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Abstract. In this paper, we study a ternary system for macromolecular microsphere

composite (MMC) hydrogels. Assuming that the graft chains are distributed randomly

around the macromolecular microspheres, a phase transition model was constructed.

The stabilised-scalar auxiliary variable (S-SAV) approach is used to present a first-order

energy stable scheme for solving the nonlinear system. Some numerical experiments

are carried out to show the accuracy of the scheme, including the mass conservation of

the volume fractions, the decrease in the modified energy, and the influence of different

parameters.

AMS subject classifications: 65H10, 65M06, 65M22

Key words: MMC hydrogels, ternary system, unconditionally energy stable, S-SAV.

1. Introduction

The macromolecular microsphere composite (MMC) hydrogel, proposed by Huang et

al. [25] in 2010, is a new type of hydrogel. Later on, various materials have been used to

synthesise the MMC hydrogel in a similar way [21,23,40,45,66]. The formation process is

described as follows: evenly add monomers to the irradiated macromolecular microsphere

(MMS) emulsion, and heat the mixture. The monomers will chemically graft onto the

surface of the MMSs and grow into grafted polymer chains. It is possible for a polymer

chain to graft onto another MMS or another polymer chain, so the MMSs can be joined

by polymer chains. If the length of the polymer chain becomes larger than the distance

between two MMSs, the chain entangles. The mixture finally transforms into a solid gel,

the microstructure of which is shown in Fig. 1. Because of the chemical grafting and the

entangled polymer chains, the MMC hydrogel has a well-defined network structure and

very high mechanical strength [26,46]. This led to wide application of MMC hydrogels in

biomedical and industrial areas [21,23,25,40,66]. However, here we mainly focus on the

method for simulating the phase transition of MMC hydrogels.
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Figure 1: The microstructure of the MMC hydrogel.

The time-dependent Ginzburg-Landau (TDGL) mesoscale simulation method is based

on the Cahn-Hilliard-Cook nonlinear diffusion equation and is used in the modelling of the

phase transition of the polymer blends [19]. The method connects the rate of change of

one or more spatiotemporal order parameters in time with the derivatives of a free energy,

which is a functional of these order parameters. In particular, for incompressible binary

polymer blends, the following equation is used:

∂ φ(x, t)

∂ t
=∇ · D∇

δF[φ(x, t)]

δφ(x, t)
,

where φ is the spatiotemporal order parameter, D the mobility, and

F[φ] =

∫

dr
¦

f [φ] + κ(φ)|∇φ|2
©

the Ginzburg-Landau type free energy with the variable interface coefficient κ(φ) and the

Flory-Huggins free energy of mixing f [φ].

In recent years, the TDGL method has been used to simulate the phase transitions of

MMC hydrogels in binary systems. Zhai et al. [61] introduced a reticular free energy to

describe the network structure of MMC hydrogels, derived a binary MMC-TDGL equation,

and used a spectral method for its solution. Li et al. [29,30] solved the binary MMC-TDGL

equation by a semi-implicit difference scheme and employed a finite difference method in

combination with a convex splitting technique for the energy functional. Xu et al. [51]

presented a stabilised semi-implicit scheme for the binary MMC-TDGL equation. Yang [53]

employed the invariant energy quadratisation (IEQ) method to the phase field model for

homopolymer blends (PF-HB). Thus the TDGL method is suitable for simulating the phase

transition of MMC hydrogels in a binary system. Nevertheless, there are only a few works

investigating the corresponding methods for ternary systems.

In binary systems, an important assumption is that the number of graft chains around

an MMS is proportional to the perimeter [29, 30, 51, 61]. That is, the volume fraction of

the polymer chains is proportional to the volume fraction of the MMSs. We can view MMSs

and polymer chains as one component and water as the other.
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In this paper, we study more practical systems where graft chains are randomly dis-

tributed around MMSs — i.e. polymer chains, MMSs and water are viewed as the compo-

nents of a ternary phase transition model of an MMC hydrogel.

To simulate the phase transition of the MMC hydrogel in a ternary system, we have

two main tasks. First, using the three-component Cahn-Hilliard equations combined with

the Ginzburg-Landau free energy, we develop ternary MMC-TDGL equations. In order to

describe the reticular structure of the MMC hydrogel, we replace the Flory-Huggins energy

with the reticular energy, and the reticular energy is calculated similar to [61]. Second, we

solve the ternary MMC-TDGL equations. This is the main challenge because two coupled

fourth-order nonlinear parabolic partial differential equations have to be solved.

There are various approaches to nonlinear equations. Usually, one writes the free en-

ergy functional as a sum of linear and nonlinear terms — viz.

F[φ] =
1

2

∫

φLφdx+ F1[φ],

where L is a symmetric non-negative linear operator and F1 a nonlinear term with lower-

order derivatives than L . Besides, in the binary system, φ is a scalar but it is a vector in

the ternary system. The linear term is usually treated implicitly, so the key is to figure out

how to deal with the nonlinear term, since different approaches treat the nonlinear term

differently. We now provide a brief introduction to numerical methods for three-component

Cahn-Hilliard equations.

The convex splitting method was introduced in [15,16]. In this method the free energy

functional is represented as the difference of two convex functionals — i.e. F = Fc − Fe,

where both Fc and Fe are convex. The functional Fc is treated implicitly, and Fe explicitly.

One can easily show that the convex splitting scheme unconditionally satisfies the discrete

energy law. However, the nonlinear equations have to be solved at each time step since,

usually, the implicit term Fc is nonlinear — cf. Refs. [1,2,6,7,20,24,33,42,43,47].

In the stabilisation method, the nonlinear term is treated explicitly and in order to

avoid strict time step constraints, a linear stabiliser is added [18,28,37,38,69]. This is an

efficient method since, at any time step, only linear equations have to be solved. However,

the proof of the unconditional energy stability requires the boundedness of the second-

order derivative of the energy functional. In many cases, this condition is too strong, so

that the energy functional is usually truncated to satisfy it [4,32].

The invariant energy quadratisation (IEQ) method, proposed by Yang [53], has been

applied to different phase field models [5, 12, 20, 49, 54–60, 67]. In this approach, all the

nonlinear terms are treated implicitly and the free energy has to be bounded from below.

Although for the three-component Cahn-Hilliard equations a linear scheme can be con-

structed, it leads to a coupled system with variable coefficients changing at each time step.

The modified energy is unconditionally stable, but the stability of the initial energy cannot

be proven.

The scalar auxiliary variable (SAV) approach was proposed by Shen et al. [36] and later

on Shen and Hu [35] considered higher-order SAV schemes. The nonlinear term is treated

implicitly and it has to be bounded from below. A linear unconditionally energy stable



96 G. Ji, Y. Yang and H. Zhang

scheme can be easily constructed and the equations are decoupled. Nevertheless, only the

modified energy is unconditionally stable but not the original one. More applications can

be found in [27,68] and the convergence and error analysis are presented in [31,34,44].

A new Lagrange multiplier method has been recently proposed by Cheng et al. [11]. The

nonlinear term is treated explicitly, but an implicit scalar auxiliary function is added. The

method does not require the boundedness of the corresponding free energy functional or

the nonlinear term from below and the original energy is unconditionally stable. However,

for the three-component Cahn-Hilliard equations, four linear and two nonlinear equations

have to be solved at each time step.

Recently, stabilisation terms are added to other numerical schemes in order to enhance

their stability, so that large time steps are allowed while keeping the required accuracy.

A Crank-Nicolson type scheme combined with convex splitting and stabilisation is used

in [41, 48]. The second-order backward differentiation formula (BDF) finite difference

schemes in [8–10, 17, 52] are also based on a convex splitting and stabilisation. For the

anisotropic Cahn-Hilliard equation, the stabilisation terms used in IEQ approach [50] and

SAV approach [3] aim to suppress non-physical spatial oscillations caused by the strong

anisotropy. Besides, the stabilised-IEQ (S-IEQ) approach is considered in [62, 63] and

stabilised-SAV (S-SAV) approach in [64,65].

We used the SAV approach to simulate the ternary phase transition model of an MMC

hydrogel. However, it leads to blow-up since the higher derivatives in the free energy

functional are nonlinear and have to be treated explicitly. Therefore, a stabilisation term is

added to the scheme i.e. an S-SAV approach is used.

The rest of the paper is organised as follows. In Section 2, we introduce a phase transi-

tion model for the ternary MMC hydrogels. In Section 3, a linear, first-order, unconditionally

energy stable scheme is used to solve the nonlinear system from Section 2. In Section 4,

we show the results of numerical simulations. Our conclusions and further discussion are

in Section 5.

2. A Phase Transition Model For MMC Hydrogels

We consider a system consisting of MMSs, polymer chains and water. At the beginning of

the synthesis, MMSs and monomers distribute evenly in water, so the initial volume fraction

of MMSs, polymer chains and water, respectively, denoted by φm,φp and φw, are uniformly

distributed in space. To construct a ternary phase transition model, we first establish TDGL

equations in the ternary system.

2.1. TDGL method

The time-dependent Ginzburg-Landau (TDGL) mesoscale simulation method is widely

used for simulating phase transitions in multicomponent polymer blends. For an n-compo-

nent system, the method begins with a continuity equation for each component i of the
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mixture [19], i.e.
∂ φi(x, t)

∂ t
= −∇ · ji(x, t),

where φi(x, t) is the spatiotemporal concentration of component i such that

φ1 +φ2 + · · ·+φn = 1

and ji(x, t) is the mass current of the component i related to the chemical potential µ j by

the Fick’s law

ji(x, t) = −
n−1
∑

j=1

Di j∇µ j

with Di j denoting the mobility of component i due to j. The chemical potential µ j is ther-

modynamically related to the free energy functional F[φ1(x, t),φ2(x, t), . . . ,φn−1(x, t)] by

µ j = δF/δφ j .

Since the MMC hydrogel is composed of MMSs, polymer chains and water, we can

describe the structure of the ternary system by the following TDGL equations:

∂ φ1(x, t)

∂ t
=∇ ·

�

D1∇
δF[φ1(x, t),φ2(x, t)]

δφ1(x, t)

�

,

∂ φ2(x, t)

∂ t
=∇ ·

�

D2∇
δF[φ1(x, t),φ2(x, t)]

δφ2(x, t)

�

,

φ3 = 1−φ1 −φ2.

We model the free energy functional in the form of the Ginzburg-Landau type energy

functional, incorporating the interface gradient terms of de-Gennes

F[φ1,φ2]

kB T
=

∫

dx

¨

f [φ1,φ2]

kB T
+

1

36

3
∑

i=1

a2
i

φi

|∇φi|
2

«

, (2.1)

where ai is the statistical segment length of component, f [φ1,φ2] the Flory-Huggins free

energy of mixing, and (1/36)
∑3

i=1(a
2
i
/φi)|∇φi|

2 the energy of the interface i, cf. [13,14,

39]. However, since the MMC hydrogel has a well-defined network structure, we have to

the reticular free energy density f [φ1,φ2] in order to replace the Flory-Huggins free energy

of mixing.

2.2. Reticular free energy

The free energy density f is related to the mixing enthalpy H, the temperature T, and

the mixing entropy S by f = H−TS. The definition of the variables used in the forthcoming

calculations is given in Table 1.

The mixing entropy H,

H = −kBT V
�

χmpφmφp +χmwφmφw +χpwφpφw

�



98 G. Ji, Y. Yang and H. Zhang

Table 1: Definition of variables.

Variables Definitions

nm the number of the macromolecular microspheres (MMSs)

np the number of the segments

nw the number of the solvent (water) molecules

M the lattice number that one MMS occupies

N the polymerization degree of the polymer chains

V the total lattice number of the system occupies, V = Mnm + np + nw

φm the volume fraction of the MMS, φm = Mnm/V

φp the volume fraction of the polymer chains, φp = np/V

φw the volume fraction of the solvent (water) molecules, φs = ns/V

represents the interaction between any two components and χmp, χmw, χpw are, respec-

tively, the interaction parameters between MMS and polymer, MMS and water, polymer

and water.

Then, the mixing entropy S is calculated by using the Boltzmann entropy theorem,

Flory-Huggins lattice theory and the statistical thermodynamic method [22]. The Boltz-

mann entropy theorem reads as follows.

Theorem 2.1. The mixing entropy S and microscopic configuration number of the system Ω

are relates as

S = kB lnΩ,

where kB is the Boltzmann constant.

Taking into account the Flory-Huggins lattice theory, we make the following assump-

tions for our model:

• Each solvent molecule occupies a lattice, and the solvent molecules can replace each

other.

• Each MMS occupies M lattices.

• All the polymer chains have the same polymerization degree N, and each polymer

molecule occupies N connected lattices. The polymer chains are completely flexible,

and all the configurations have equivalent energy.

• Each MMS has the same properties and they are independent of each other, which is

the same as the polymer chains.

• Both ends of all the polymer chains are grafted onto the MMS surfaces.

For convenience, we restrict ourselves to two dimensions. The three-dimensional case

can be considered analogously. MMSs and polymer chains cannot be distributed randomly
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because polymer chains are distributed among the MMSs. Therefore, using the statistical

thermodynamic method, we can obtain the following microscopic configuration numbers

of MMSs, polymer chains, and water:

Ωm =

 

V

π(
q

M
π +

N
2 )

2nm

!nm

,

Ωp =

 

V

(2
q

M
π + N )

np

N

!np/N

,

Ωw =

�

V

nw

�nw

.

The mixing entropy S of the system can be obtained by the Boltzmann entropy theorem, so

that

S = −kBV

�

φm

M
ln

�

αφm

M

�

+
φp

N
ln

�

βφp

N

�

+φw lnφw

�

,

where

α = π

�√

√M

π
+

N

2

�2

, β = 2

√

√M

π
+ N .

Replacing the subscripts m, p, w with 1,2,3, we write the reticular free energy density in

the form

f = kB T V

�

φ1

M
ln

�

αφ1

M

�

+
φ2

N
ln

�

βφ2

N

�

+φ3 lnφ3 +χ12φ1φ2

+χ13φ1φ3 +χ23φ2φ3

�

. (2.2)

2.3. Ternary MMC-TDGL equations

The above calculations lead to the following ternary MMC-TDGL equations with (x , y) ∈
Ω= [0, L]2:

∂ φ1

∂ t
= D1∆

δF

δφ1

, (2.3a)

∂ φ2

∂ t
= D2∆

δF

δφ2

, (2.3b)

φ3 = 1−φ1 −φ2, (2.3c)

where φ1 and φ2 are equipped with periodic boundary conditions. The Eqs. (2.3a)-(2.3c)

have the following property.
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Theorem 2.2. In the ternary MMC-TDGL equations, the volume fractions φi, i = 1,2 are

mass-conservative — i.e.,

∫

Ω

φi(x , y, t)d xd y =

∫

Ω

φi0(x , y, t)d xd y for all t > 0.

Proof. Integrating the Eqs. (2.3a) and (2.3b) over Ω and using the Gaussian formula

yields

d

d t

∫

Ω

φid xd y =

∫

Ω

∂ φi

∂ t
d xd y = Di

∫

Ω

∆
δF

δφi

d xd y = Di

∫

Ω

∇
δF

δφi

·ndS.

Since δF/δφi is periodic with respect to x and y, we obtain

d

d t

∫

Ω

φid xd y = 0.

Substituting the reticular free energy density (2.2) into the Eq. (2.1) and using (2.3c),

we write the free energy functional F[φ1,φ2] as

F[φ1,φ2] =

∫

dx

�

φ1

M
ln

�

αφ1

M

�

+
φ2

N
ln

�

βφ2

N

�

+ (1−φ1 −φ2) ln(1−φ1 −φ2)

+χ12φ1φ2 +χ13φ1(1−φ1 −φ2) +χ23φ2(1−φ1 −φ2)

+
a2

1

36φ1

|∇φ1|
2 +

a2
2

36φ2

|∇φ2|
2 +

a2
3

36(1−φ1 −φ2)
|∇(1−φ1 −φ2)|

2

�

.

Theorem 2.3. The energy functional F[φ1,φ2] of the system (2.3a)-(2.3c) decreases with

time — i.e.
dF

d t
≤ 0.

Proof. Multiplying (2.3a) and (2.3b), respectively, by ∂ φ1/∂ t and ∂ φ2/∂ t, summing

the resulting equations and integrating it over Ω gives

dF

d t
=

2
∑

i=1

∫

δF

δφi

∂ φi

∂ t
dx= −

2
∑

i=1

Di

∫ �

�

�

�

∇
δF

δφi

�

�

�

�

2

≤ 0.

Note that we used Green’s formula and the boundary conditions.

3. Numerical Scheme

To obtain the solution of the MMC-TDGL equations (2.3a)-(2.3c), we have to solve

two coupled fourth-order nonlinear parabolic partial differential equations. Thus, we use

the scalar auxiliary variable (SAV) approach proposed by Shen [35, 36]. It is an efficient
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approach when dealing with high-order nonlinear equations and with the equation decou-

pling. For this, we write the free energy functional as the sum

F[φ] =
1

2

∫

φLφdr+ F1[φ],

where L is a symmetric non-negative linear operator and F1 a nonlinear term. We deal

with the linear term implicitly and with the nonlinear term explicitly. However, since the

highest-order term in the free energy functional of the ternary MMC-TDGL equations is not

linear, all terms in the free energy functional have to be treated explicitly. In our simula-

tions, the fully explicit scheme produces divergent numerical solutions. Therefore, a linear

stabiliser is added to the SAV approach. By using the stabilised-scalar auxiliary variable (S-

SAV) approach, we obtain an efficient unconditional stable energy scheme for high-order

nonlinear equations.

Introducing the scalar auxiliary variable r(t) =
p

F[φ1,φ2], we write the system (2.3a)-

(2.3c) as

∂ φi

∂ t
= Di∆µi, (3.1a)

µi =
r

p

F[φ1,φ2]
Ui , (3.1b)

rt =
1

2
p

F[φ1,φ2]

∫

Ω

2
∑

j=1

U j

∂ φ j

∂ t
dx, (3.1c)

where Ui = δF/δφi . The energy dissipation law of the new system (3.1a)-(3.1c) is easily

obtained. Let
�

f (x), g(x)
�

:=

∫

Ω

f (x)g(x)dx

be the L2 inner product of spatial functions f (x) and g(x).

Theorem 3.1. The energy of the system (3.1a)-(3.1c) is unconditionally stable — i.e.

dF

d t
≤ 0.

Proof. Considering the sum of the inner products of functions (3.1a) and (3.1b), we

have

2
∑

i=1

�

∂ φi

∂ t
,µi

�

=

2
∑

i=1

Di(∆µi,µi),

2
∑

i=1

�

∂ φi

∂ t
,µi

�

=

2
∑

i=1

�

∂ φi

∂ t
,
δF

δφi

�

.
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The energy dissipation law can be now obtained by summing the above equations and

eliminating
∑2

i=1(∂ φi/∂ t,µi) by using the periodicity of the boundary conditions, so that

dF

d t
=

2
∑

i=1

�

δF

δφi

,
∂ φi

∂ t

�

=

2
∑

i=1

Di(∆µi,µi)≤ 0.

Remark 3.1. Since the free energy functional F[φ1,φ2] can be negative, we define the

scalar auxiliary variable by r(t) =
p

F[φ1,φ2] + C , where C ≥ 0 and F[φ1,φ2] ≥ −C .

Thus, the free energy functional F[φ1,φ2] needs to be bounded from below.

3.1. The first-order S-SAV scheme

Given the initial value

φ1(t = 0) = φ0
1 ,

φ2(t = 0) = φ0
2 ,

r(t = 0) =
Ç

F
�

φ0
1
,φ0

2

�

,

and the time step τ > 0, we consider the following first-order S-SAV scheme.

Scheme 3.1. Let i = 1,2. Having computed (φi , r)k, we update (φi , r)k+1 by solving

φk+1
i
−φk

i

τ
= Di∆µ

k+1
i , (3.2a)

µk+1
i = −si∆

�

φk+1
i −φk

i

�

+
rk+1

q

F
�

φk
1
,φk

2

�

Ui

�

φk
1 ,φk

2

�

, (3.2b)

rk+1 − rk

τ
=

1

2
q

F
�

φk
1
,φk

2

�

∫

Ω

2
∑

j=1

U j

�

φk
1 ,φk

2

�
φk+1

j
−φk

j

τ
dx. (3.2c)

The energy dissipation law can be obtained similar to Theorem 3.1.

Theorem 3.2. For the modified energy

F̃[r] = r2,

the scheme (3.2a)-(3.2c) is unconditionally energy stable — i.e.

1

τ

�

F̃
�

rk+1
�

− F̃
�

rk
�
�

=
1

τ

�
�

rk+1
�2
−
�

rk
�2
�

≤ 0.
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Proof. Considering the inner product of the functions (3.2a) and multiplying (3.2c) by

2rk+1, we have

2
∑

i=1

�

φk+1
i
−φk

i

τ
,µk+1

i

�

=

2
∑

i=1

Di

�

∆µk+1
i ,µk+1

i

�

,

2
∑

i=1

�

φk+1
i
−φk

i

τ
,µk+1

i

�

=

2
∑

i=1

−si

�

φk+1
i
−φk

i

τ
,∆
�

φk+1
i −φk

i

�

�

+

2
∑

i=1

 

φk+1
i
−φk

i

τ
,

rk+1

q

F
�

φk
1
,φk

2

�

Ui

�

φk
1 ,φk

2

�

!

,

�

2
�

rk+1
�2
− 2rk+1 · rk

�

τ
=

2
∑

i=1

 

rk+1

q

F
�

φk
1
,φk

2

�

Ui

�

φk
1 ,φk

2

�

,
φk+1

i
−φk

i

τ

!

.

The terms

2
∑

i=1

�

φk+1
i
−φk

i

τ
,µk+1

�

,

2
∑

i=1

 

rk+1

q

F
�

φk
1
,φk

2

�

Ui

�

φk
1 ,φk

2

�

,
φk+1

i
−φk

i

τ

!

are eliminated by summing them, so that

0≥
2
∑

i=1

Di

�

∆µk+1
i ,µk+1

i

�

=

2
∑

i=1

−
si

τ

�

φk+1
i
−φk

i
,∆
�

φk+1
i
−φk

i

��

+
1

τ

�

rk+1− rk
�2
+

1

τ

�
�

rk+1
�2
− (rk)2

�

.

Since the terms
∑2

i=1(−si/τ)(φ
k+1
i
−φk

i
,∆(φk+1

i
−φk

i
)) and (rk+1−rk)2/τ are nonnegative,

the energy dissipation law follows.

3.2. Solving the scheme

In order to find solutions of the Eqs. (3.2a)-(3.2c), we write them in a different form.

Substituting (3.2b) and (3.2c) into (3.2a) gives

Aiφ
k+1
i =Aiφ

k
i + Di

�

rk −
bk

2

�

∆ξk
i +

Di b
k+1

2
∆ξk

i , (3.3)

where

Ai =
1

τ
+ Disi∆

2, ξk
i =

Ui

�

φk
1 ,φk

2

�

q

F
�

φk
1
,φk

2

�

,

bk =

2
∑

j=1

�

ξk
j ,φ

k
j

�

, bk+1 =

2
∑

j=1

�

ξk
j ,φ

k+1
j

�

.

(3.4)
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The Eq. (3.3) yields

φk+1
i = φk

i + Di

�

rk −
bk

2

�

ηk
i +

Di b
k+1

2
ηk

i , (3.5)

where

ηk
i =A

−1
i

�

∆ξk
i

�

. (3.6)

We can update φk+1
i

by (3.5), but bk+1 has to be updated first. Considering the inner

products of (3.5) and ξk
i
, i = 1,2 and summing them, we obtain

bk+1 = bk +

�

rk −
bk

2

�

ck +
ck

2
bk+1,

where

ck =

2
∑

i=1

Di

�

ξk
i ,ηk

i

�

. (3.7)

Subsequently, bk+1 is updated as

bk+1 =
bk +

�

rk − bk/2
�

ck

1− ck/2
. (3.8)

Substituting bk+1 into (3.5), we obtain φk+1
i

.

To summarise, the term φk+1
i

is updated as follow.

Algorithm 3.1

1. Solve two linear equations to obtain ηk
i

from (3.6), i = 1,2.

2. Compute bk from (3.4) and ck from (3.7).

3. Compute bk+1 from (3.8).

4. Compute φk+1
i

from (3.5), i = 1,2.

Thus we only have to solve two linear equations with constant coefficients instead of

two coupled fourth-order nonlinear parabolic partial differential equations.

4. Simulations

In this section, we present the results of numerical experiments to show the accuracy

of the scheme, the mass conservation of the volume fractions, the decrease in the energy,

and the influence of different parameters. The parameters are set according to Table 2. All

parameters, except the statistical segment lengths ai in Subsection 4.5, are fixed through

the numerical experiment.
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Table 2: The value of the parameters in the simulation.

Parameter Notation Value

The stabilising coefficients
s1 5

s2 5

The mobility coefficients
D1 1

D2 1

The volume of one MMS M 0.16

The polymerization degree N 4.34

The interaction parameters

χ12 2

χ13 10

χ23 1.6

The statistical segment lengths

a1 1

a2 1

a3 1

Remark 4.1. The second-order BDF S-SAV scheme for the MMC-TDGL equations is con-

structed, and the same numerical experiments have been carried out. Since the results for

two schemes are similar, we present the results for the first-order S-SAV scheme only.

4.1. Accuracy test

We first test the convergence rates of the first-order S-SAV scheme, and we present the

results of two tests with different initial conditions.

In the first test we consider the domain Ω = [0,64]× [0,64] and the initial conditions

φ1(x , y, 0) = 0.1+ 0.01 cos

�

6πx

64

�

cos

�

6πy

64

�

,

φ2(x , y, 0) = 0.5+ 0.01 cos

�

6πx

64

�

cos

�

6πy

64

�

.

(4.1)

Here, the 256×256 uniform grid is used, so that the space step is 0.25. Setting δt = 1.25×
10−5, we choose the numerical solution computed with the time step δt/12.5= 1.0×10−6

at T = 2.6 as the reference solution. Numerical solutions are calculated with time steps

τ = δt,τ = 2δt,τ = 4δt,τ = 8δt,τ = 16δt,τ = 32δt at T = 1.6. Table 3 shows the L∞-

errors, L2-errors and the convergence order of φ1,φ2 and r with respect to the reference

solution for different time steps. In Table 3, ei(τ) represents the errors for the time step τ,

i.e.

ei(τ) =φie −φiτ, i = 1,2,

er(τ) =re − rτ,

where φ1e,φ2e, re are the reference solutions, φ1τ,φ2τ, rτ the numerical solutions for the

time step τ, and ‖ · ‖∞ and ‖ · ‖2 are the L∞- and L2-norms, respectively.
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Table 3: Errors and convergence rates for φ1,φ2 and r with the initial conditions (4.1).

τ 32δt 16δt 8δt 4δt 2δt δt

φ1

‖e1(τ)‖∞ 1.5077e-7 7.5075e-8 3.7275e-8 1.8280e-8 8.8792e-9 4.2269e-9

Order 1.0060 1.0101 1.0279 1.0417 1.0708

‖e1(τ)‖2 3.6982e-6 1.8461e-6 9.1999e-7 4.5713e-7 2.2628e-7 1.1070e-7

Order 1.0023 1.0048 1.0090 1.0145 1.0314

φ2

‖e2(τ)‖∞ 1.0005e-6 4.9805e-7 2.4727e-7 1.2116e-7 5.8679e-8 2.7773e-8

Order 1.0064 1.0102 1.0292 1.0460 1.0792

‖e2(τ)‖2 2.4457e-5 1.2206e-5 6.0813e-6 3.0185e-6 1.4908e-6 7.2600e-07

Order 1.0027 1.0051 1.0106 1.0177 1.0380

r
‖er(τ)‖∞ 1.5126e-5 7.5351e-6 3.7442e-6 1.8499e-6 9.0298e-7 4.2965e-7

Order 1.0090 1.0172 1.0172 1.0347 1.0715

In the second test, we consider the domain Ω = [0,50]× [0,50] and use the uniform

200× 200 grid with the same space step 0.25. The initial conditions

φ1(x , y, 0) =0.1+ ζ1(x , y),

φ2(x , y, 0) =0.5+ ζ2(x , y)
(4.2)

with the uniformly distributed on [0,0.01] random terms ζi(x , y), i = 1,2, are computed

at T = 1 with the time step τ = 0.001. The numerical solution at T = 1 is the true initial

condition we set in the first test. The purpose of this step is to avoid disturbances from

the random terms. Setting δt = 1.25× 10−5, we choose the numerical solution computed

with the time step δt/12.5 = 1.0 × 10−6 at T = 2.6 as the reference solution. Then,

the numerical solutions are computed with the time step τ = δt,τ = 2δt,τ = 4δt,τ =

8δt,τ = 16δt,τ = 32δt at T = 2.6. The notations in Table 4 are the same as in Table 3.

Tables 3 and 4 show that the first-order S-SAV scheme matches the first-order accuracy in

time.

Table 4: Errors and convergence rates for φ1,φ2 and r with the initial conditions (4.2).

τ 32δt 16δt 8δt 4δt 2δt δt

φ1

‖e1(τ)‖∞ 1.3682e-4 6.9398e-5 3.4820e-5 1.7309e-5 8.4960e-6 4.0754e-6

Order 0.9545 0.9793 0.9950 1.0266 1.0598

‖e1(τ)‖2 1.6131e-3 8.1574e-4 4.0867e-4 2.0299e-4 9.9587e-5 4.7765e-5

Order 0.9837 0.9972 1.0096 1.0272 1.0601

φ2

‖e2(τ)‖∞ 9.4696e-4 4.8055e-4 2.4118e-4 1.1990e-4 5.8857e-5 2.8234e-5

Order 0.9786 0.9946 1.0083 1.0265 1.0598

‖e2(τ)‖2 1.0762e-2 5.4435e-3 2.7273e-3 1.3547e-3 6.6472e-4 3.1880e-4

Order 0.9951 1.0030 1.0125 1.0287 1.0609

r
‖er(τ)‖∞ 1.9194e-5 9.7429e-6 4.8901e-6 2.4310e-6 1.1931e-6 5.7199e-7

Order 0.9783 0.9945 1.0083 1.0268 1.0607
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4.2. Influence of the initial concentration

Here, we show the phase transition processes for different initial concentrations. In later

simulations, we considered the domain Ω = [0,50]× [0,50] with the uniform 200× 200

grid. We now choose time step τ= 0.001 and the initial conditions

φ1(x , y, 0) = φ10 + ζ1(x , y),

φ2(x , y, 0) = φ20 + ζ2(x , y),

where φ10,φ20 are constants and ζi(x , y), i = 1,2 are uniformly distributed random terms

on [0,0.01].

In the first experiment, we fix φ10 = 0.1. Figs. 2-5 show the phase transition process

of φ20 = 0.2,0.3,0.4,0.5. In each figure, the four columns of the graphs are taken at

t = 5,50,100,200, and the three rows of the graphs show the evolution of the volume

fraction variable φ1,φ2,φ1 +φ2. The light blue domain in the first row, corresponding to

the larger values of φ1, represents the higher concentration of MMSs. The yellow domain

in the second row, corresponding to the larger values of φ2, represents the concentrated

polymer segments. The red domain in the third row, corresponding to the larger values

of φ1 +φ2, represents the higher concentration of the composition of MMSs and polymer

chains.

For low initial concentrations of polymer segments, the polymer chains cannot grow

long enough to graft onto other MMSs or polymer chains — cf. Fig. 2. Therefore, MMSs

and polymer chains form isolated balls. If the initial concentration of the polymer segments

is increased to φ20 = 0.3, some balls can be joined by polymer chains and form a bar — cf.

Figure 2: Evolution in the case φ10 = 0.1,φ20 = 0.2. The rows show the evolution of the volume fraction
variables φ1,φ2,φ1 +φ2. The columns are taken at t = 5, 50, 100, 200.
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Figure 3: Evolution in the case φ10 = 0.1,φ20 = 0.3. The rows show the evolution of the volume fraction
variables φ1,φ2,φ1 +φ2. The columns are taken at t = 5, 50, 100, 200.

Figure 4: Evolution in the case φ10 = 0.1,φ20 = 0.4. The rows show the evolution of the volume fraction
variables φ1,φ2,φ1 +φ2. The columns are taken at t = 5, 50, 100, 200.

Fig. 3. However, other balls are still separated due to the lack of polymer segments. If the

initial concentration of polymer segments reaches φ20 = 0.4 and 0.5, every MMS can be

joined by polymer chains since there are enough segments for the polymer chains to grow
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Figure 5: Evolution in the case φ10 = 0.1,φ20 = 0.5. The rows show the evolution of the volume fraction
variables φ1,φ2,φ1 +φ2. The columns are taken at t = 5, 50, 100, 200.

Figure 6: Evolution in the case φ10 = 0.02,φ20 = 0.5. The rows show the evolution of the volume
fraction variables φ1,φ2,φ1 +φ2. The columns are taken at t = 5, 50, 100, 200.

— cf. Figs. 4 and 5. Therefore, in these two cases, a reticular structure can be obtained.

When the initial concentration is higher, the red area in the third row becomes larger —

i.e. the structure is tighter. This is consistent with the results in [29].



110 G. Ji, Y. Yang and H. Zhang

Figure 7: Evolution in the case φ10 = 0.05,φ20 = 0.5. The rows show the evolution of the volume
fraction variables φ1,φ2,φ1 +φ2. The columns are taken at t = 5, 50, 100, 200.

Figure 8: Evolution in the case φ10 = 0.1,φ20 = 0.5. The rows show the evolution of the volume fraction
variables φ1,φ2,φ1 +φ2. The columns are taken at t = 5, 50, 100, 200.

In the second experiment, we fix φ20 = 0.5. Fig. 6-9 show the phase transition of

φ10 = 0.02,0.05,0.1,0.15. Note that if the initial concentration of the MMSs increases,

the light blue domain in the first row turns lighter. This indicates that the concentration

of MMSs increases. The orange domain in the second row turns yellow, which indicates
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Figure 9: Evolution in the case φ10 = 0.15,φ20 = 0.5. The rows show the evolution of the volume
fraction variables φ1,φ2,φ1 +φ2. The columns are taken at t = 5, 50, 100, 200.

the concentration of polymer chains decreases. The red domain in the third row turns

darker. This indicates that the concentration of the composition of MMSs and polymer

chains increases. A reticular structure can be formed in all four cases — i.e. if the initial

concentration of the polymer segments is sufficiently high, the initial concentration of the

MMSs does not affect the formation of the structure.

4.3. The evolution of total mass and modified energy

In order to verify numerically the mass conservation of the MMC-TDGL equations in

Theorem 2.2, we transform the integral
∫

Ω
φidx into the discrete form

∑200

m,n=1φi,m,nh2

and then plot the graph of the sums over time t. Fig. 10 a) shows the total mass of φ2 for

initial concentrations φ20 = 0.2,0.3,0.4,0.5 in the first experiment in Subsection 4.2, and

Fig. 10 b) shows the total mass of φ1 for initial concentrations φ10 = 0.02,0.05,0.1,0.15

in the second experiment. The points lie on horizontal lines. This implies that the numer-

ical solutions are mass conservative — i.e. the first-order S-SAV scheme maintains mass

conservation.

The modified energy F̃ with time t for different cases is plotted to verify the modified

energy stability. Fig. 11 a) shows the time evolution of the modified energy for the initial

concentrationsφ20 = 0.2,0.3,0.4,0.5 in the first experiment, and Fig. 11 b) shows the time

evolution of the modified energy for the initial concentrations φ10 = 0.02,0.05,0.1,0.15

in the second experiment. All curves show a downward tendency — i.e. the modified

energy decreases with time, as proved in Theorem 3.2. Fig. 12 demonstrates the original

and modified energies for φ10 = 0.05,φ20 = 0.5.
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Figure 10: Evolution of total mass. a) Total mass of φ2 for different initial concentrations φ20 =

0.2, 0.3, 0.4, 0.5. b) Total mass of φ1 for different initial concentrations φ10 = 0.02, 0.05, 0.1, 0.15.
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Figure 11: Evolution of modified energy. a) Modified energy for initial concentrations φ20 =

0.2, 0.3, 0.4, 0.5. b) Modified energy for initial concentrations φ10 = 0.02, 0.05, 0.1, 0.15.
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Figure 12: Original and modified energy for the case φ10 = 0.05,φ20 = 0.5.

4.4. The steady state with time-developing

Theorem 3.2 and Fig. 11 show that the modified energy F̃ decreases with time. The

further evolution for φ10 = 0.1,φ20 = 0.5 is displayed in Fig. 13. We note that φ1,φ2 and
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Figure 13: Evolution for φ10 = 0.1,φ20 = 0.5 and its steady state. The rows show the evolution of the
volume fraction variables φ1,φ2,φ1 +φ2. The columns are taken at t = 2000, 5000, 8000, 8200.
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Figure 14: The modified energy in the steady state for the case φ10 = 0.1,φ20 = 0.5.

φ1 +φ2 almost reach the steady state at t = 8200. The modified energy in Fig. 14 stays

conserved till it reaches the steady state. This is consistent with the results in [51].

4.5. Influence of different statistical segment lengths ai

The statistical segment lengths ai , i = 1,2,3 in the interface gradient terms of de-Gennes

(1/36)
∑3

i=1(a
2
i
/φi)|∇φi|

2 determine the thickness of the interface. The numerical exper-

iments are aimed to verify this observation. We set the initial conditions

φ1(x , y, 0) = 0.1+ ζ1(x , y),

φ2(x , y, 0) = 0.5+ ζ2(x , y),
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Figure 15: Numerical experiments with statistical segment lengths ai , i = 1, 2, 3. Columns present
numerical results with ai = 1, 1.5, 2, 2.5. Rows show evolution of volume fraction variables φ1,φ2,φ1+φ2.

where ζi(x , y), i = 1,2 are uniformly distributed random terms on [0,0.01]. The graphs

in Fig. 15 are taken at t = 100. The four columns present the numerical results with

ai = 1,1.5,2,2.5. The rows of the graphs show the evolution of the volume fraction variable

φ1,φ2,φ1 +φ2. For clarity, the range of the axis is changed from [0,1] to [0,0.2] when

the volume fraction φ1 is plotted. We note that the thickness of the interface increases as

the statistical segment length ai increases.

5. Conclusion

Ternary MMC-TDGL equations and a first-order S-SAV scheme for these equations are

constructed. Since an MMC hydrogel has a well-defined reticular structure, we use the

Boltzmann entropy theorem, Flory-Huggins lattice theory and statistical thermodynamic

method in order to develop a reticular free energy, which replaces the Flory-Huggins free

energy. Combined with the TDGL method, the ternary MMC-TDGL equations are obtained

based on the ternary Cahn-Hilliard equations. For the simulation of the MMC hydrogel

phase transition, a first-order S-SAV scheme is constructed. It is linear and unconditionally

energy stable. Using the S-SAV approach, the ternary MMC-TDGL equations are decoupled

into two linear equations with constant coefficients, so the first-order S-SAV scheme is effi-

cient. Numerical experiments illustrate the accuracy of the scheme, the mass conservation

of the volume fractions, and the decrease in the modified energy. The results of simulations

using different parameters are consistent with the physical phenomena. The convergence

and error analysis of the first-order S-SAV scheme will be studied later on.
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