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1. Introduction

A basic problem in both pure and applied mathematics is solving various kinds of

equations. Those like linear system, Sylvester and Riccati equations are well-known

[15]. As a generalization of the matrix to higher-order case, tensor has received con-

siderable attention in recent years. Let A be an m-th order n-dimensional tensor in

Cn×n×···×n := C[m,n] and vector b ∈ Cn, then the linear system could be generalized to

a higher-order case represented by tensors, that is,

Axm−1 = b, (1.1)

where A ∈ R[m,n] and the left-hand side Axm−1 is a vector with entries
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(

Axm−1
)

i
=

n
∑

i2,...,im=1

aii2...imxi2 · · · xim

for all i = 1, . . . , n, [25]. The multi-linear system (1.1) arises in various applications,

such as numerical partial differential equations [12], tensor complementarity problems

[6,7], data mining [18] and so on.

Up to now, the multi-linear system (1.1) has been studied by many researchers.

If A is an M-tensor (mainly symmetric or strong M-tensors [11, 39]), some results

corresponding to (1.1) have been presented; see [12, 14, 17, 20, 30, 36]. Wang et al.

considered this problem in a more general case, like with H+-tensors [29] or nonsingu-

lar tensors [32]. Besides, some other type equations, like tensor absolute value equa-

tion [13], sparse nonnegative tensor equations [18], H-tensor equation [33], are also

studied by researchers. More details could be found in the monographs [9, 26, 27, 34]

and the references therein.

Many different definitions on eigenvalues of tensors are proposed and studied re-

cently, such as M -eigenvalues [22] and C-eigenvalues [37] and so on. One of the most

well-known is the Z-eigenvalue given by Qi [25] and Lim [19] independently. Re-

cently, Mo et al. [23] gave a new class of tensors called (strong) Mz-tensors based on

Z-eigenvalues and proved that an even-order (strong) M-tensor must be an (strong)

Mz-tensor and the converse is not true in general. Some results about positive semi-

definiteness and co-positivity are also given.

Motivated by these works, we consider the multi-linear system (1.1) with strong

Mz-tensor and we call it strong Mz-tensor equation. Before giving the definition of

(strong) Mz-tensor, let us see the definition of Z-eigenvalue first.

Definition 1.1 ([19, 25]). We call λ as a Z-eigenvalue of tensor A ∈ R[m,n], if there

exists a nonzero real vector x ∈ Rn such that

Axm−1 = λx, x⊤x = 1.

Such an x is called a Z-eigenvector associated with λ, and (λ,x) is called a Z-eigenpair.

The Z-spectral radius of a tensor is defined as

ρz(B) := sup
{

|λ| : λ is Z-eigenvalue of B
}

.

By using the Z-spectral radius, the definition of Mz-tensor [23] is recalled as follows.

And it is a generalization of the M -matrix to the high-order case and also contains the

even-order M-tensor as a proper subset.

Definition 1.2. ([23, Definition 3.1]). Assume that m is even. A tensor A ∈ R[m,n] is

called an Mz-tensor, if there exist a nonnegative tensor B and a positive real number

s ≥ ρz(B) such that

A = sIz − B,
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where Iz = (ei1...im) ∈ R[m,n] is the Z-identity tensor defined as a nonnegative tensor

such that

Izx
m−1 = x

for all x ∈ Rn with x⊤x = 1. In addition if s > ρz(B), then A is called a strong

Mz-tensor.

The topic on the nonnegative (or positive) solutions of a linear system and also

multi-linear is always interesting. For example, in studying the following tensor com-

plementarity problems [6,21,28,31]:

TCP(A,b) : x ≥ 0, Axm−1 − b ≥ 0,
〈

x,Axm−1 − b
〉

= 0. (1.2)

We always want to find the nonnegative solution x. Thus the corresponding nonneg-

ative solution of the multi-linear system (1.1) is crucial. In view of this and other

applications, some focus on the nonnegative (or positive) solutions of the system (1.1).

Ding and Wei [12] proved that if A is a strong M-tensor, then (1.1) possessed a unique

positive solution for any positive right-hand side b. Wang et al. [29] showed that (1.1)

with H+-tensor A and positive vector b also has a unique positive solution.

Inspired by the work about multi-linear system and corresponding TCP, especially

about M-tensors, here we mainly consider the nonnegative solutions of the strong Mz-

tensor equation. We give results about the nonnegative solution of this system. Some

examples are also given to illustrate our theoretical results.

The organization of this paper is as follows. Some definitions and classical results

are recalled in the next section. In Section 3, we prove that strong Mz-tensor equation

always has a nonnegative (positive) solution if the right-hand is nonnegative (positive).

We also give some important results like the nonsingular matrices do, that is, the zero

solution is the only solution to the homogeneous system if the coefficient matrices are

nonsingular. We show that this result holds for some structured tensors, such as strong

M-tensors, a class of Mz-tensors, H+-tensors, strictly diagonally dominant tensors

with positive diagonal elements. Some numerical examples are given in Section 4. We

conclude our work in Section 5.

2. Preliminaries

A tensor A = (ai1...im) ∈ R[m,n] is called reducible if there exists a nonempty proper

index subset K ⊂ N := {1, . . . , n} such that ai1i2...im = 0 for i1 ∈ K and i2, . . . , im /∈ K.
If A is not reducible, then we call A irreducible [3]. A tensor A ∈ R[m,n] is called

symmetric [3,25] if its entries are invariant under any permutation of their indices and

it is called weakly symmetric [4] if

∇fA(x) = mAxm−1, ∀x ∈ Rn

and the right-hand side mAxm−1 is not identical to zero.
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Remark 2.1. It is shown by Chang et al. in [4] that a symmetric tensor is necessarily

weakly symmetric for m > 2, but the converse is not true in general. Example that

weakly symmetric tensor is not symmetric is given in [4, Remark 3.4].

Eigenvalues and H-eigenvalues are different from E- and Z-eigenvalues in general.

Definition 2.1 ([19, 25]). We call λ as an eigenvalue of tensor A ∈ R[m,n], if there

exists a nonzero vector x = (x1, . . . , xn)
⊤ ∈ Cn such that

Axm−1 = λx[m−1]

for all i ∈ N , and x[m−1] is a vector in Cn with entries defined as (x[m−1])i = xm−1
i

for all i ∈ N . Such x is called an eigenvector associated with λ, and (λ,x) is called

an eigenpair. In particular, if x is real, then λ is also real. In this case, λ is called an

H-eigenvalue of A and x is its corresponding H-eigenvector.

On the basis of the above definition, Zhang et al. [39] and Ding et al. [11,34] gave

the definition of M-tensors.

Definition 2.2. ([39, Definition 3.1]). A tensor A ∈ R[m,n] is called an M-tensor, if

there exist a nonnegative tensor B and a positive real number s ≥ ρ(B) where

ρ(B) = max
{

|λ| : λ is eigenvalue of B
}

such that

A = sI − B, (2.1)

in which I = (δi1...im) is the m-th order n-dimensional identity tensor with

δi1...im =

{

1, if i1 = · · · = im,

0, otherwise.

Furthermore, if s > ρ(B), then A is called a strong M-tensor.

Remark 2.2. We know that all non-diagonal entries of an M-tensor are non-positive,

however, those non-positive entries can be positive in an Mz-tensor. Thus, an Mz-

tensor may be not an M-tensor; for concrete examples, see [23]. However, an even-

order (strong) M-tensor must be an (strong) Mz-tensor which has been proved in [23,

Theorem 3.1].

The tensor M(A) = (mi1i2...im) is called the comparison tensor of A = (ai1i2...im) if

mi1i2...im =

{

+ |ai1i2...im | , if (i2, i3, . . . , im) = (i1, i1, . . . , i1) ,

− |ai1i2...im | , if (i2, i3, . . . , im) 6= (i1, i1, . . . , i1) .

We call a tensor an H-tensor, if its comparison tensor is an M-tensor; we call it as

a strong H-tensor, if its comparison tensor is a strong M-tensor. Wang et al. defined

the H+-tensor in [30] and it is a subset of H-tensor [11].
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Definition 2.3. ([30, Definition 2.5]). Let A be a strong H-tensor with all the positive

diagonal elements, then we call A as an H+-tensor.

Remark 2.3. Example 5.2 of [23] illustrates that a strong Mz-tensor may not be an

H-tensor, thus an Mz-tensor is not necessarily an H+-tensor.

Strictly diagonally dominant tensors, which is an extension of strictly diagonally

dominant matrices, play an important role in studying tensor problems for its good

properties. Its definition is given below.

Definition 2.4. ([39, Definition 3.14]). Let A be an m-th order n-dimensional tensor.

A is strictly diagonally dominant if

|aii...i| >
∑

(i2,...,im) 6=(i,...,i)

|aii2...im |

hold for all i = 1, . . . , n.

The definition of Z-identity tensor is given in [23, Definition 1.4]. There is no odd-

order Z-identity tensor and the even-order Z-identity tensor is not unique; see [23,

Remark 1.1, Examples 3.1 and 3.2]. Let δ be the standard Kronecker delta and Πm be

the set of all permutations of (1, . . . ,m). Consider the tensor Iz = (ei1...im) ∈ R[m,n], if

ei1...im = δi1i2 . . . δim−1im (2.2)

or

ei1...im =
1

m!

∑

p∈Πm

δip(1)ip(2) . . . δip(m−1)ip(m)
, (2.3)

then Iz is a nonsymmetric or symmetric Z-identity tensor, respectively.

Due to the differences of the H- and Z-eigenvalues, many results based on these

two definitions differ too much. One result is about the famous Perron-Frobenius type

theorem for tensors. We give the conclusion about Z-eigenvalues. The corresponding

one for H-eigenvalues could be found in [38].

Lemma 2.1. ([5, Theorems 2.5, 2.6, 4.7]). The following conclusions hold for A ∈
R[m,n]:

a) If A is a nonnegative tensor, then there exist a nonnegative Z-eigenvalue λ and a non-

negative nonzero Z-eigenvector x of A such that Axm−1 = λx.

b) If A is nonnegative and irreducible, then the Z-eigenvalue λ and the corresponding

Z-eigenvector x in a) are positive.

c) If A is nonnegative and weakly symmetric irreducible, then the Z-spectral radius ρz(A)
is a positive Z-eigenvalue with a positive corresponding Z-eigenvector.

The following result shows that the Z-eigenvalues of an Mz-tensor are nonnega-

tive.

Lemma 2.2. ([23, Theorem 4.3]) If A = sIz−B is an Mz-tensor and η is a Z-eigenvalue

of A, then η is nonnegative. If A = sIz −B is a strong Mz-tensor and η is a Z-eigenvalue

of A, then η is positive.
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3. Strong Mz-tensor equation

We are going to analyze our main problem deeply and prove our main results in

this section. That is, we consider the nonnegative solution of the strong Mz-tensor

equation. That is,

Axm−1 = b where A = sIz − B. (3.1)

If the coefficient tensor A is of even-order and the vector b is nonpositive, then the

system Axm−1 = b is equivalent to A(−x)m−1 = −b, which is a system with nonnega-

tive right-hand side. Thus we only consider the strong Mz-equation with nonnegative

right-hand side.

The authors drew the following conclusion which gave the crucial relationship be-

tween the determinant of the tensor and the solutions of the corresponding multi-linear

system like (1.1) in [16].

Lemma 3.1. ([16, Theorem 3.1]). Let A ∈ C[m,n]. The multi-linear system Axm−1 = b

has a solution in Cn for any b ∈ Cn if

det(A) 6= 0,

in which det(A) denotes the product of all eigenvalues of A.

Eigenvalue and Z-eigenvalue of tensors are two different concepts. The determi-

nant det(A) is the product of all eigenvalues of A. However, an Mz-tensor is defined

based on Z-eigenvalues from which we can not get the determinant directly. Thus, we

prove the following lemma.

Lemma 3.2. If A ∈ R[m,n] is a strong Mz-tensor, then its eigenvalues are non-zero. Thus

the strong Mz-equation has a solution for any b ∈ Cn.

Proof. Suppose that A has a eigenvalue λ = 0, then there exists a nonzero vector x

such that

Axm−1 = λx[m−1] = 0. (3.2)

If x⊤x = 1, then we have Axm−1 = 0 which means that A has a zero Z-eigenvalue.

Notice that the eigenvector x is real since the tensor A and right-hand of (3.2) are

both real. If the eigenvector x is not unit, we let y = x

‖x‖2 , then the vector y is unit.

Moreover, we have

Aym−1 =
1

‖x‖m−1
2

Axm−1 = 0,

which means that A has a Z-eigenpair (0,y). Above all, we know that this is contra-

dicting with the property given in Lemma 2.2 that if η is a Z-eigenvalue of a strong

Mz-tensor then η is positive.

Now, we present one main theorem of this section.
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Theorem 3.1. Let B be a nonnegative weakly symmetric irreducible tensor, and A =
sIz − B be a strong Mz-tensor, then the multi-linear system Axm−1 = b has a positive

(nonnegative) solution for every positive (nonnegative) vector b.

We will prove the above result by fixed point theory. Firstly, the strong Mz-tensor

equation (3.1) can be rewritten as follows:

0 = (B − sIz)x
m−1 + b.

Adding αIxm−1, where α is a positive scalar, on both sides, we get

αIxm−1 = (B − sIz + αI)xm−1 + b.

Thus the following fixed point iteration follows:

xk+1 = Tα,s,B,b(xk)

:=
(

α−1(B − sIz + αI)xm−1
k + α−1b

)[ 1
(m−1)

]
, k = 0, 1, . . . .

It is easy to see that each fixed point of the above iteration is a solution of the strong

Mz-equation (3.1), and vice versa.

The following concepts are quoted from [1] and it is useful for the proof of Theo-

rem 3.1.

Let V be a real vector space. An ordering in V is called linear if x ≤ y implies

x+ z ≤ y + z for all z ∈ V and αx ≤ αy for all α ∈ R+ := [0,∞). A real vector space

together with a linear ordering is called an ordered vector space (OVS). A nonempty

subset P of a real vector space V is called a cone if it satisfies

x,y ∈ P and λ ≥ 0 imply x+ y, λx ∈ P,

x ∈ P and − x ∈ P imply x = 0.

Every cone P in a real vector space V defines a linear ordering in V by x ≤ y

iff y − x ∈ P . Clearly, the cone P = {x ∈ V |x ≥ 0} is convex. The elements in

Ṗ = P\{0} = {x ∈ V |x > 0} are called positive and P is said to be the positive cone

of the ordering.

Let E = (E, ‖ · ‖) be a Banach space ordered by a cone P . Then E is called an

ordered Banach space (OBS), if the positive cone is closed. Next, we denote by the

symbol (E,P ) an arbitrary OBS with open unit ball B. For every γ > 0, we denote by

Pγ the positive part of γB, that is, Pγ := γB
⋂

P = γB+. Due to the convexity of B
and P and observe that Pγ is an open neighborhood of 0 in P , then the closure P̄γ of

Pγ in P coincides with γB̄
⋂

P . Hence the boundary S+
γ in P equals γS

⋂

P , where S
denotes the unit sphere in E.

Let X be a nonempty subset of some Banach space and let f be a map from X
into a second Banach space. Then f is called compact if it is continuous and if f(X)
is relatively compact. For arbitrary compact maps, Amann [1] gave the fixed point

theorem by making use of the fixed point index.
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Lemma 3.3. ([1, Theorem 12.2]). Let f : P̄γ → P be a compact map such that f(x) 6=
λx for x ∈ S+

γ and λ ≥ 1. Then f has a fixed point in Pγ .

Remark 3.1 ([1]). It is easy to see that the conditions, f(x) 6= λx for x ∈ S+
γ and

λ ≥ 1, of Lemma 3.3 are satisfied if f(x) � x for all x ∈ S+
γ .

Before going further, we give an important lemma.

Lemma 3.4. Suppose that B ∈ R[m,n] is a nonnegative tensor such that

ρz(B) ≥ min
xi>0

1

xi

(

Bxm−1
)

i
(3.3)

for any nonnegative x satisfying ‖x‖2 = 1. If A = sIz − B ∈ R[m,n] is a strong Mz-

tensor, then for any given x ∈ Rn
+ satisfied ‖x‖2 = 1, there exists i ∈ {1, . . . , n} such that

(Axm−1)i > 0.

Proof. We want to prove that there is a i such that (Axm−1)i > 0 which means that

we need to find i such that sxi > (Bxm−1)i. Note that we have ρz(B) ≥ minxi>0
(Bxm−1)i

xi

for any nonnegative x satisfied ‖x‖2 = 1. Without loss of generality, suppose

ρz(B) ≥ min
xi>0

1

xi

(

Bxm−1
)

i
=

1

x1

(

Bxm−1
)

1
.

Then we have
(

Bxm−1
)

1
≤ ρz(B)x1 < sx1,

which means that (Axm−1)1 > 0.

Not all nonnegative tensors satisfy the condition (3.3), as shown in the following

example. We use the MATLAB Tensor Toolbox (Version 2.6) [2] to compute the Z-

eigenvalues here.

Example 3.1. Let B = (bi1i2i3i4) ∈ R[4,3] with all zero entries except that b1221 = b3222 =
b1332 = b2323 = 100 and let x = ( 1√

3
, 1√

3
, 1√

3
)⊤. We have

min
xi>0

1

xi

(

Bxm−1
)

i
≈ 33.3333 > 4.8751 × 10−6 ≈ ρz(B).

Furthermore, we choose Iz as (2.2) and let s = ρz(B)+10−6, then A = sIz−B ∈ R[m,n]

is a strong Mz-tensor. However,

Axm−1 = (−38.4900,−19.2450,−19.2450)⊤ ,

whose entries are negative.

In order to ensure (3.3) holds for any nonnegative x satisfying ‖x‖2 = 1, we have

the following lemma.
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Lemma 3.5. If B ∈ R[m,n] is a nonnegative weakly symmetric irreducible tensor, then

(3.3) holds for any nonnegative x satisfied ‖x‖2 = 1.

Proof. We only need to show

ρz(B) ≥ max
x∈Sn−1∩Rn

+

min
1≤i≤n

1

xi

(

Bxm−1
)

i
,

where Sn−1 is the standard unit sphere in Rn, this can be followed from [5, Theo-

rem 4.7 ] where it has

ρz(B) = max
x∈Sn−1∩Rn

+

min
1≤i≤n

1

xi

(

Bxm−1
)

i
.

We complete the proof.

A more general case of the Theorem 3.1 is given as follows.

Theorem 3.2. Let B be a nonnegative tensor such that

ρz(B) ≥ min
xi>0

1

xi

(

Bxm−1
)

i

for any nonnegative x satisfied ‖x‖2 = 1, and A = sIz−B be a strong Mz-tensor, then the

multi-linear system Axm−1 = b has a positive (nonnegative) solution for every positive

(nonnegative) vector b.

Proof. Let α > 0 and A = sIz − B be a strong Mz-tensor. Consider the following

map derived in the beginning of this section,

Tα,s,B,b : x ֌

(

α−1(B − sIz + αI)xm−1 + α−1b
)[ 1

(m−1)
]
. (3.4)

We prove next that this map is continuous and could be compact. Notice that each

entry of Tα,s,B,b(x) is summation of the product of these entries x1, . . . , xn and plus the

scalar bi and then scale it, that is,

yi :=
(

Tα,s,B,b(x)
)

i
=

(

1

α

n
∑

i2,...,im=1

(αIii2...im −Aii2...im)xi2 . . . xim +
bi
α

)[ 1
m−1

]

for all i ∈ N . A simple example is y1 = T (x1, x2, x3) = x1x1 + 2x1x2 + x2x2 + b1.

Certainly, it is continuous. By Lemma 3.2, we know that the strong Mz-tensor equa-

tion has a solution. Undoubtedly, all entries of the given right-hand side vector b are

bounded. We have

bi =

n
∑

i2,...,im=1

aii2...imxi2 . . . xim

for all i ∈ N . If there is a entry xi that is unbounded, such as x1, then the term

a1...1x
m−1
1 is unbounded since a1...1 is nonzero (this is because s > ρz(B) ≥ bi...i for this
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B) by the condition (3.3) which contradicts with the fact that bi is bounded. Thus all the

entries of x are bounded which means that Tα,s,B,b is actually a map from a bounded

set of Rn to another bounded set since Tα,s,B,b is continuous. Then we can consider

Tα,s,B,b : Or1 → Or2 where r1 and r2 are the radii. By the continuous property and also

notice that the closure of Tα,s,B,b(X), where X is a subset of Or1 , is compact, then the

map Tα,s,B,b is compact.

Denote Aα = B − sIz + αI. For any x = (x1, . . . , xn)
⊤ ∈ Rn

+, let

∆ =
{

i : xi = 0, 1 ≤ i ≤ n
}

, ∆c =
{

j : xj > 0, 1 ≤ j ≤ n
}

,

and denote y = x

β
where β = ‖x‖2. Note that

Aαx
m−1 = Bxm−1 − sβm−1y + αx[m−1].

Then for any i ∈ ∆, we have

(

Aαx
m−1

)

i
=
(

Bxm−1
)

i
− sβm−1yi + αxm−1

i =
(

Bxm−1
)

i
≥ 0.

For any j ∈ ∆c with sufficiently large α, we have

(Aαx
m−1)j ≥ αxm−1

j − sβm−1yj ≥ 0.

Thus for the map (3.4), we have

Tα,s,B,b : R
n
+ → Rn

+,x ֌

(

α−1(B − sIz + αI)xm−1 + α−1b
)[ 1

(m−1)
]

(3.5)

for any nonnegative vector b.

By Remark 3.1, we want to find γ such that T (x) � x for each x ∈ S+
γ . Equivalently

for each x ∈ S+
γ , we have

α−1(B − sIz + αI)xm−1 + α−1b � x[m−1],

i.e.,

sIzx
m−1 
 Bxm−1 + b,

which is equivalent to

Axm−1 
 b.

If we can find i such that (Axm−1)i > bi, then the above inequality is satisfied.

For any nonnegative x ∈ S+
γ , we have

(

Axm−1
)

i
= γm−1

(

Azm−1
)

i
,

where z = x

‖x‖2 . Therefore, by Lemma 3.4, we see that there exists (Azm−1)i being

positive which means that (Axm−1)i is also positive. For this i, we can find γ such that

(Axm−1)i > bi. This is because if

bi <
(

Axm−1
)

i
= γm−1

(

Azm−1
)

i
,
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we only need to choose

γ >

(

bi
(Azm−1)i

)
1

m−1

.

If there exists other i such that (Axm−1)i is positive, we may get different γ. Finally,

we choose the maximum one as the ultimate γ. Hence, for any nonnegative b, we can

find γ such that T (x) � x for each x ∈ S+
γ . Thus, by Lemma 3.3, there is a fixed point

in [0,xγ) where ‖xγ‖2 = γ. This means that the strong Mz-tensor multilinear system

Axm−1 = b has a nonnegative solution for every nonnegative vector b.

Next, we prove that the strong Mz-tensor multilinear system has a positive solution

for every positive vector b. Firstly, it has a nonnegative solution x by the above proof.

Denote y = x

β
where β = ‖x‖2. If there is i such that xi = 0, then

(

Axm−1
)

i
= s
(

Izx
m−1

)

i
−
(

Bxm−1
)

i
= sγm−1yi −

(

Bxm−1
)

i
= −

(

Bxm−1
)

i
≤ 0,

which is impossible since (Axm−1)i = bi > 0. Thus it has a positive solution. We

complete the proof.

Remark 3.2. By Lemma 3.5 and Theorem 3.2, we can get the result Theorem 3.1 easily.

Notice that a symmetric tensor is necessarily weakly symmetric which is given in

Remark 2.1 and by the discussions in the beginning of this section. We can immediately

derive the following corollaries.

Corollary 3.1. Let B be a nonnegative symmetric irreducible tensor and A = sIz − B be

a strong Mz-tensor, then the multi-linear system Axm−1 = b has a positive (nonnegative)

solution for every positive (nonnegative) vector b.

Corollary 3.2. Let B be a nonnegative weakly symmetric irreducible tensor, and A =
sIz − B be a strong Mz-tensor, then the multi-linear system Axm−1 = b has a non-

positive (negative) solution for every non-positive (negative) vector b.

As we all know, the linear equations Ax = 0 only has one zero solution if the matrix

A is nonsingular. By the above discussions and Theorem 3.2 and Corollaries 3.1 and

3.2, we can easily get the following interesting theorem which shows similar result like

the nonsingular matrices do.

Theorem 3.3. Let B be a nonnegative (weakly) symmetric irreducible tensor, and A =
sIz − B be a strong Mz-tensor, then x = 0 is the unique solution of Axm−1 = 0.

The system Axm−1 = b has a unique positive solution for any positive right-hand

side b if A ∈ R[m,n] is a strong M-tensor [12, Theorem 3.2] or H+-tensor or strictly

diagonally dominant tensors with positive diagonal elements [29, Theorem 3.1 and

Corollary 3.2]. By their proof, we can also know that its solution is nonnegative (but

may not unique) for any nonnegative right-hand side. If the order of the tensor is even,

then the result also holds for strong M-tensors or H+-tensors. We get the following

theorem.
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Theorem 3.4. The multi-linear system Axm−1 = 0 has a unique solution x = 0 if A
is a strong M-tensor or H+-tensor or strictly diagonally dominant tensors with positive

diagonal elements.

Proof. We only need to deal with the odd-order case, if the order m is odd, then

A(−x)m−1 = Axm−1 since m − 1 is even. Let b = 0, then x ≥ 0 and −x ≥ 0 which

means that x = 0.

Whether or not the zero solution is the only solution of the homogeneous multi-

linear system Axm−1 = 0 for any nonsingular tensors A (that is det(A) 6= 0), more

study is needed.

In recent years, the TCP given in (1.2) has attracted considerable attention. It is

obvious that every nonnegative solution of multi-linear equations (1.1) is a solution of

the TCP (A,b). Thus the existence of nonnegative (positive) solution to multi-linear

system also implies the existence of solution to the corresponding TCP (A,b). There-

fore, based on the results in this section, mainly Theorem 3.1, the solution of tensor

complementarity problem with a class of strong Mz-tensors has been characterized.

4. Numerical examples

We give some numerical examples to illustrate our theoretical analysis for the strong

Mz-tensor equation (3.1). All experiments are implemented in a laptop with precision

2.2204 × 10−16 on a personal computer with 3.1 GHz central processing unit (Intel

Core i5), 16 GB memory and macOS system with version 10.13.6. The MATLAB Tensor

Toolbox (Version 2.6) [2] is used for computing the Z-eigenvalues and also the tensor-

vector product.

There are many methods on computing the solution of the multi-linear system (1.1),

but most of them are concerning with M tensors, such as the classical iterative methods

for linear systems [12], homotopy method [14] and tensor methods [20,36]. Recently,

Wang et al. [32] proposed a general approach which can compute the solution of all

nonsingular multi-linear system. It is based on neural network and has the advan-

tage of easy implementation. The method of this type is also used for computing the

generalized eigenpairs of tensors [24].

We basically introduce neural network approach [32] and apply it to compute the

solution of the strong Mz-tensor equation (3.1). We firstly define an error function as

follows:

E
(

x(t)
)

= Axm−1(t)− b.

The residual error is represented by

ε(t) = ε
(

x(t)
)

=
1

2
‖E(x(t))‖22 =

1

2

∥

∥Axm−1(t)− b
∥

∥

2

2
.

To let the error converges to zero, the gradient neural network based on gradient-
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descent direction is a good choice, that is, we set

dx

dt
= −γ

∂
(

ε(t)
)

∂x
,

where γ > 0 is a parameter to control the convergence rate. Then we get the linear

gradient neural network model:

dx

dt
= −γ(m− 1)

(

Axm−2(t)
)⊤(

Axm−1(t)− b
)

. (4.1)

Generally, the convergence rate of the model can be improved by using an ap-

propriate activation function. For illustration, we introduce two nonlinear activation

functions, they are:

⊲ power-sigmoid activation function (PSAF) defined as

fps(x, p, q) =







xp, if |x| ≥ 1,
1 + exp(−q)

1− exp(−q)

1− exp(−qx)

1 + exp(−qx)
, otherwise

with q ≥ 2 and p ≥ 3;

⊲ smooth power-sigmoid activation function (SPSAF) defined as

fsps(x) =
1

2
xp +

1 + exp(−q)

1− exp(−q)

1− exp(−qx)

1 + exp(−qx)
with q > 2 and p ≥ 3.

And we get the nonlinear gradient neural network of model (4.1) by using the nonlin-

ear activation functions, that is

dx

dt
= −α

(

Axm−2(t)
)⊤

f∗∗
(

Axm−1(t)− b
)

, (4.2)

where f∗∗(x) := (f∗∗(x1), . . . , f∗∗(xn))⊤ and one can choose f∗∗ as fps or fsps.
Preconditioning is a good alternative in designing the methods. For a given nonzero

y ∈ Rn, let D(y) = diag(y) + λI, then it can be nonsingular by choosing appropriate

λ. We consider D(y)Axm−1 = D(y)b let y = x. By similar processes as above and let

y = x for D(y), we get another model based on preconditioning technical, that is,

dx(t)

dt
= −γB(x)⊤

(

D(x)Axm−1(t)−D(x)b
)

(4.3)

where B(x) = diag(Axm−1(t)− b) + (m− 1)D(x),Axm−2(t).
We are ready for the numerical examples for illustrating our theoretical results.

Example 4.1. Similar to [12, Example 4.2], let B = (bi1i2i3i4) ∈ R[4,2] be a tensor with

entries

bi1i2i3i4 = |tan (i1 + i2 + i3 + i4)| .

Then tensor B is symmetric. It can be computed that ρz(B) ≈ 7.098. Let s = 7.2 and

choose the symmetric Z-identity tensor Iz as (2.3). Then A = sIz − B is a symmetric
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strong Mz-tensor. Undoubtedly, this tensor is not an M-tensor since the entries like

A(i, i, j, j) may not non-positive by (2.3). We choose different right-hand side vector

b, the nonnegative solutions of Axm−1 = b are shown in Table 1, where randnum(2, 1)
means that we choose “num” as the seed before generated rand(2, 1).

Table 1: Nonnegative solution of Ax
m−1

= b of Example 4.1.

b Nonnegative solutions of Axm−1 = b

(0, 0)⊤ (0, 0)⊤

(0, 1)⊤ (0.3926, 2.0876)⊤

(1, 0)⊤ (0.8425, 0.6148)⊤

(1, 1)⊤ (0.4827, 2.1899)⊤

rand100(2, 1) (0.5775, 0.4696)⊤

rand1000(2, 1) (0.8750, 0.8710)⊤, (0.6278, 1.1979)⊤, (0.4367, 1.7554)⊤

Multi-linear system with strong Mz-tensor A = sIz − B, where B is weakly sym-

metric and irreducible is considered below.

Example 4.2. The Z-identity tensor Iz ∈ R[4,2] given by (2.2) is weakly symmetric;

see Remark 3.4 of [4]. Suppose that B1 ∈ R[4,2] is a tensor with all entries are ones

and let B = Iz + B1, then B is weakly symmetric and irreducible. This tensor is not

an M-tensor by (2.2). It can be computed that ρz(B) = 5. Then A = 5.2 ∗ Iz − B is a

strong Mz-tensor. We choose different nonnegative vector b, the nonnegative solutions

of Axm−1 = b are shown in Table 2.

Table 2: Nonnegative solution of Ax
m−1

= b of Example 4.2.

b Nonnegative solutions of Axm−1 = b

(0, 0)⊤ (0, 0)⊤

(0, 1)⊤ (0.5296, 0.5854)⊤

(1, 0)⊤ (0.7156, 0.1195)⊤

(1, 1)⊤ (0.8120, 0.4084)⊤

rand100(2, 1) (0.4863, 0.1178)⊤

rand1000(2, 1) (0.7466, 0.2820)⊤

An example arises from discretizing the differential equations of the general form

F (t, u(t), u′(t) = 0) is given below.

Example 4.3. Let us consider u(t)λ(u′(t))2 = −f , where λ is a positive integer. By

using Euler’s method for discretization, we have

(

du

dt

)

(t) ≈
1

h

(

u(t+ h)− u(t)
)

:=
1

h

(

ui+1 − ui
)

.
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Figure 1: Residual error’s comparison of different models (4.1), (4.2) and (4.3) for Example 4.3.

Then we get

uλi u
2
i+1 − 2uλ+1

i ui+1 + uλ+2
i = −h2fi.

For simplicity, let λ = 1, then we get the coefficient tensor A with all zero entries except

that










A(i, i, i, i) = 1, for i = 1, . . . , n,

A(i, i, i + 1, i+ 1) = 1, for i = 1, . . . , n− 1,

A(i, i, i, i + 1) = −2, for i = 1, . . . , n− 1.

Let s > 1 and B = sIz −A, then B is nonnegative. This tensor A with order four and

dimension j, where j = 2, 3, . . . , 10 is an strong Mz-tensor if we set s = 1; refer to [23]

for more details. By giving different right-hand side vector b, we compute the solution

by using the methods introduced in the beginning of this section, that is, models (4.1),

(4.2) and (4.3).

We define the residual error as RES = ‖Ax(t)m−1−b‖2. Let p = 3 and q = 5 for the

power-sigmoid and smooth power-sigmoid activation functions. We choose the strong

Mz-tensor with order m = 4 and dimension n = 8. The parameters for controlling

the convergence rate are set as α = γ = 1000. We firstly give a solution which is

x = [1, 2, . . . , 8]⊤, and then we get b by computing Axm−1. We need one initial value

by using the three models and it is x0 = [2, 3, . . . , 9]⊤. The solution is computed on

MATLAB and the residual results are given in Figs. 1(a) and 1 (b).

5. Concluding remarks

We prove that the multi-linear system with strong Mz-tensors always has a non-

negative solution under certain condition and some numerical examples are given for

illustration. As a by-product of the conclusion about strong Mz-tensor equation, we

find that the homogeneous multi-linear system always and only has the zero solution
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for some structured tensors, which is an interesting result as it is the same as the ho-

mogeneous nonsingular linear equations. However, whether or not this result holds for

tensors with nonzero determinant, further studies are needed. The randomized algo-

rithms [8–10,35] for solving the multi-linear system will be reported in the forthcoming

papers.
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