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Abstract. A convolutional neural network is developed for rapidly predicting multi-
phase flow in heterogeneous porous media. Some direct numerical methods can ac-
quire accurate results of multiphase flow in porous media. However, once the geome-
try of the porous media changes, it takes much computational time to perform a new
simulation. Here, a deep neural network model in the field of semantic segmentation
is developed. It takes the two-dimensional microstructure of heterogeneous porous
media as inputs and is able to predict corresponding multiphase flow fields (pressure
and saturation fields). Compared to the direct lattice Boltzmann simulations, the in-
ference time on new geometry of porous media can be reduced by several orders of
magnitude. Our results show that the machine learning method is a good prediction
tool in a wide range of porosity and heterogeneity. Besides, to better understand the
inherent process, a visible explanation is presented on what our neural networks have
learned.
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1 Introduction

Multiphase flow in porous media widely exists in industrial applications such as geologi-
cal carbon capture and storage, oil recovery and treatment of contaminated groundwater
and soil, etc [1–4]. Studying and understanding the process of immiscible displacements
in porous media are important. Due to different underlying heterogeneous pore geom-
etry, wettability, fluid properties and flow conditions, there are several typical displace-
ments patterns such as capillary fingering, viscous fingering and stable displacement [5].
In different pattern, there are different features on the saturation, the finger length, and
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the size of the trapped clusters. For the capillary fingering, the invading fingers grow
in all directions and the defending fluid may be trapped by the invading fluid. For the
viscous fingering, the fingers grow like a tree and no defending fluid would be trapped.
For stable displacement, the invading front is almost flat and moving forward stably.

Early works on multiphase flow in porous media are mostly experimental works and
numerical simulations. The experimental studies focused on internal fluid distribution
inside realistic rocks. With the help of advanced computer-aided imaging system (such as
X-ray computed microtomography) [6–8], the pore-scale two-phase displacement in real
sample porous rock can be obtained in real-time. Holtzman et al. [9] defined the disorder
coefficient λ to represent the heterogeneity of synthetic porous media. They investigated
the impact of λ on two-phase displacements by experiments. In the study of Hu et al. [10],
the competing effect of disorder and wettability on the fluid displacements in porous
media was investigated through microfluidic experiments and pore-scale simulations.

Numerical simulations methods, e.g., the lattice Boltzmann method (LBM) can
achieve detailed flow fields (e.g., pressure, velocity and saturation field) in porous me-
dia [11–15]. These studies mainly paid attention to impacts of flow conditions and fluid
properties on immiscible displacements. Few studies focused on the effects of the pore-
scale disorder of porous media. Although the LBM results are accurate, the LBM simu-
lations are computationally intensive. Once the porous medium changes, it would take
much time to carry out a new simulation.

Among these years, deep learning methods [16] have been proposed as a new solu-
tion to classic physics problems [17, 18]. Their prediction accuracy, generalization ability,
and especially computational efficiency are very impressive compared with experimental
methods and numerical simulations. Wu et al. [19] proposed a convolutional neural net-
work embedded with physics information to predict the permeability from the images
of porous media. Since permeability is indeed a function of the pore geometry, using
neural networks to learn the implicit mapping from the pore geometry to permeability
is successful. The usage of a convolutional encoder-decoder network for image-to-image
regression task has been explored by Zhu et al. [20]. Taking the log-permeability field of
porous media as inputs, the model is able to give an approximation on the single-phase
flow in heterogeneous porous media. The spatial information was taken into account
since its inputs and outputs are two-dimensional sliced tensors in a real physical scene.
Mo et al. [21] extended the above neural network to predict the two-phase flow in het-
erogeneous porous media. In his work, in addition to the original regression task for
the pressure fields, there is another pixel-wise classification task for the saturation fields.
Moreover, Jin et al. [22] proposed variational U-net network to predict the CO2 satura-
tion and pressure fields under the variation of random well locations in porous media.
Similarly, Wang et al. [23] constructed a network to approximate the mapping from the
permeability fields to the velocity fields. Zhu et al. [24] embedded the governing equa-
tions into the loss function, and trained the neural network without labelled data to get
the pressure and flux fields in a random field. It is more efficient and physical. Actually,
not only deep neural networks methodology, but also fully Bayesian surrogate model
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was introduced in this field [25, 26]. The Bayesian model takes the microstructure of
random heterogeneous media as inputs instead of the inputs of the permeability field,
to predict response fields such as pressure fields. Similar to the deep learning process,
encoding and decoding components are still included in its framework. The encoding
module builds the mapping from the high-dimensional microstructure of heterogeneous
porous media to a much lower-dimensional quantity. The decoding module is responsi-
ble for reconstructing the coarse-grained maps back to the fine-grained outputs.

Building on previous studies, here we take a deep convolutional neural network to
learn the mapping from the two-dimensional microstructure of heterogeneous porous
media to their internal multiphase flow. It is noticed that in the works mentioned above
the permeability fields are large-scale macroscopic maps that cannot be obtained directly.
They were obtained through a series of experiments. However, the inputs of our models
are images of real spatial microstructure and can be directly observed. Besides, in pre-
vious works, the intrinsic dimensionality of the permeability fields (both in training sets
and test sets) are controlled by the identical specific value, e.g., the length scale of the
Gaussian random fields is identical in Zhu et al. [20]. However, our models are trained
and evaluated under two-variable dimensions: porosity and sorting degree [27, 28].
Porous media in our work are modelled as randomly distributed non-overlapping spher-
ical grains with different sizes in a square domain (see Fig. 6). Due to the randomness of
grains, they have a wide range of porosity φ and grain size distribution δ (also called sort-
ing). φ and δ are used to control the sparsity and heterogeneity of our synthetic porous
media. Here, we focus on the effect of pore-scale disorder geometry of porous media
on the two-phase displacements. Although our synthetic porous media are not real ge-
ological geometry, they are able to represent the general characteristics. We would like
to demonstrate the feasibility of our method in prediction of two-phase displacements in
the synthetic porous media.

There are two prediction tasks for our models. One is the regression task for con-
tinuous pressure fields, the other is the pixel-wise classification task for discontinuous
saturation fields. Despite using the same network, they are trained independently due
to different type of tasks. To capture multi-scale spatial information caused by different
grain sizes, convolutional kernels with different dilation rates are utilized to extract the
features in parallel. We would demonstrate the accuracy and efficiency of our models
in predicting the pressure and saturation fields in heterogeneous porous media. We also
have an insight into our trained models and try to understand what is learned by the
neural network.

The rest of the paper is organized as follows. In Section 2, the pipeline for the entire
deep learning method is introduced, including the problem formulation, the hyperpa-
rameters of our neural network and the preparation of the datasets. In Section 3, models
are trained and their generalization performance on test sets are evaluated, then some
explanations are presented to further understand what the neural network has learned.
Finally, a summary is presented in Section 4.
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2 Methodology

The overall procedures of this deep learning method are shown in Fig. 1. This framework
consists of the following steps: (a) Generating random porous media, (b) Direct simula-
tions with the LBM, (c) Training models, and (d) Predicting flow for new porous media.
In step (a), a large number of two-dimensional geometries of synthetic porous media are
generated in the chosen range of the parameter space. The details are presented in Sec-
tion 2.3.1. In step (b), multiphase flows in the porous media are simulated by the LBM,
then the numerical results are used to make up the datasets. The details are presented in
Section 2.3.2. In step (c), we use the prepared datasets to train models. The details are
presented in Section 3.1. In step (d), the trained models would be able to predict cases
with new inputs that have never been seen before. The details are presented in Section
3.2.

, ,,i j i jP S

LBM

(b) Building datasets

…

(a) Generating porous media

(c) Training neural network

… …

Input Neural network Ground Truth

(d) Predicting

New input Predictions

… …

Porous media

Figure 1: Overview of the computational framework.

2.1 Problem formulation

For displacements of two immiscible fluids in porous media, the governing equations
take the following form [29]:

∂

∂t
(φρisi)+∇·(ρiυi)=qi, (i=1,2), (2.1a)

υi =−
Kkri

µi
(∇pi−ρiG), (2.1b)

s1+s2=1, (2.1c)

where K is the intrinsic permeability of the porous media, kri represents the relative per-
meability of phase i. In above models the following parameters are known, i.e., poros-
ity φ, phase density ρi, velocity υi, viscosity µi, source item qi, and the gravity G. The
unknowns are the phase pressures pi and saturations si. The permeability is solely gov-
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erned by the geometry of porous media. There is a classical permeability-porosity rela-
tion named Kozeny-Carman equation:

K=
φ3

c(1−φ)2A2 , (2.2)

where c and A are Kozeny constant and specific surface area, respectively. If the initial
condition and qi are fixed, there is a black-box mapping from the input X to the output
Y in the following form:

ξ :X (Ω)→Y(P,S), (2.3)

where Ω represents the boundary condition and also the microstructure of porous media.
P and S are our target pressure and saturation fields, respectively.

In this work, the neural network is utilized as a surrogate model with the regression
function y=F (x,ω). The models are trained with the datasets D={xi,yi}N

i=1 (see Section
2.3.2). N is the sample size of training datasets, ω is the parameters in the neural network.
Goal of the training process is making y=F (x,ω) close to the intrinsic physical relation
y= ξ(x) as much as possible.

2.2 Convolutional neural network

In computer vision, deep convolutional neural networks are adopted for three main
tasks: classification, object detection, and segmentation. Classification aims to conjec-
ture the category of the object in the image, e.g., handwritten digit recognition. Object
detection means detecting the category and position of semantic objects in the image. The
typical task of segmentation is locating objects and boundaries, such as lines, curves, etc.
in the image. For example, the segmentation model is able to locate tumours and other
pathologies in medical imaging [30]. It is a regression task from image to image. Models
for segmentation can be used in physical space, building the mapping from one physical
field to another unknown physical field.

2.2.1 Network architecture

The U-shaped architecture is widely used in recent research [31,32]. It consists of encoder
and decoder modules. The encoder module repeats the downsampling operation to ob-
tain sufficient receptive field and rich semantic information, and also reduces the feature
map size. In the decoder module, detailed object boundaries and feature map size are
gradually recovered by upsampling operation, until the size is the same as the size of
inputs. Here, we follow the Deeplab v3+ [33] architecture to build our neural network.
The detailed architecture and parameters of our models are shown in Fig. 2 and Table 1,
respectively. There are several submodules included in the model.

Modified Xception: The modified Xception module [33] (illustrated in Fig. 3) is adopted
as a backbone to extract features. It has shown promising image classification results [34].
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Figure 2: Architecture of our neural network. The designed neural network includes the encoder and decoder
modules. Xception module (see Fig. 3) and the ASPP module (see Fig. 5) are adopted in the encoder module.
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Figure 3: Schematic diagram of module Xception. The illustration of Separable Convolution (Sep Conv) in
Xception is shown in Fig. 4. For simplicity, the common used Batch Normalization (BN) layers and ReLU
activation layers after these convolution layers are not shown.

Depth-wise conv2d

Point-wise conv2d

Figure 4: The composition of the separable convolutional layer, including a depth-wise convolution (applying
a single filter for each channel in inputs) and a point-wise convolution (combining the outputs of depth-wise
convolution across all channels).

The basic block of Xception (black frame in Fig. 3) is stacked by several separable convo-
lution layers (see Fig. 4) with residual connections. In our model, we repeatedly stack the
basic block six times to make the network deep and get the appropriates receptive field.

Separable Convolution: Instead of regular convolution layers, the separable convolution
layers are used to make the network simple and efficient. It consists of a depth-wise
convolution and a point-wise convolution. Depth-wise means each convolution filter
extracts only one channel of features. Point-wise means each filter extracts only one pixel
over all channels of features (see Fig. 4).

Atrous Spatial Pyramid Pooling: Unlike the standard convolution, atrous convolution
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Figure 5: Parallel modules in Atrous Spatial Pyramid Pooling (ASPP). It has a convolution layer with 1×1
kernel, a global pooling layer and three atrous convolutional layers with dilation rates of [3, 6, 9].

can be applied on features with different resolutions by changing the rate value of r. For
each location i on the input feature map Φin, output feature map Φout and a convolution
filter ω, the atrous convolution is applied as follows:

Φout[i]=∑
k

Φin[i+r ·k]ω[k]. (2.4)

The module consisting of several parallel atrous convolutions with different rates (called
Atrous Spatial Pyramid Pooling or ASPP) [35] is adopted in our model. Since the grain
sizes in our porous media are different, the ASPP helps to capture the spatial information
at multiple scales. The parallel modules in the ASPP are shown in Fig. 5. In the ASPP,
there is a convolution layer with 1×1 kernel, a global pooling layer and three atrous
convolutions with dilation rate of [3, 6, 9].

In the decoder module, if the features are upsampled back to the size of the inputs
directly, much spatial information will be lost. For the problem, there is a simple and
efficient solution [33]. The features with abundant high-level information (see Fig. 2(c))
are concatenated with the low-level outputs of the backbone (see Fig. 2(a)). Then, the
concatenated features are upsampled back to the original size. With the combination of
information on different levels, the result will be more accurate and have sharper object
boundaries.

2.2.2 Loss function and training hyperparameters

When training and optimizing the weights in a neural network, the loss function indi-
cates the direction of the gradient descent. Because the pressure is a continuous type
of value, the smooth L1 loss (also called Huber loss) [36] is chosen to evaluate the er-
ror between predicted pressure fields and the LBM results. It is less sensitive to outliers
than the regular L2 Loss, and in some cases, it prevents the explosion of gradients. The
formula of Huber loss is

LossHuber(ŷ,y)=
1
M

M

∑
i=1

zi+αΩ(ω), (2.5)
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Table 1: Architectures for the network. The number following the bracket represents how many times we repeat
the expression in the bracket. For simplicity, the commonly used Batch Normalization (BN) layers and ReLU
activation layers are not counted in this table.

layer name feature size kernel size stride dilation repeat
input 1×256×256 - - - -
resize 1×128×128 - - - -

Xception

Conv1 32×64×64 3×3 2 1 1
Sep Conv1 64×32×32 1×1,[3×3]×3 2,[1,1,2] 1 1
Sep Conv2 64×32×32 [3×3]×3 [1]×3 1 6
Sep Conv3 80×32×32 1×1,[3×3]×3 [1]×4 1 1
Sep Conv4 128×32×32 [3×3]×3 [1]×3 [2]×3 1

ASPP Sep Conv5 64×32×32
1×1 1 1

1[3×3]×3 [1]×3 [3,6,9]
average pool

Decoder

Upsample 64×64×64 - - - -
Concatenate 96×64×64 - - - -
Sep Conv7 1×64×64 [3×3]×2,1×1 [1]×3 1 1
Upsample 1×128×128 - - - -

in which

zi =

{
0.5(ŷi−yi)

2, |ŷi−yi|<1,
|ŷi−yi|−0.5, |ŷi−yi|≥1,

(2.6)

where ŷ is a predicted field and y is a target field with a total of M elements, i denotes the
ith element. ω denotes all of the parameters in the network. Ω(ω)= 1

2 ωTω represents the
L2 regularization. It is used to avoid over-fitting. The α is the weight decay coefficient.

For the prediction of saturation fields, we use a binary map to represent the distribu-
tion of two immiscible fluid phases. If a pixel in the image is occupied by the invading
phase, the local saturation Si,j is set to be Si,j=1, otherwise Si,j=0 for the defending phase.
This is an image segmentation task and the Dice loss (DL) [37] is selected as the loss func-
tion. The physical meaning of the Dice coefficient is the ratio between the intersection
(ŷ

⋂
y) and the union (ŷ

⋃
y) of two regions. The DL can be written as,

DL=1−2× ŷ
⋂

y
ŷ
⋃

y
. (2.7)

Suppose the predicted value in every pixel is pi while the corresponding target value is
ti, the formula of Dice loss is

LossDice(ŷ,y)=1− ∑M
i=12piti+ε

∑M
i=1 pi+ti+ε

+αΩ(ω), (2.8)

where ε is very small and used to avoid the case that the denominator equals to zero.
There are several typical steps during the training of models. First, the input data

are fed into the network. They will propagate through the entire network and in the
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end, there is the output. Second, the deviation between the output and the LBM result
is calculated according to the loss function. Third, the deviation is propagated reversely
through the entire network and the gradient of each parameter along the propagating
way is calculated. Finally, based on the calculated gradients, each parameter ω can be
updated as

ω′=ω−η
∂Loss(ŷ,y)

∂ω
, (2.9)

where η is the learning rate, ∂Loss(ŷ,y)
∂ω is the gradient of the parameter ω. Repeating the

above process until the deviation is converged. Each repetition of the above process is
one step. There are many steps until running out of the dataset, and we call the whole
procedure one epoch. The whole iteration is accomplished by Pytorch [38] optimizer.
The Adam [39] algorithm, which is one variant of the stochastic gradient descent (SGD)
algorithms [40], is adopted for training in this work. Based on experiences, the initial
learning rate is set to be 1×10−5, and it decreases with the number of epochs linearly.
The weight decay is set to be 1×10−3. Total epochs of training iteration is 1,000.

2.3 Datasets

2.3.1 Porosity and grain size sorting of porous media

Since the porous media are heterogeneous, the radius r of each spherical grain is deter-
mined by

r(β)=


rmin, 0≤β<δ,

rmin+
β−δ

1−2δ
(rmax−rmin), δ≤β≤1−δ,

rmax, 1−δ<β≤1,

(2.10)

where β is a uniformly distributed random number within the interval [0,1]. The min-
imum radius rmin and the maximum radius rmax are selected as 5 lattice units (l.u.) and
20l.u., respectively. δ is the sorting parameter to control the sorting degree of grain
sizes [14] and its range is [0,0.5]. For random seeds β fall into the interval [δ,1−δ], the
radius is evenly distributed between rmax and rmin. Otherwise, it can only be rmin or
rmax. When the porous medium is constructed, we ensure that any two grains would not
overlap. Besides, to capture the surface tension precisely in the pore throat domain, their
minimum gap between each other is not less than 5l.u. [41]. Seeds of locations and grain
radius are generated randomly in a 256l.u.×256l.u. domain until the target porosity φ is
achieved. The typical synthetic porous media with φ= 0.7, 0.8 and δ= 0, 0.5 are shown
in Fig. 6. Porosity φ and sorting δ represent the sparsity and heterogeneity of porous
media, respectively. When φ is large, there is more void space in the porous medium and
fluid invasion becomes easier. When δ is large, the grains become easier to separate. For
example, if δ=0.5, there are only two kinds of grains. One is the grains with r=5l.u., the
other is the grains with r= 20l.u.. In this work, the porosity φ is chosen in the range of
0.70−0.80, and the sorting degree δ ranges from 0 to 0.5.
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Figure 6: Samples of porous media in the parameter space. φ represents the porosity, δ represents the sorting
degree of porous media.
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Figure 7: Snapshot of the two-phase displacement and set up for the boundary conditions. The white, black,
and grey represent the invading, defending fluids, and solid, respectively. The invading fluid is injected from the
upper boundary as indicated by the arrows.

2.3.2 Generation of datasets

The success of deep learning is partially attributed to high quality and large amounts
of training data. In order to establish the datasets for training our models, a multiple-
relaxation-time Rothman and Keller lattice Boltzmann method [13] is utilized to simulate
the multiphase flow in porous media. From Fig. 7, we can see that the left and right sides
of the computing domain are both periodic boundary. At the upper and lower sides of the
computational domain, the inlet velocity and outlet pressure are specified, respectively.
The domain is originally saturated by the wetting fluid (defending phase), then the non-
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Table 2: Parameters for the LBM numerical simulations (m.u. and t.s. are mass unit and time step, respectively).

Items Settings
Density (non-wetting fluid) ρn 1.0m.u./l.u.3

Density (wetting fluid) ρw 1.0m.u./l.u.3

Kinematic Viscosity (non-wetting fluid) νn 0.333l.u.2/t.s.
Kinematic Viscosity (wetting fluid) νw 0.033l.u.2/t.s.
Surface tension 0.0272m.u./t.s.2

Contact angle (non-wetting fluid) 180◦

Inject velocity 0.01l.u./t.s.

wetting fluid (invading phase) is injected into the domain to displace the wetting fluid.
The breakthrough occurs when the invading fluid reaches the lower boundary. Then our
simulation would stop and the flow fields at this time would be taken as a uniform stan-
dard result. Detailed simulation settings are shown in Table 2. Typically, each numerical
simulation takes about 4 minutes on a NVIDIA RTX 2080Ti GPU.

We simulated multiphase flow in porous media with discrete porosity φ values in
[0.70,0.72,0.74,0.76,0.78], and δ is set to be zero. After the numerical simulations are ac-
complished, 80% of the data is chosen for training, to calibrate the weights in neural
network. The other 20% would be used for validation, to monitor the training process.
In order to avoid uneven distribution in datasets, stratified sampling strategy is utilized
to divide datasets. The datasets are divided into training sets and validation sets in ev-
ery porosity cases individually, then merge them together. Here, we generate a series of
datasets with different amount (N=4,000,8,000,12,000,16,000,20,000), aiming to see the
convergence level and generalization performance with respect to the training sample
sizes.

During training, the data normalization is always helpful for reaching a converged
state. On the preprocessing of the datasets, the pressure fields are normalized in the
following way,

P′=
P−Pmin

Pmax−Pmin
, (2.11a)

Pmin=argmax(PDF{P1
min,P2

min,···PN
min}), (2.11b)

Pmax=argmax(PDF{P1
max,P2

max,···PN
max}). (2.11c)

The minimum and maximum pressure values over all training pressure field samples, i.e.,
Pmin and Pmax are calculated, respectively. Then the values with the highest probability
density are chosen as the reference values. These two reference pressure values are saved
for transforming our physical pressure fields to the normalized pressure fields.

2.3.3 Displacement patterns in datasets

In the immiscible two-phase displacements in porous media, we mainly focus on the flow
pattern in saturation fields. Fig. 8 shows samples of data from the training sets. Though
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Figure 8: Samples of data from the training datasets with porous media of (a) φ= 0.70, δ= 0, (b) φ= 0.78,
δ=0, and (c) φ=0.76, δ=0. In the saturation maps, pores filled with invading fluid are marked in yellow but
the solid and defending fluid are not distinguished.

the fluid properties and flow conditions in our simulations are fixed, there are different
displacement patterns in the saturation fields due to the random pore geometry. From
Fig. 8(a), we can see that the flow pattern is viscous fingering. The fingers grow towards
the outlet like a tree. In Fig. 8(b), the flow pattern is capillary fingering. Some clusters of
defending fluids are trapped in loops formed by fingers which grow in many directions.
In Fig. 8(c), it is a stable displacement. The invading fluids present a flat front with only
some irregularities at the pore scale. In addition, there are many transition flow patterns
in our datasets which are not shown. Our models are expected to have a good prediction
on these varied flow patterns.

3 Numerical experiments and discussion

3.1 Model training

Two models for predicting pressure and saturation fields are trained individually under
different sizes of datasets. It takes about 5.0 to 20.5 hours on NVIDIA RTX 2080Ti GPU
to train one model. The monitored loss as a function of the epoch during the training is
shown in Fig. 9. As the number of epochs increases, the loss values on the training and
validation datasets both decrease and reach a plateau. It shows that the neural network
is gradually adjusting its weights to better fit the training datasets when the number of
epochs increases. It also shows the neural network has a better prediction when it faced
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(a) (b)

Figure 9: The loss as a function of the number of epochs under different sizes of datasets (N=4,000, 12,000,
20,000). For each dataset, 80% of the data is chosen for training and the other 20% would be used for validation.
(a) Huber loss for pressure fields. (b) Dice loss for saturation fields. The solid and dotted lines represent the
loss on the training sets and the corresponding validation sets, respectively.

with new data that have never been seen before. When more training data is used, the
minimum loss (plateau value) would be smaller. For example, the minimum Huber loss
on the validation datasets are 0.077 and 0.065 for the cases with training data N = 4,000
and N = 20,000, respectively. It can be concluded that more data is helpful for training
and can get better convergence. But it tends to be saturated even though trained with
more data. For example, the minimum loss on the training datasets for N = 12,000 and
N = 20,000 are almost identical. Therefore, the fitting and predicting capability would
not be further improved after they become saturated due to the capacity limitation of the
neural network.

3.2 Model evaluation

Once the models get well trained, they are stored as files. Using the packaged model
files, we can get the predictions of pressure and saturation fields for new porous media.
The prediction is very fast. According to calculations, on the input with 256×256 pix-
els, our models have an average inference time on the order of seconds. Specifically, it
takes an average of 6.7 milliseconds on a piece of NVIDIA RTX 2080Ti GPU, and 0.13
second on a piece of Intel Core i5-4460 CPU. In contrast, even adopting the parallel nu-
merical algorithm on GPU, it takes the LBM about 4 minutes to finish one simulation.
The computational costs of our models is one of tens of thousands than that of numerical
methods. In this section, three evaluation experiments are conducted to investigate the
prediction performance of our trained models. It is noticed that the data in the test sets
are not included in the training set.
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3.2.1 Test sets and evaluation metrics

Our test datasets have two dimensions φ and δ. The porous medium with different φ
and δ has different characteristic. The porosity φ denotes the sparsity degree and may
partially quantify the difficulty of fluid invasion. Generally speaking, the smaller the φ
is, the more difficultly the fluid can enter. The sorting parameter δ indicates the different
size distribution of grains. Both φ and δ would influence the hydraulic conductivity of
porous media and permeability. Here, three evaluation experiments are carried on three
typical porous media with different characteristics. The two dimensions φ and δ of the
porous media are presented in Table 3. In Case 1, the test set has the same δ as the training
sets but a different range of φ. It can test the performance of the neural network under the
change of porosity. In Case 2, the test set has the same φ as the training sets but a different
range of δ. We make a random uniform sample of δ within {0, 0.5}, to see whether the
generalization performance is still good in variable sorting degrees. Further, in Case 3,
there are totally different φ and δ between training sets and test sets. By controlling φ and
δ, we want to illustrate the generalization performance of our models for porous media
with a wide range of scenario. There are 500 samples in every test set. The stratified
sampling strategy is not only used in the training set, but also in the test set for different
porosity cases.

Coefficient of determination (R2 score) and mean intersection over union (mIoU) are
used to quantify the performance of the trained models on test sets. They are defined as

R2=1−
∑Ntest

j=1 ‖ ŷj−yj ‖2
2

∑Ntest
j=1 ‖yj−y‖2

2

, (3.1a)

mIoU=
1
c

1
Ntest

c

∑
k=1

Ntest

∑
j=1

∑M
i=1 pj

i,ktj
i,k+ε

∑M
i=1 pj

i,k+tj
i,k−pj

i,ktj
i,k+ε

×100%, (3.1b)

where y= 1
Ntest

∑Ntest
j=1 yj, Ntest is the sample size of the test datasets, k is the index of category,

c is number of category. R2 score is used to evaluate the approximation of the continuous
pressure fields. A higher R2 score indicates a higher degree of approximation for the
target map. mIoU is used to assess the approximation of the binary saturation fields. The

Table 3: Parameters φ and δ in three cases. The expressions in square bracket stand for [start:step:end]. For
example, [0.70:0.02:0.78] is equivalent to the sequence of discrete value in [0.70, 0.72, 0.74, 0.76, 0.78]. The
braces represent uniform sampling within {start, end}. The bold numbers highlight the differences between the
training and test sets.

Case No. Training set Test set
φ δ φ δ

1 [0.70:0.02:0.78] 0 [0.71:0.02:0.79] 0
2 [0.70:0.02:0.78] 0 [0.70:0.02:0.78] {0, 0.5}
3 [0.70:0.02:0.78] 0 [0.71:0.02:0.79] {0, 0.5}
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higher the mIoU, the larger the overlap area between the prediction map and the target
map.

3.2.2 Accuracy of predictions

On quantitative data, the evaluation scores in test sets are shown in Fig. 10. The overall
evaluation scores in Case 1 are higher than those of other cases. A possible explanation
is that the structure characteristic of porous media in Case 1 is the most similar to that
in the training set among the three cases. Case 1 achieves a high score with R2 = 0.943
and mIoU = 92.21% with 20,000 training samples. However, in Cases 2 and 3, due to
the discrepancy of φ and δ between training and test sets, the scores drop a little bit.
But even that with only 4,000 training samples, the models still achieves R2 = 0.871 and
mIoU = 85.85% in tough Case 2. Increasing the sample size to 20,000, the above scores
reach to relatively high R2=0.916 and mIoU=89.56%. It is also seen that the scores in test
sets increase as the number of training samples N increases. It shows that lots of data can
promote the generalization ability of models. However, the models are getting saturated
gradually while the growth rate of the evaluation scores is gradually slowing down as
N increases. Unless we make the models deeper, the generalization ability would not
be further improved. Unfortunately, deeper neural networks with more capacity require
more training data and time. There is a trade-off between the generalization ability and
the computational costs of models.

The improvement of the accuracy of the network is usually attributed to the ASPP
module and the skip connection (SC) between low-level and high-level features. To verify
the point, a network without both the SC and ASPP, i.e., a conventional encoder-decoder

(a) (b)

Figure 10: Evaluation scores on test sets as a function of training sample numbers. The solid and dashed lines
denote the results of the utilized network and the network without the SC and ASPP, respectively. (a) the R2

scores for the prediction of pressure fields. (b) the mIoU scores for the prediction of saturation fields.
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Figure 11: Samples of the pressure fields and saturation fields in (a) Case 1 (porous media with φ=0.79, δ=0),
(b) Case 2 (φ=0.74, δ=0.45) and (c) Case 3 (φ=0.71, δ=0.12). The left, middle and right columns represent
the LBM results, the neural network predictions and their errors, respectively. In saturation maps, pores filled
with invading fluid are marked in yellow, the rest are solid and defending fluid.

based model, is used for comparison. The performances of our utilized network and the
network without the SC & ASPP are shown in Fig. 10. It is seen that the utilized network
achieves higher scores than the network without the SC & ASPP in all three cases. For
example, the network without the SC and ASPP achieves mIoU = 88.08% with 20,000
training samples in Case 3, which is lower than the utilized network (90.03%). Hence,
our network with the SC and ASPP is more accurate.

The qualitative comparison is shown in Fig. 11, samples of the LBM results, the neural
network predictions and their errors are shown in each column, respectively. The error
Φerror is defined as follow,

Φerror=‖ΦLBM−Φpredicted ‖1, (3.2)

where ΦLBM and Φpredicted represent the LBM results and the neural network predictions,
respectively. It is seen that the predicted pressure field agrees well with that of the LBM.
On the prediction of saturation fields, the models can predict well on the general shape
and right location of invading fingers. Also, the region of trapped defending fluid can
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Figure 12: The comparison of breakthrough saturation Sb between results of the LBM and predictions of our
models in (a) Case 1, (b) Case 2 and (c) Case 3. The solid line stands for the ground truth simulated by the
LBM. The scattered points denote the prediction of our models. The area between the two dashed lines shows
the region within 5% relative error.

be identified. More importantly, the models are adaptable for different flow patterns.
For example, there are three different typical flow patterns: viscous fingering (Fig. 11(a)),
capillary fingering (Fig. 11 (b)) and stable displacement (Fig. 11(c)). In different flow pat-
terns, the invading fingers and trapped clusters have different behaviors. This remains
a challenge for our models. Especially, when the δ of the porous media in Case 2 and
Case 3 is variable (see Figs. 11(b) and (c)), there are many small grains surround the big
grains. Although the models have never been trained by data like this, they are still
able to predict well. It shows that our models have learned the essence of this physical
phenomenon, not just remembering and interpolating.

The predicted error of saturation fields is mostly at the front of the saturation profile.
It is likely that our loss function (Huber loss) mainly penalizes the large error on the gen-
eral positions of invading fingerings and trapped clusters. The small errors at the front of
the saturation profile are not apparent enough to lead the training of the neural networks.
In addition, sometimes it is failed to predict the connection or disconnection between ad-
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Figure 13: Distribution estimate for the pressure at two locations: (0.5, 0.33) (upper row) and (0.5, 0.75)
(lower row) in Case 1 (left column), Case 2 (middle column) and Case 3 (right column). Our neural networks
are trained with datasets of sizes N=4,000, 12,000, 20,000.

jacent interfaces in the throat. It means that there is a high degree of uncertainty in the
predictions of these particular regions.

The breakthrough saturation Sb is defined as follow,

Sb =
Ai

A−As
, (3.3)

where A is the total area of computing domain, As is the area of solids and Ai is the area
of domain occupied with invading phase. We calculate the Sb according to the saturation
fields, then compare the predicted Sb with that of the LBM results in Fig. 12. The solid
line represents the LBM result. Because of the randomness of the porous media geometry,
every case of the simulations has different breakthrough saturation. The curves of Sb
are shaped like ‘S’. The scattered points are the predictions of our models. The area
between the two dashed lines shows the region within 5% relative error. It is seen that
most scattered points are close to the solid line, and inside the error region.

Fig. 13 shows the probability density function (PDF) of pressure at locations (0.5, 0.33)
and (0.5, 0.75) over all test sets. The PDF of pressure is fitted by a univariate or bivariate
kernel density estimate. Since the (0.5, 0.33) is located at upstream, it has low uncertainty.
In Figs. 13(a1)-(c1), the predictions of density estimate by neural networks are close to
the results of the LBM. As we increase the sizes of training datasets, they can coincide
better. From Figs. 13(a2)-(c2), we can see that at the location (0.5, 0.75) in downstream,
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the uncertainty increases, and the deviation of PDF between the neural networks and the
LBM also increases. However, the deviation is reduced when the size of training datasets
increase.

3.3 Visualization of features in models

The neural network has always been treated as a black box system with uninterpretable
characteristics. It can be used to fit implicit nonlinear mapping, but can not produce
explicit function formulas. The mapping relationship is interpreted as weights and bias in
neurons and stored in model file invisibly. However, there are still some efforts dedicated
to interpreting the function of deep neural network [19, 42–44]. In order to have a glance
at how the neural network works, we feed the trained neural network with the three
samples of porous media in Section 2.3.3. There are many layers of features along the
way that inputs passing through the whole network. Each layer of feature corresponds
to one convolution filter kernel. Every kernel and its input interact to produce a piece
of feature. Here, some features from different depths of the neural network are chosen
to show in Fig. 14. It is helpful to take an inside look and understand what our neural
network saw from the geometry of porous media.

The features in different depths of model (position (a), (b) and (c) in Fig. 2) are ex-
tracted as low-level, middle-level and high-level features, respectively. Fig. 14(b) show

 ! 
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Figure 14: Visualization of features sampled in different depths of the trained models for three typical inputs. (a)
the geometry of input porous media, (b) the low-level features, (c) the middle-level features, (d) the high-level
features, and (e) the saturation field of outputs.
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the low-level feature maps. The low-level feature is correspond to the void domain of the
inputs (see Fig. 14(a)). The chosen convolution filter is able to identify the void space in
the porous medium. Next, as these low level features passing forward and goes deeper,
features are concatenated to be higher level features. In the middle-level features maps
(Fig. 14(c)), we can see that the isolated highlights in Fig. 14(b) gradually degenerate and
even disappear. Meanwhile, the highlights with relatively large area can be reserved. Fi-
nally, in the high-level feature maps (Fig. 14(d)), these highlights evolve into a connected
network structure. The connection between highlights are also strengthened. They have
the same profile with the corresponding saturation fields of outputs (Fig. 14(d)). After
concatenated with the low-level features, they can be directly restored to the desired out-
put by upsampling. This is the whole procedure that how our trained neural network
predicts on the geometry of input. The above visualizations and explanations may help
us to understand what is inside the neural network, and how our inputs are transformed
into our desired outputs.

4 Conclusions

In this work, a deep semantic segmentation convolutional neural network is utilized
to predict the multiphase flow in heterogeneous porous media. The random two-
dimensional geometries of porous media are the inputs of the neural networks. It is an
intrinsic microstructure. The predictions for porous media with a wide range of poros-
ity φ and sorting δ are evaluated. Our models achieve accurate predictions for both the
pressure and saturation fields. Especially, they are adaptable for different displacement
patterns. On quantitative statistics, not only the breakthrough saturation Sb but also the
PDFs of pressure agree well with the LBM result. It is also noticed that although the φ
and δ of porous media in test sets may deviate from that in training sets, our models are
still able to predict the pressure and saturation fields satisfactorily.

The fast prediction is computational efficient since it is orders of magnitude faster
than numerical simulations. By visualizing internal features, we also partially explained
the learning process of the neural networks.

Our current models deal with the one moment that the ‘breakthrough’ occurs. How-
ever, the displacement process is a time-dependent dynamic system. In the near future,
we would extend our one-frame output to multi-frame outputs at many time instances
with recurrent neural network.
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