ∈ Uh
}

.

A priori error analysis for (3.3) has been shown in [13]. To carry out a posteriori error
analysis, we need the following result.
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Lemma 3.1. If the Assumptions (iii) and (iv) are satisfied, then there holds

hT∥N (u2
h)uh∥0,T . ∥uh∥0,6,T, ∀T ∈ Th, (3.5)

where the hidden constant depends on the volume of T, the constant involved in (3.2) and
constants and parameters involved in Assumptions (iii) and (iv).

Proof. It is obvious that

hT∥N1(u2
h)uh∥0,T . ∥uh∥0,6,T,

holds for p1=0 in Assumption (iii). By (2.9a) and (3.2), the Hölder inequality and the
inverse inequality, we have

hT∥N1(u2
h)uh∥0,T ≤hT∥N1(u2

h)∥0,3,T∥uh∥0,6,T

≤hT
(
a2|T|

1
3 + c2∥uh∥

2p1
0,6p1,T

)
∥uh∥0,6,T

.hT∥uh∥0,6,T + h2−p1
T ∥uh∥

2p1+1
0,6,T ,

for p1∈[1, 2) and

hT∥N1(u2
h)uh∥0,T ≤ hT

(
a2|T|

p1
3 + c2∥u2p1

h ∥0, 3
p1

,T
)
∥uh∥0, 6

3−2p1
,T . ∥uh∥0,6,T,

for p1∈(0, 1). Combining with the estimate of N2 as follows

hT∥N2(u2
h)uh∥0,T .hT∥K ∗ u2q

h ∥0,∞,T∥u2q−1
h ∥0,T

.hT∥K∥0,Ω̃∥u2q
h ∥0,Ω∥uh∥

2q−1
0,6,T

.∥uh∥0,6,T,

where Assumption (iv) is used, we obtain (3.5). This completes the proof. �
Let T denote the class of all conforming refinements by the bisection of an initial

triangulation T0. For Th∈T and any uh∈Uh we define element residual RT(uh) and
jump residual Je(uh) by

RT(uh) = λhuh + α∆uh − Vuh −N (u2
h)uh, in T ∈ Th,

Je(uh) = α∇uh|T1 ·
−→n1 + α∇uh|T2 ·

−→n2 = α[[∇uh]]e · −→n1 , on e ∈ Eh,

where T1 and T2 are elements in Th which share e and −→ni is the outward normal vector
of Ti on e for i=1, 2. Let ωh(e) be the union of elements which share e and ωh(T) be
the union of elements sharing a side with T.

For T∈Th, we define local error indicator ηh(uh, T) by

η2
h(uh, T) = h2

T∥RT(uh)∥2
0,T + ∑

e∈Eh
e⊂∂T

he∥Je(uh)∥2
0,e. (3.6)
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Given a subset ω⊂Ω, we define error estimator ηh(uh, ω) by

η2
h(uh, ω) = ∑

T∈Th
T⊂ω

η2
h(uh, T).

The following result will be used in our convergence analysis though it looks rough.

Proposition 3.1. Let Th∈T and (λh, uh) be a solution of (3.3). If Assumptions (i)-(iv) are
satisfied, then

ηh(uh, T) . ∥uh∥0,6,ωh(T) + ∥uh∥1,ωh(T), ∀T ∈ Th,

and

ηh(uh, Ω) ≤ Cη ,

where the uniform constant Cη>0 is independent of the mesh size h.

Proof. We first analyze the element residual. From the boundness of λh, we have

hT∥RT(uh)∥0,T =hT∥λhuh + α∆uh − Vuh −N (u2
h)uh∥0,T

.hT∥uh∥0,T + hT∥∆uh∥0,T + hT∥Vuh∥0,T + hT∥N (u2
h)uh∥0,T.

Using the inverse inequality, Assumption (i) and Lemma 3.1, we have

hT∥RT(uh)∥0,T . ∥uh∥0,6,T + ∥uh∥1,T,

to which similar estimates are true when T is replaced by any T′∈ωh(T).
For the jump residual, we derive from the definition of Je(uh) and the inverse in-

equality that

h
1
2
e ∥Je(uh)∥0,e =h

1
2
e ∥α∇uh|T1 ·

−→n1 + α∇uh|T2 ·
−→n2∥0,e

.h
1
2
e
(
∥∇uh|T1∥0,e + ∥∇uh|T2∥0,e

)
.∥uh∥1,ωh(T).

Consequently, we get

∑
e∈Eh
e⊂∂T

h
1
2
e ∥Je(uh)∥0,e . ∥uh∥1,ωh(T).

From (3.2), the definition of ηh(uh, T) and ηh(uh, Ω), we then finish the proof. �
To present upper and lower error bounds, we introduce an oscillation osch(uh, T)

for any T∈Th by

osc2
h(uh, T) = h2

T
∥∥RT(uh)−RT(uh)

∥∥2
0,T,
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where RT(uh)∈Pn−1 denotes the L2 projection of RT(uh). For a subset ω⊂Ω, we de-
fine

osc2
h(uh, ω) = ∑

T∈Th
T⊂ω

osc2
h(uh, T).

We have from a standard argument that (see Appendix for a proof).

Theorem 3.1. Let (λ, u) be a regular ground state solution of (2.1). If (λh, uh) is sufficiently
close to (λ, u), then

ηh(uh, Ω)− osch(uh, Ω) . |λ − λh|+ ∥u − uh∥1,Ω . ηh(uh, Ω) + osch(uh, Ω).

Remark 3.1. The definition of a regular ground state solution is referred to the Ap-
pendix. Theorem 3.1 provides the standard upper and lower bounds of the error with
respect to the error estimator. However, the hypothesis that (λ, u) is a regular solu-
tion is somehow strong, which can not be proved for most of the problems of practical
interest (c.f., e.g., Appendix). Anyway, it will not be used in our convergence analysis.

We define the global residual Rh(uh)∈H−1(Ω) as follows

⟨Rh(uh), v⟩ = λh(uh, v)− (α∇uh,∇v)− (Vuh, v)− (N (u2
h)uh, v), ∀v ∈ H1

0(Ω), (3.7)

and see that

⟨Rh(uh), v⟩ = ∑
T∈Th

( ∫
T
RT(uh)v − ∑

e∈Eh
e⊂∂T

∫
e

Je(uh)v
)

, ∀v ∈ H1
0(Ω).

The global residual can be estimated by the local error indicators in the following
sense.

Theorem 3.2. If (λh, uh)∈R × Vh is a solution of (3.3), then

|⟨Rh(uh), v⟩| . ∑
T∈Th

ηh(uh, T)∥v∥1,ωh(T), ∀v ∈ H1
0(Ω).

Proof. Let v∈H1
0(Ω) and vh∈Sh

0(Ω) be the Clément interpolant of v satisfying

∥v − vh∥0,T . hT∥∇v∥0,ωh(T) and ∥v − vh∥0,∂T . h
1
2
T∥∇v∥0,ωh(T).

Due to (3.7) and the fact ⟨Rh(uh), vh⟩ = 0, we obtain

|⟨Rh(uh), v⟩| = |⟨Rh(uh), v − vh⟩|

≤ ∑
T∈Th

(
∥RT(uh)∥0,T∥v − vh∥0,T + ∑

e∈Eh
e⊂∂T

∥Je(uh)∥0,e∥v − vh∥0,e

)
. ∑

T∈Th

(
∥hRT(uh)∥0,T∥v∥1,ωh(T) + ∑

e∈Eh
e⊂∂T

∥h
1
2 Je(uh)∥0,e∥v∥1,ωh(T)

)
. ∑

T∈Th

ηh(uh, T)∥v∥1,ωh(T).

This completes the proof. �
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4 Convergence of adaptive finite element computations

We shall first recall the adaptive finite element algorithm. For convenience, we shall
replace the subscript h (or hk) by an iteration counter k of the adaptive algorithm af-
terwards. Given an initial triangulation T0, we can generate a sequence of nested
conforming triangulations Tk using the following loop:

Solve → Estimate → Mark → Refine.

More precisely, to get Tk+1 from Tk we first solve the discrete problem (3.1) to get Uk
on Tk. The error is estimated by any uk∈Uk and used to mark a set of elements that are
to be refined. Elements are refined in such a way that the triangulation is still shape
regular and conforming.

Here, we shall not discuss the step ”Solve”, which deserves a separate investiga-
tion. We assume that solutions of finite dimensional problems can be solved to any
accuracy efficiently. The procedure ”Estimate” determines the element indicators for
all elements T∈Tk. A posteriori error estimators are an essential part of this step,
which have been investigated in the previous section. In the following discussion, we
use ηk(uk, T) defined by (3.6) as the a posteriori error estimator. Depending on the
relative size of the element indicators, these quantities are later used by the procedure
”Mark” to mark elements in Tk and thereby create a subset of elements to be refined.
The only requirement we make on this step is that the set of marked elements Mk con-
tains at least one element of Tk holding the largest value estimator [22, 23]. Namely,
there exists one element Tmax

k ∈Mk such that

ηk(uk, Tmax
k ) = max

T∈Tk
ηk(uk, T). (4.1)

It is easy to check that the most commonly used marking strategies, e.g., Maximum
strategy, Equidistribution strategy, and Dörfler’s strategy fulfill this condition. Fi-
nally, the marked elements are refined to force the error reduction by the procedure
”Refine”. The basic algorithm in this step is the tetrahedral bisection, with the data
structure named marked tetrahedron, the tetrahedra are classified into 5 types and the
selection of refinement edges depends only on the type and the ordering of vertices
for the tetrahedra [2]. Note that a few more elements T∈Tk\Mk are partitioned to
maintain mesh conformity. It is worth mentioning that we do not assume to enforce
the so-called interior node property.

The adaptive finite element algorithm without oscillation marking is stated as fol-
lows:

Algorithm 4.1.

1. Pick any initial mesh T0, and let k = 0.
2. Solve the system on Tk to get discrete solutions (Λk,Uk).

3. Choose any uk ∈ Uk and compute local error indictors ηk(uk, T), ∀T ∈ Tk.
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4. Construct Mk ⊂ Tk by a marking strategy that satisfies (4.1).

5. Refine Tk to get a new conforming mesh Tk+1.

6. Let k = k + 1 and go to 2.

The purpose of this paper is to prove that Algorithm 4.1 generates a sequence of
adaptive finite element solutions which converge to some ground state solutions of
(2.5). More precisely, we shall prove that

lim
k→∞

distH1(Uk,U ) = 0, lim
k→∞

dist(Λk, Λ) = 0,

where

distH1(F, G) = sup
f∈F

inf
g∈G

∥ f − g∥1,Ω,

for any F, G⊂H1(Ω), and

dist(A, B) = sup
a∈A

inf
b∈B

|a − b|,

for any A, B⊂R.
We first show that the adaptive finite element approximations are convergent.

Given an initial mesh T0, Algorithm 4.1 generates a sequence of meshes T1, T2, · · · ,
and associated discrete subspaces

Sh0
0 (Ω) ( Sh1

0 (Ω) ( · · · ( Shn
0 (Ω) ( Shn+1

0 (Ω) ( · · · ( S∞(Ω) ⊆ H1
0(Ω),

where

S∞(Ω) = ∪Shk
0 (Ω)

H1
0 (Ω)

.

It is obvious that S∞(Ω) is a Hilbert space with the inner product inherited from
H1

0(Ω), and there holds

lim
k→∞

inf
vk∈S

hk
0 (Ω)

∥vk − v∞∥1,Ω = 0, ∀v∞ ∈ S∞(Ω). (4.2)

We set
V∞ = S∞(Ω) ∩A.

Under Assumptions (i)-(iv), the existence of minimizers of energy functional (2.2) in
V∞ can be obtained. Similar to (2.5) and (3.1), we introduce the set of minimizers by

U∞ =
{

u ∈ V∞ : E(u) = min
v∈V∞

E(v)
}

.

We see that u∞ ∈ U∞ solves{
α(∇u∞,∇v) + (Vu∞ +N (u2

∞)u∞, v) = λ∞(u∞, v), ∀v ∈ S∞(Ω),
∥u∞∥2

0,Ω = Z,
(4.3)
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with the corresponding eigenvalue λ∞∈R satisfying

Zλ∞ = E(u∞) +
∫

Ω

(
N1(u2

∞(x))u2
∞(x)−F (u2

∞(x))
)
dx +

(
1 − 1

2q

)
DK(u

2q
∞ , u2q

∞ ), (4.4)

and we define

Λ∞ =
{

λ∞ ∈ R : (λ∞, u∞) solves (4.3), u∞ ∈ U∞
}

.

Theorem 4.1. If {Uk}k∈N is the sequence of adaptive finite element approximations generated
by Algorithm 4.1, then

lim
k→∞

Ek = min
v∈V∞

E(v), lim
k→∞

distH1(Uk,U∞) = 0,

where
Ek = E(v)(v ∈ Uk).

Moreover, there holds

lim
k→∞

dist(Λk, Λ∞) = 0.

Proof. Following [42, 43] (see also [13]), let uk∈Uk be such that (λk, uk) solves
(3.3) in R × Vk for k=1, 2, · · · , and {ukm}m∈N be any subsequence of {uk}k∈N with
1≤k1<k2<· · ·<km<· · · .

Note that (3.2) and the Banach-Alaoglu Theorem yield that there exists a weakly
convergent subsequence {ukmj

}j∈N and u∞∈S∞(Ω) satisfying

ukmj
⇀ u∞, in H1

0(Ω), (4.5)

we need only to prove

E(u∞) = min
v∈V∞

E(v), (4.6a)

lim
j→∞

∥ukmj
− u∞∥1,Ω = 0, (4.6b)

lim
j→∞

|λkmj
− λ∞| = 0, (4.6c)

where (λkmj
, ukmj

) solves (3.3) and (λ∞, u∞) solves (4.3).

Since H1
0(Ω) is compactly imbedded in Lp(Ω) for p∈[2, 6), by passing to a further

subsequence, we may assume that ukmj
→u∞ strongly in Lp(Ω) as j→∞. Thus we can

derive

lim
j→∞

∫
Ω
F (u2

kmj
) =

∫
Ω
F (u2

∞),

lim
j→∞

DK(u
2q
kmj

, u2q
kmj

) = DK(u
2q
∞ , u2q

∞ ),
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and hence

lim inf
j→∞

E(ukmj
) ≥ E(u∞). (4.7)

Note that (4.2) implies that {ukmj
} is a minimizing sequence for the energy functional

in S∞(Ω), which together with (4.7) and the fact that {ukmj
} converge to u∞ strongly

in L2(Ω) leads to u∞∈U∞, namely,

lim
j→∞

E(ukmj
) = E(u∞) = min

v∈V∞
E(v).

Consequently, we obtain that each term of E(v) converges and in particular

lim
j→∞

∥∇ukmj
∥0,Ω = ∥∇u∞∥0,Ω.

Using (4.5) and the fact that H1
0(Ω) is a Hilbert space under norm ∥∇ · ∥0,Ω, we have

lim
j→∞

∥∇(ukmj
− u∞)∥0,Ω = 0,

which implies (4.6b)
Using (3.4), (4.4), (4.6a) and (4.6b), we immediately obtain (4.6c). This completes

the proof. �

Following the ideas in [22, 23, 35, 37], we then prove the convergence of the a pos-
teriori error estimators and the weak convergence of residual Rk(uk), which will be
used to prove that the adaptive finite element approximations converge to the ground
state solutions. Given the sequence {Tk}k∈N, for each k∈N, we define

T +
k =

{
T ∈ Tk : T ∈ Tl , ∀l ≥ k

}
and T 0

k = Tk \ T +
k .

Namely, T +
k is the set of elements of Tk that are not refined and T 0

k consists of those
elements of Tk which will eventually be refined. Set

Ω+
k =

∪
T∈T +

k

ωk(T) and Ω0
k =

∪
T∈T 0

k

ωk(T).

Note that the mesh size function hk≡hk(x) associated with Tk is monotonically nonin-
creasing and bounded from below by 0, we have that

h∞(x) = lim
k→∞

hk(x),

is well-defined for almost all x∈Ω and hence defines a function in L∞(Ω). Moreover,
the convergence is uniform [35].
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Lemma 4.1. If {hk}k∈N is the sequence of mesh size functions generated by Algorithm 4.1,
then

lim
k→∞

∥hk − h∞∥0,∞,Ω = 0 and lim
k→∞

∥hkχΩ0
k
∥0,∞,Ω = 0,

where χΩ0
k

is the characteristic function of Ω0
k .

Lemma 4.2. If {uk}k∈N is the sequence of ground state solutions chosen in Algorithm 4.1,
then

lim
k→∞

max
T∈Mk

ηk(uk, T) = 0.

Proof. We see from the proof of Theorem 4.1 that for any subsequence {ukm} of
{uk}, there exist a convergent subsequence {ukmj

} and u∞∈U∞ such that

ukmj
→ u∞, in H1

0(Ω).

Now it is sufficient for us to prove that

lim
j→∞

max
T∈Mkmj

ηkmj
(ukmj

, T) = 0.

In order not to clutter the notation, we shall denote by {uk}k∈N the subsequence
{ukmj

}j∈N, and by {Tk}k∈N the sequence {Tkmj
}m∈N.

Let Tk∈Mk be such that

ηk(uk, Tk) = max
T∈Mk

ηk(uk, T).

Using Proposition 3.1, we obtain

ηk(uk, Tk) .∥uk∥0,6,ωk(Tk) + ∥uk∥1,ωk(Tk)

.∥uk − u∞∥1,Ω + ∥u∞∥0,6,ωk(Tk) + ∥u∞∥1,ωk(Tk). (4.8)

Since Tk∈Mk⊂T 0
k , we have

|ωk(Tk)| . h3
Tk

≤ ∥hkχΩ0
k
∥3

0,∞,Ω → 0, as k → ∞,

where Lemma 4.1 is used. From Theorem 4.1, we have that the first term in the right
hand side of (4.8) tends to zero, too. This completes the proof. �

Lemma 4.3. If {uk}k∈N is the sequence of ground state solutions chosen in Algorithm 4.1,
then

lim
k→∞

⟨Rk(uk), v⟩ = 0, ∀v ∈ H1
0(Ω).
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Proof. Using similar arguments as that in the proof of Theorem 4.1, for any subse-
quence {ukm} of {uk}, there exist a convergence subsequence {ukmj

} and u∞∈U∞ such
that

ukmj
→ u∞, in H1

0(Ω),

and we need only to prove

lim
j→∞

⟨Rkmj
(ukmj

), v⟩ = 0, ∀v ∈ H1
0(Ω).

Since H2
0(Ω) is dense in H1

0(Ω), it is sufficient to prove

lim
j→∞

⟨Rkmj
(ukmj

), v⟩ = 0, ∀v ∈ H2
0(Ω). (4.9)

For simplicity of notation, we denote by {uk}k∈N the subsequence {ukmj
}j∈N, and by

{Tk}k∈N the sequence {Tkmj
}j∈N.

Let vk∈Vk be the Lagrange’s interpolation of v. Since

⟨Rk(uk), vk⟩ = 0,

we have from Theorem 3.2 that

|⟨Rk(uk), v⟩| = |⟨Rk(uk), v − vk⟩| ≤ ∑
T∈Tk

ηk(uk, T)∥v − vk∥1,ωk(T).

Let n∈N and k>n. By definition, T +
n ⊂T +

k ⊂Tk. Thus we have

|⟨Rk(uk), v⟩| ≤ ∑
T∈T +

n

ηk(uk, T)∥v − vk∥1,ωk(T) + ∑
T∈Tk\T +

n

ηk(uk, T)∥v − vk∥1,ωk(T)

≤ηk(uk, T +
n )∥v − vk∥1,Ω+

n (T) + ηk(uk, Tk \ T +
n )∥v − vk∥1,Ω0

n(T).

Using Proposition 3.1, we get

ηk(uk, Tk \ T +
n ) ≤ ηk(uk, Tk) ≤ Cη ,

which together with the interpolation estimate yields

|⟨Rk(uk), v⟩| . (ηk(uk, T +
n ) + Cη∥hnχΩ0

n
∥0,∞,Ω)∥v∥2,Ω. (4.10)

Now we shall use (4.10) to prove (4.9). Let ε>0 be arbitrary, Lemma 4.1 implies that
there exists n∈N, such that

Cη∥hnχΩ0
n
∥0,∞,Ω < ε. (4.11)



H. Chen, X. Gong, L. He and A. Zhou / Adv. Appl. Math. Mech., 3 (2011), pp. 493-518 509

Since T +
n ⊂T +

k ⊂Tk and the marking strategy (4.1) is reasonable, we arrive at

ηk(uk, T +
n ) ≤ (#T +

n )
1
2 max

T∈T +
n

ηk(uk, T) ≤ (#T +
n )

1
2 max

T∈Mk
ηk(uk, T).

By Lemma 4.2, we can select N≥n such that

ηk(uk, T +
n ) < ε, ∀k > N. (4.12)

So, we obtain (4.9) by combining (4.10), (4.11) and (4.12). This completes the proof. �
Finally, we prove the main result of this paper.

Theorem 4.2. Given a sufficiently fine initial mesh T0. If {Uk}k∈N is the sequence of adaptive
finite element approximations generated by Algorithm 4.1, then

lim
k→∞

Ek = min
v∈A

E(v), (4.13a)

lim
k→∞

distH1(Uk,U ) = 0, (4.13b)

lim
k→∞

dist(Λk, Λ) = 0. (4.13c)

Proof. Let uk∈Uk be the sequence of ground state solutions chosen in Algorithm
4.1, and (λk, uk) solve (3.3) for k=1, 2, · · · . It is known from Theorem 4.1 that for any
subsequence {ukm} of {uk}, there exist a convergent subsequence {ukmj

} and u∞∈U∞

such that

ukmj
→ u∞, in H1

0(Ω) and λkmj
→ λ∞,

where (λ∞, u∞) solves (3.3). It is sufficient for us to prove that u∞ ∈ U , which leads to
(4.13a) and (4.13b) directly, and implies (4.13c) by noting (2.1) and (3.3). For simplicity,
we denote by {uk}k∈N the convergent subsequence {ukmj

}j∈N, and by {Tk}k∈N the
subsequence {Tkmj

}j∈N.
We first prove that limiting eigenpair (λ∞, u∞) is also an eigenpair of (2.1). Note

that

λ∞(u∞, v)− α(∇u∞,∇v)− (Vu∞ +N (u2
∞)u∞, v)− ⟨Rk(uk), v⟩

=(λ∞u∞ − λkuk, v)− α(∇(u∞ − uk),∇v)

− (V(u∞ − uk), v)− (N (u2
∞)u∞ −N (u2

k)uk, v), ∀v ∈ H1
0(Ω),

we obtain from (2.6) that

|λ∞(u∞, v)− α(∇u∞,∇v)− (Vu∞ +N (u2
∞)u∞, v)− ⟨Rk(uk), v⟩|

.∥∇(u∞ − uk)∥0,Ω∥∇v∥0,Ω + ∥V∥0,Ω∥u∞ − uk∥0,3,Ω∥v∥0,6,Ω

+ ∥u∞ − uk∥1,Ω∥v∥1,Ω + (∥u∞ − uk∥0,Ω + |λk − λ∞|)∥v∥0,Ω, ∀v ∈ H1
0(Ω). (4.14)
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Since λk→λ∞ and uk→u∞ in H1
0(Ω), the right hand side of (4.14) tends to zero when k

tends to infinity. Using Lemma 4.3 and identity

λ∞(u∞, v)− α(∇u∞,∇v)− (Vu∞ +N (u2
∞)u∞, v)

=λ∞(u∞, v)− α(∇u∞,∇v)− (Vu∞ +N (u2
∞)u∞, v)− ⟨Rk(uk), v⟩+ ⟨Rk(uk), v⟩,

we arrive at

α(∇u∞,∇v) + (Vu∞ +N (u2
∞)u∞, v) = λ∞(u∞, v), ∀v ∈ H1

0(Ω).

Now we prove that for a sufficiently fine initial mesh, the limiting eigenfunction u∞ is
a ground state solution. Set

W =
{

w ∈ H1
0(Ω) : w is an eigenfunction of (2.1)

}
.

Note that U(W , the ground state solutions in U minimize energy functional (2.2),
which is continuous over H1

0(Ω), we can choose a mesh T0 such that

E0 ≡ E(v) < min
w∈W\U

E(w), ∀v ∈ U0,

where the fact

lim
h→0

inf
v∈Sh

0(Ω)
∥v − w∥1,Ω = 0, ∀w ∈ H1

0(Ω),

is used. Due to Tk⊂T0, we have Ek≤E0 and obtain u∞∈U . This completes the proof.�
If we make a further assumption that

F ′′(t) > 0, for t ∈ [0, ∞), (4.15)

then energy functional

E(
√

ρ) =
∫

Ω

(
α|∇√

ρ|2 + V(x)ρ(x) +F (ρ(x))
)
dx +

1
2q

DK(ρ
q, ρq),

is strictly convex on convex set {ρ ≥ 0 :
√

ρ ∈ A} and hence there exists a unique
minimizer of (2.2) in admissible class A. Note that the minimizer of (2.2) in Vk is
unique when initial mesh T0 is fine enough (c.f., e.g., [43]), we have

Corollary 4.1. Assume that the hypothesis of Theorem 4.2 and (4.15) are satisfied. If
(λ, u)∈R ×A is the ground state solution of (2.1) and (λk, uk)∈R × Vk is the ground
state solution of (3.3), then

lim
k→∞

∥uk − u∥1,Ω = 0, lim
k→∞

|λk − λ| = 0.
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5 Numerical examples

In this section, we will report on some numerical experiments for both linear finite el-
ements and quadratic finite elements in three dimensions to illustrate the convergence
of adaptive finite element approximations of energy.

Our numerical computations are carried out on LSSC-II in the State Key Labora-
tory of Scientific and Engineering Computing, Chinese Academy of Sciences, and our
codes are based on the toolbox PHG of the laboratory. The ground state solutions are
obtained by directly minimizing the energy functional (2.2) using conjugate gradient
method. All of the computational results are given in atomic unit (a.u.).

Example 5.1. Consider the ground state solution of GPE for BEC with a harmonic
oscillator potential

V(x, y, z) =
1
2
(γ2

xx2 + γ2
yy2 + γ2

zz2),

where γx=1, γy=2, γz=4. We solve the following nonlinear problem: find (λ, u)∈R×
H1

0(Ω), such that ∥u∥0,Ω=1 and
(
− 1

2
∆ + V + β|u|2

)
u = λu, in Ω,

u = 0, on ∂Ω,

where β=200 and Ω=[−8, 8]× [−6, 6]× [−4, 4].
The convergence of energies and the reduction of the a posteriori error estimators

are presented in Fig. 1, which support our theory and proof. Some cross-sections
of the adaptively refined meshes constructed by the a posteriori error indicators are
displayed in Fig. 2.

In the next two examples, we shall carry out the ground state energy calculations of
atomic and molecular systems based on TFW type orbital-free models. The nonlinear
term is given by

N (u2) =
∫

Ω

u2(y)
| · −y|dy +

5
3

CTFu
4
3 + υxc(u2),

where CTF = 3(3π2)2/3/10 and vxc is the exchange-correction potential. The exchange-
correction potential used in our computation is chosen as

υxc(ρ) = υLDA
x (ρ) + υLDA

c (ρ), (5.1)

where

υLDA
x (ρ) = −

( 3
π

) 1
3
ρ

1
3 ,

υLDA
c (ρ) =


0.0311 ln rs − 0.0584 + 0.0013rs ln rs − 0.0084rs, if rs < 1,

−0.1423 + 0.0633rs + 0.1748
√

rs

(1 + 1.0529
√

rs + 0.3334rs)

2

, if rs ≥ 1,
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Figure 1: (a): Convergence curves of energy for BEC. (b): Reduction of the a posteriori error estimators
using linear and quadratic elements.

(a) (b)
Figure 2: The cross-sections on z = 0 of adaptive meshes using linear (a) and quadratic (b) elements.

and

rs =
( 3

4πρ

) 1
3
.

Example 5.2. Consider the TFW type orbital-free model for helium atoms. The exter-
nal electrostatic potential is

V(x) = − 2
|x| .

Then we have the following nonlinear problem: find (λ, u)∈R × H1
0(Ω) such that

∥u∥2
0,Ω=2 and − 1

10
∆u − 2

|x|u + u
∫

Ω

|u(y)|2
|x − y| dy +

5
3

CTFu
7
3 + vxc(u2)u = λu, in Ω,

u = 0, on ∂Ω,
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Figure 3: (a): Convergence curves of energy for the helium atom. (b): Reduction of the a posteriori error
estimators using linear and quadratic elements.

(a) (b)
Figure 4: The cross-sections on z = 0 of adaptive meshes using linear (a) and quadratic (b) elements.

where Ω=(−5.0, 5.0)3.
The convergence of energies and the reduction of the a posteriori error estima-

tors are shown in Fig. 3, which support our theory. The cross-sections of the adap-
tive meshes are displayed in Fig. 4, from which we observe that more refined meshes
(nodes) appear in the area where the nuclei are located.

Example 5.3. Finally, we consider an aluminum cluster in the face centered cubic lat-
tice consisting of 3× 3× 3 unit cells with 172 aluminium atoms, where the GHN pseu-
dopotential [25] is used. We solve the following nonlinear problem: find (λ, u)∈R ×
H1

0(Ω) such that ∥u∥2
0,Ω=172 and − 1

10
∆u + VGHN

pseu u + u
∫

Ω

|u(y)|2
|x − y| dy +

5
3

CTFu
7
3 + vxc(u2)u = λu, in Ω,

u = 0, on ∂Ω,

where Ω=(−25.0, 25.0)3.



514 H. Chen, X. Gong, L. He and A. Zhou / Adv. Appl. Math. Mech., 3 (2011), pp. 493-518

10
2

10
3

10
4

10
5

10
6

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

number of degrees of freedom

en
er

gy
 (

a.
u.

)

convergence of energy for aluminum cluster

 

 
linear elements
quadratic elements

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

number of degrees of freedom

er
ro

r

reduction of the a posteriori error estimator

 

 
linear elements
slope=−1/3
quadratic elements
slope=−2/3

(a) (b)
Figure 5: (a): Convergence curves of energy for the aluminium cluster in FCC lattice. (b): Reduction of
the a posteriori error estimators using linear and quadratic elements.

(a) (b)
Figure 6: The cross-sections on z = 0 of adaptive meshes using linear (a) and quadratic (b) finite elements.

The convergence of energies and the reduction of a posteriori error estimators are
shown in Fig. 5. The cross-sections of the adaptive meshes are displayed in Fig. 6.
We observe that with the a posteriori error estimators, the refinement is carried out
automatically at the regions where the computed functions vary rapidly, especially
near the nuclei. As a result, the computational accuracy can be controlled efficiently
and the computational cost is reduced significantly.

6 Conclusions

We have analyzed adaptive finite element approximations for ground state solutions
of a class of nonlinear eigenvalue problems. We have proved that the adaptive finite
element loop produces a sequence of approximations that converge to the set of exact
ground state solutions. This result covers many mathematical models of practical in-
terest, for instance, the Bose-Einstein condensation, the TFW model in the orbital-free
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density functional theory, and Schrödinger-Newton equations in the quantum state
reduction [13, 26, 36] where the integration kernel K is negative. We have also ap-
plied adaptive finite element discretizations to micro-structure of matter calculations,
which support our theory. It is shown by Fig. 1, Fig. 3, and Fig. 5 that we may have
some convergence rates of adaptive finite element approximations of energy. We re-
fer to [14] for the study of convergence rate and optimal complexity of adaptive finite
element approximations for a class of nonlinear eigenvalue problems, which requires
some new technical tools.

Appendix

We may follow the framework in [40] to derive an upper bound and a lower bound of
the a posteriori error estimate. Let

X = Y = H1
0(Ω), ∥ · ∥X = ∥ · ∥Y = ∥ · ∥1,Ω,

⟨F(λ, u), (µ, v)⟩ =
∫

Ω

(
α∇u∇v + Vuv +N (u2)uv − λuv

)
+ µ

( ∫
Ω

u2 − Z
)

.

It is seen that (2.1) may be written as

F(λ, u) = 0, (A.1)

and F∈C1(R × X, R × Y∗), where Y∗ is the dual space of Y. A solution (λ, u) of (A.1)
is said to be regular if the following equation

DF(λ, u) · (µ, v) = (κ, f ),

is uniquely solvable in R × X for each (κ, f )∈R × Y∗, where

DF(λ, u) : R × X → R × Y∗,

is the Fréchet derivative of F at (λ, u). It is seen that (λ, u)∈R × H1
0(Ω) is a regular

solution of (A.1) if

⟨(E′′(u)− λ)v, v⟩Y∗,X ≥ γ∥∇v∥2
0,Ω, ∀v ∈ H1

0(Ω) ∩ u⊥, (A.2)

is true for some constant γ>0 (c.f., e.g., [29]), where

⟨(E′′(u)− λ)v, w⟩ = α(∇v,∇w) + ((V +N (u2)− λ)v, w) + 2(N ′
1(u

2)u2v, w)

+ 2qDK(u2q−1v, u2q−1w) + 2(q − 1)(N2(u2)v, w),

and
u⊥ =

{
w ∈ L2(Ω) : (u, w) = 0

}
.

It has been proved that (A.2) is satisfied by some special TFW models that are of con-
vex functional (see, e.g., [9, 10]).



516 H. Chen, X. Gong, L. He and A. Zhou / Adv. Appl. Math. Mech., 3 (2011), pp. 493-518

Let

Xh = Yh = Sh
0(Ω),

and define

⟨Fh(λh, uh), (µ, v)⟩ = ⟨F(λh, uh), (µ, v)⟩, ∀(µ, v) ∈ R × Sh
0(Ω).

We see that Fh∈C(R × Xh, R × Y∗
h ) and is an approximation of F. Obviously, finite

element eigenvalue problem (3.3) is equivalent to

Fh(λh, uh) = 0,

and (λh, uh) is an approximate solution of (A.1).
The following proposition in [40, Section 2.1] yields a posteriori error estimates in

the neighborhood of (λ, u) that satisfies (A.1).

Proposition 6.1. Let (λ, u) be a regular solution of (A.1). If DF is the derivative of F and DF
is Lipschitz continuous at (λ, u), then the following estimate holds for all (λh, uh) sufficiently
close to this solution:

∥F(λh, uh)∥R×Y∗ . |λh − λ|+ ∥uh − u∥X . ∥F(λh, uh)∥R×Y∗ . (A.3)

It is shown from (A.3) that ∥F(λh, uh)∥R×Y∗ is a posteriori error estimator. When
we apply the general approach in [40, Sections 3.3-3.4] to

a(x, u,∇u) = α∇u and b(x, u,∇u) = λu − Vu −N (u2)u,

by taking

ah(x, uh,∇uh) = α∇uh, bh(x, uh,∇uh) = λuh − Vuh −N (u2
h)uh,

ηT = ηh(uh, T), εT = osch(uh, T),

we then give a proof of Theorem 3.1.

Acknowledgements

This work was partially supported by the National Science Foundation of China under
grants 10871198 and 10971059, the National Basic Research Program of China under
grant 2005CB321704, and the National High Technology Research and Development
Program of China under grant 2009AA01A134. The authors would like to thank Dr.
Xiaoying Dai, Prof. Lihua Shen, and Dr. Dier Zhang for their stimulating discussions
and fruitful cooperations on electronic structure computations that have motivated
this work. The authors are grateful to Prof. Linbo Zhang and Dr. Hui Liu for their
assistance on numerical computations.



H. Chen, X. Gong, L. He and A. Zhou / Adv. Appl. Math. Mech., 3 (2011), pp. 493-518 517

References

[1] R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975.
[2] D. ARNOLD, A. MUKHERJEE AND L. POULY, Locally adapted tetrahedral meshes using bisec-

tion, SIAM J. Sci. Comput., 22 (2000), pp. 431–448.
[3] I. BABUSKA AND W. C. RHEINBOLDT, Error estimates for adaptive finite element computa-

tions, SIAM J. Numer. Anal., 15 (1978), pp. 736–754.
[4] W. BAO AND Q. DU, Computing the ground state solution of Bose-Einstein condensates by a

normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), pp. 1674–1697.
[5] T. L. BECK, Real-space mesh techniques in density-function theory, Rev. Mod. Phys., 72 (2000),

pp. 1041–1080.
[6] P. BINEV, W. DAHMEN AND R. DEVORE, Adaptive finite element methods with convergence

rates, Numer. Math., 97 (2004), pp. 219–268.
[7] X. BLANC AND E. CANCÈS, Nonlinear instability of density-independent orbital-free kinetic

energy functionals, J. Chem. Phys., 122 (2005), pp. 214106–214120.
[8] J. M. CASCON, C. KREUZER, R. H. NOCHETTO AND K. C. SIEBERT, Quasi-optimal con-

vergence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46 (2008), pp.
2524–2550.
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