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Abstract. A four-component nonlinear Schrédinger equation associated with a 5x5 Lax
pair is investigated. A spectral problem is analysed and the Jost functions are used in
order to derive a Riemann-Hilbert problem connected with the equation under consider-
ation. N-soliton solutions of the equation are obtained by solving the Riemann-Hilbert
problem without reflection. For N = 1 and N = 2, the local structure and dynamic
behavior of some special solutions is analysed by invoking their graphic representations.
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1. Introduction

The nonlinear Schrodinger equation (NLS) is an important integrable model. It is
closely related to nonlinear problems in theoretical physics such as nonlinear optics and
ion acoustic waves of plasmas. On the other hand, higher-order coupled NLS equations are
used to describe the effects of cubic-quintic nonlinearity, self-deepening, and self-frequency
shifting. Among numerous solutions of these equations, soliton solutions play a crucial role
in some complex nonlinear phenomena. At present, there are many methods to find the
solutions of nonlinear integrable models — e.g. inverse scattering transform [1], Darboux
transform [14], Hirota bilinear method [6], and Lie group method [2]. In particular, let us
note the inverse scattering transform method, which is especially efficient in finding soliton
solutions of the corresponding initial value problems. For second-order spectral problems,
the inverse scattering theory is equivalent to Riemann-Hilbert (RH) approach. On the other
hand, some of the higher-order spectral problems have to be transformed into RH problem.
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This approach, developed by Zakharov et al [34], was successively applied to various inte-

grable systems with a single component [3-5,8-13,16-21,24-30,32,33,35-38]. However,

to the best of authors’ knowledge, only a few studies deal with multi-component problems.
The nonlinear Schrédinger equation has the form

Oy %Yy

e DI LA A ) an
By

where A is an Hermitian matrix [15]. A multi-component multisoliton solution of the

Eq. (1.1) has been constructed by the Hirota’s bilinearisation method — cf. [7]. The well-

known general two-component coupled nonlinear Schrédinger equation — cf. [22],

ipe + Pex +2(alpl? + clql* + bpg* + b*qp*)p = 0, 2
iq, + qxx +2(alpl* + clql* + bpg* + b*qp*)q =0,

where a, ¢ are real constants, b is a complex constant, and “x” denotes the complex conjuga-

tion, is a special case of the Eq. (1.1). In physics, a and ¢ describe the self-phase modulation

and cross-phase modulation effects, and b and b* the four-wave mixing effects.
Furthermore, the three-component nonlinear Schrédinger equations has the form

iq1¢ + Qe — 2[alqa > + clgal* + flgs]* + 2Re(bqq, + dqjqs + eq3qs) Jq: =0,
iq5¢ + Qaxx — 2[alqy* + clga* + flgs|* + 2Re(bqq, + dqjqs + eq3q3) Jg, =0,  (1.3)
i93¢ + Q3xx — 2[alqy > + clgal* + flg3]* + 2Re(bqq, + dqjqs + eq}q3) Jqs = O,
where a,c, f are real constants, b,d,e complex constants, and “Re” denotes the real part.
These equations are studied by extending the Fokas unified approach by Yan in [31]. In par-

ticular, it was shown that the Eq. (1.3) can be reduced to three-component NLS equations
with various conditions on parameters a, b,c,d, e and f. More precisely,

e Ifa=c=f=—1and b =d =e =0, the Eq. (1.3) reduces to a three-component
focused NLS equation.

elfa=c=f=1and b =d =e =0, the Eq. (1.3) reduces to a three-component
defocused NLS equation.

e ffa=—-1,c=f=1landb=d=e=0ora=1,c=f=—1and b=d =e =0, the
Eq. (1.3) reduces to a three-component mixed NLS equation.

e For other choice of parameters, the Eq. (1.3) reduces to other three-component NLS
equations.

In this work, we consider a four-component nonlinear Schrédinger (FCNLS) equation
— Viz.

. 2 2 2 2
lQ1t+Q1xx—2|:a11|Q1| + an|qal® + asslqs|” + asulqsl
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+2Re(a15q}q2 + 013053 + Q1495 q4 + A230503 + 024034 + A340544) ]a1 =0,  (1.4a)
iq9or + qoxx — 2|:6111|‘11|2 + a5|q0)* + azslqsl® + asslgal®

+ 2Re(a1297q2 + a139193 + 0149744 + a2395q3 + 249594 + 034(1?;(14)]612 =0, (1.4b)
193¢ + q3xx — 2|:Cl11|<11|2 +a91qa|® + az3lqsl® + agslgsl?

+2Re(a12q}q2 + 01393 + Q1495 qs + A230503 + 024054 + A340544) ]a3 =0,  (1.4¢)
iQac + Qaxx — 2[ @111 * + a2l qal® + as3qs]* + aslqsl?

+ 2Re(a129792 + a139795 + Q149794 + 239593 + A2495q4 + as4¢l§¢l4)]¢l4 =0, (1.4d)

where a1, a,,,ass, ay4 are real constants and aq,, a;3, 14, o3, Aoy, d34 COMplex constants.
The FCNLS equation includes group velocity dispersion, self-phase modulation, cross-phase
modulation and paired tunnel modulation. Analogously to the three-component NLS equa-
tions (1.3), the FCNLS equation (1.4) can be reduced to different four-component NLS
equations with the different conditions on the parameters. The Riemann-Hilbert problem
for the FCNLS equation and its multi-soliton solutions have not been yet studied, so that
the construction of such a problem and finding multi-soliton solutions of the related 5 x 5
matrix spectral problem is of a significant interest.

The structure of this work is as follows. In Section 2, we analyse a spectral problem
and properties of the Jost functions connected to the Lax pair with a 5 x 5 matrix spectral
problem for the FCNLS equation (1.4). In Section 3, the corresponding Riemann-Hilbert
problem is derived and the symmetry of the scattering matrix and temporal and spatial
evolution of the scattering data are studied. The solutions of Riemann-Hilbert problem,
obtained in Section 4, are used to establish the N-soliton solutions of the FCNLS equation
(1.4). Besides, the propagation of one-and two-soliton solutions is discussed. Finally, some
conclusions are presented in Section 5.

2. Spectral Analysis
Let us start with the Lax pair for the FCNLS equation (1.4). It can be written as
., =U®, &, ,=Vo,

where & is a column vector function, matrices U and V have the form

-2 0 0 0 gq
0 —iA 0 0 gq
u=| 0 0 —iA 0 gqs |,

0 0 0 —id qu
P1 P2 Ps  Ps IA
V ==2iA%A+2AP +V,, Vy=—i(P,+P?)A,

A is the spectral parameter,
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1000 O 0 0 0 0 q
01 00 O 0O 0 0 0 gqy
A= 001 O0 O |, P=f O O O 0 g5 |,
0 0 01 O 0 0 0 0 qu
0000 -1 p1 P2 Ps P4 O
and
P1=a11q; taxq; +aszq; +agug;,
P2 = 5147 + axq; + aseq; + agnqy,
P3 = a3,q) +a3,q; + d33qs + ds3q,,
P4 = @414y + T + A3l + daady.
It follows that
@, +ilAD = P,
02 (2.1)
®, + 2iA°AP = Qd,
where Q = 2AP + V4,
For |x| — oo, the Egs. (2.1) yield
& oc e—i)LAx—ZiAzAt.
Letting
u= PelMx+2iA%At
gives
and we arrive at the new Lax pair
Uy +iA[A, u] = Pu,
o (2.3)
pe + 2iA°[A u]l = Qu
with the commutator [A, u] := Au— uA. We can obtain the full differential
d (ei(kx+27t2t)/_\‘u) — ei(kX'FZkzt)/_\[(de + Qd t)‘bl], (24)
where e’mu =eMue™,

In order to construct a Riemann-Hilbert problem, one has to find the solutions of the
spectral problem (2.3) as A — oo. For this, we represent the solution of the Eq. (2.4) in

the form W @
_ 0 e 1
u=u’+ n + 2 +O(AS), A— 00 (2.5)

with p©@, u™®, 43 not related to A. Substituting (2.5) into (2.3) and equating the coeffi-
cients at the same powers of A yields
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o(1): ug{o) +i[AuD]=pPu®,
o(A): i[A, ,u(o)] =0 for x part, (2.6)
o(A):2i [A, u(l)] =2pu® for t part.

The first and third equations in (2.6) show that ug{o) = 0, so that u(® is not related to x.
Besides, (2.2) and the second equation in (2.6) imply that u(%) is a diagonal matrix. Hence,

I= lim lim ,uz,u(o).

A—00 |x|—>00

Now, the solutions uy = u,(x,A) of the Eq. (2.3) can be written as

Uy = ([,u+:|1, [ty Jos [y a5 [y Jas [M+]5) >

2.7)
U_= ([H—]b lu_la, [u_]s, (14, [M—]s),

where [u.];, [ =1,2,3,4,5 denotes the [-th column of the corresponding matrix [u, ] or
[u_]. Moreover, we note that these solutions satisfy the asymptotic conditions

U, —I as x— +oo,

2.
u_—I1 as x——o00, (2.8)

where I is the 5 x 5 unit matrix. Let us note that the solutions [u. ] for A € R are uniquely
determined by the Volterra integral equations

+0o0

‘u+(x, A) =1 _J e—i)LA(x—y)p(y)M+(y’ A)eilA(x—y)dy’

X
X

u_(c,A) =1+ J e—il/\(x—y)p(y)‘u_(y, )L)eikA(x—y)dy

—o0
with the kernel matrix

e—i)LA(x—y)PeiAA(x—y)

0 0 0 0 g e 2Ay)

0 0 0 0 gpe 2=y

= 0 0 0 0 gze2A=Y)

0 0 0 0 qqe” 2=y
pleZi)L(x—y) pzeZiA(x—y) pgeZi)L(x—y) p462il(x—y) 0

If Re[2iA(x — y)] < 0 and Re[—2iA(x — y)] < O, the columns [u_];, [u_1s, [u_]3, [U_]4
and [u, ]s are analytic vector-functions on C*, and [u,1;, [u11s, [ui]s, [uy]s and [u_]s
are analytic vectors-functions on C™.

Let us study the properties of u.. The relation tr(P) = 0 and Liouville’s formula yield
that the determinants of the matrices u. do not depend on the variable x. Therefore, the
Eq. (2.8) implies

detur =1, A€R. (2.9
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Moreover, since for E = e *** both u_E and p.E are the solutions of the spectral problem
(2.3), they are linearly interdependent and satisfy the equation

U_E=u, ES(A), AER, (2.10)
where S(A) = (sij)sxs is the scattering matrix. The Egs. (2.9) and (2.10) show that
detS(A)=1, A€R.

In order to write the Riemann-Hilbert problem for the Egs. (1.4), we consider the in-
verse matrices

where [,u;l]l, 1 =1,2,3,4,5 are the rows of u__ or u_.
It follows from (2.3) that u;l satisfy the following equation

K, =—iA[A,K]—KP. (2.11)

The Eq. (2.11) gives that [u"']}, [u~*]?, [,u 1, [u'1%, [u;'] are analytic vector-functi-
ons on C~ and [,qul]1 [,qul]2 [u;l] , [u+ 1*, [u=!]® are analytic vector-functions on C*.
According to Eq. (2.10), we have

E'u=' =RME'u .

Theorem 2.1. If the matrices S and R are written as

S$11 S12 S13 S14 S15 i1 T2 T3 T4 Ti5

S21 S22 S23 S24 Sos g1 Toa T3 Tog Tog
S(A)=| s31 S32 S33 S34 S35 |, R(A)=| 73y 13y T33 Isq T35 |,

S41 S42 S43 Sa4  S45 T41 Ta2 Ta3 Tag T4s

S51 Ss52 S53  S54 Sss 'siy Tsy TIs3 I'sq Tss

then the entries 8§11551255135514552155225523,524,531,5325533,534,541,542,543,544 Are analytic
functions in C, sg5 is analytic in C™, rgs is analytic in C*, and 111,12, 13, 14> T21> T225 235
94,731,732, 133, 734> T41, T42, T43, T44 are analytic functions in C™.

Proof. 1t follows from (2.10) that E~ 1u11,u E=S(1),

SR i 7 PR Tl A
3 [H+1]2[H 1a [.U+ (u_1s

[ M us]y [ug u_]
p_]
u_ly [wi'Plucly [wi'Plusls [E,
p_]
u_]

1 u-] 1'L
(W' Plu-]y [y Plu-] [

S =E| W 'Pludy Wwi'Pluly [Pl
(u_]y  [ui 1 [u-] 1"

1Plu-] L

Plucl [

[uy

and for the matrix S the claim follows from the properties of u:l and u_. The matrix R(A)
can be treated analogously. O
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3. Riemann-Hilbert Problem

In this section, we construct a respective Riemann-Hilbert problem. More precisely,
considering the matrix functions

Py =Py(x,A) := ([u_di, [p—lo, [u—Ts, [u—1a, [1s Js), 3.1
[w ']
w12
Py=Py(x,A):=| [uZ'P |, (3.2)
[w'1*
(w;'P

we note that P; and P, are analytic in C* and C~, respectively, and satisfy the asymptotic
conditions
Pj—>1 as A— 400,
(3.3)
Py—»1 as A— —o0.
At the moment, we write P, for P; restricted to the left-hand side of the real A-axis and P_
for P, restricted to the right-hand side of that axis. On the real line, these matrix-functions

satisfy the equation

P_(x,A)P.(x,A)=G(x,A), AeR 3.4
with
1 0 0 0 rise 2iAx
0 1 0 0 rose 2IAX
G(x,A) = 0 0 1 0 rage 2iAX
0 0 0 1 ryge 2
55162ilx SSZeZi)Lx SSSeZiAx 55462i)tx 1

According to Eq. (3.3), the canonical normalization conditions are

Pp—>1 as A— 400,

P,—>1 as A— —oo.

Theorem 3.1.

detPl =TIss AG(C-F,
_ (3.5)
detP2 = Ss55 AeC .

Proof. According to Egs. (3.1) and (3.2), matrices P; and P, can be written in the form

Py =u_Hy+u_Hy;+u_H3+u_Hy+u,Hs, 3.6)
P, = HyuZ' + HouZ' + HyuZ' + HyuZ' + Hsu ',

where

H, =dig(1,0,0,0,0), H,=dig(0,1,0,0,0), H;=4dig(0,0,1,0,0),
H4 = dlg(o, 0,0, 1,0), HS = dlg(()’ 0,0,0, 1)
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Hence

detP;(A) =det(u_H; + u_Hy +u_Hz +u_Hy + u, Hs)
= detu_ - det(H, + H, + H; + H, + ER(A)E"'H5)

1 0 0 0 ryge 2™

0 1 0 0 ryge 2t
=1-det| 0 0 1 0 ryze 2M

0 0 0 1 ryge 2t

0000 rss
= TIss.

The second equation in (3.5) can be proven analogously. The Eq. (2.9) shows that detu, =
1, which yields detP; = rss,A € C*, and det P, =ss5,A € C. O

Let A" denotes the Hermitian of the matrix A. A symmetry relation for the matrix P has
the form
p"=—-BPB7!, (3.7)

where
ap; Ay 4y Ay
Ay Ay A3 Ay
B=| a3 az das au

oS O O O

41 dg2 Q43 Q44
O o0 o o -1

It follows from (2.3) and (3.7) that
(uL(A)B), = —iA[A, ul (A*)B]— ul(A*)BP

Hence, if /. (A*)B and u7'(A) satisfy (2.11), then u/.(A*)B is linearly related to u7'(A),
ie. ui(A*)B = Cu3'(A) with C independent of x. Using the large-x boundary conditions
of uy, we find that C = B. Consequently,

B ul(A)B = uz' ().
The scattering matrix S(A) satisfies the equation
B71ST(A)B =571(1) =R().

Therefore,
rss(A) = s55(17), AecCT,
—5g1(A) = aqiri5 + @y a5 +ag a5+ ayTas, AER,
—Sey(A) = ag1715 + Agatas + a5, T35 + ayyTss, AER, (3.8)
—S53(A) = agi715 + agaras +assTss + aYslas, AER,

* —
—354(1) = ay1715 + AyoT95 + ay3T35 + 44745, AER.
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Theorem 3.2.
P/(A)=BPy(A)B!, AeC. (3.9)

Proof. Taking into account the first equation in (3.6), we write

PI(A") = (u_(A")H; + p_(A")Hy + u_(A)H + u_(A*)H, + py(A")Hs)'
= Hyp! (A) + Houl (%) + Hypl (A7) + Hypl (A7) + Hspl (A7)
=BP,(A)B™!, AecC,

so that '
P/(A*)=BP,(A)B™!, AeC . O

It follows from the Egs. (3.5) and (3.8) that detP;(A) = (det P,(A*))*. Therefore, if
detP;(A) = 0, then det P,(1*) = 0. Let us assume that det P; has N simple zeros {A; }Il\’ in
C*, and detP, has N simple zeros {A}‘ zlv in C™. These zeros and nonzero vectors v; and
V;, constitute complete discrete data, satisfying the following equations:

P(4;)v; =0,

3.10

where v; and 1“/)- are a column and a row vectors, respectively. The Egs. (3.9) and (3.10)
lead to the following relation for the eigenvectors:

1<j<N. (3.11)

Now we use v; in time-spatial revolution analysis. Take the derivatives of the first equation
in (3.10) with respect to x and ¢, so that

P]_,xV]' +P1V]',x = 0,

(3.12)
Pl’th + Plvj,t =0.

Using the relation

Py =(u_Hy+p_Hy+p_Hz+p Hy)y
= p_Hy + U Hy +u_ H3 + g  Hy,

and the Lax pair in (2.3) gives

Py =[—iA(Ap_—u_A)+Pu_]H; + [—iA(Ap_ —u_A) + Pu_]H,
+ [—iIA(Au_ —pu_A)+Pu_JHy + [—iA(Apu_—u_A)+Pu_]H,
+ [—iA(Apy — e A) + Puy JHs



152 X.-M. Zhou, S.-E Tian, J.-J. Yang, J.-J. Mao

Similar arguments show that

Pl,t == —ZlkZ[A,Pl] +QP1.

(3.14)

Substituting (3.13) and (3.14), respectively, into the first and second equations in (3.12)

and noting that P;v; = 0, we obtain

lA,AV] + V]',x = 0,
212,2/\1/) + V]',t =0.
According to (3.15), we have
v, = e—i(ljx+2l)2-t)Avj’0’

where v; ; are constant vectors and (3.11) implies

Js

_ V (A, )B _ V l(}, X+2A*2[)A

4, Multi-Soliton Solutions

Expanding P;(A) for large A as

p  p@ 1
_ 41 il
(M) =1+ ) + 2 +o(13), A — 00

and substituting it into (2.3) yields
o(1):i [A,Pl(l):l —p
The Eq. (4.1) produces the following relations:

q:(x,t) =2i (Pl(l))15 , o, t)=2i (Pl(l))25 ,
q3(x,t) =21 (Pl(l)) , Qalx, t)=2i (Pl(l))

3

35 45

where (Pl(l))i j refers to the (i, j)-entry of the matrix Pl(l).

(3.15)

4.1)

4.2)

In order to obtain soliton solutions, we set G = I in (3.4) and provide the solutions of

the corresponding Riemann-Hilbert problem (3.4), viz.

P(A)=T1— ZZVkV (M )k)

1)1

Py(A) = ]I+ZZ V"V M )’”,

k=1 j=1

(4.3)
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where M is the N x N matrix with the entries

The Egs. (4.3) yield
N N
1 P
Pl( )= _szkvj(M s
k=1 j=1

where (M ™! )xj denotes the (k, j)-entry of the inverse matrix M ~1. Using nonzero vectors
Vio = (&, B, T i Y1) T and 6 = —i(Ax +2A7t), we generate the vectors

e 0 0 0 0 oy e
0 e 0 0 o0 B Bred
Vi = eekAvk 0= 0 0 €% o 0 e |=| Tee? |,
0 0 0 e* o Lk e
0 0 0 0 e% i ye O

*
31

0

k

o Ay Ay day Ay, 0

(ael fo’*el Tel C*el,ye i) as azgy azz a;; O
aq1 Qg2 G43 Q44 O

0 0 0 0o -1

a

= (ana;feef + amﬂ;“eej* + angjeef +ay g;eej*,
ay a}%eef + azzﬁ;kee; + aggT}?eef + a42§}?e9f,
aéla;&eej* + a:ﬁzmeej* + a337je9; + a43ﬁ€9f*,
aLajee; +af;2/5*e i +ayTe b +a44§'*e i e e%).

Obviously

viV;=| b3y b3y bsz bss bss |, 4.4)

— * * * £3
ViVi = (allakaj + a21/3kaj + aglfkaj + a41Ckaj

+ a5,y Bj + az P B + asa Ty B + as2 i B;
a3, 0T+ a3, BT+ s T T + au3lT;

05 +0.

+ @y Al Wil + ahy TRE + agal g )Y
— *— .

_')/7;'}/]3 0k 6],
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0—0; 0—0; %, 0—07

bys = —aky;?e , bys= _ﬁije » bss =—Tkrie >
0,—67 6,—6*
bss = —Ck}’je “, bss = _Yk}’je NP
It should be noted that the values of b;;, i <5, j < 4 are not used in the calculation of the
solution, so we will omit them for convenience.
Previous considerations show that general N-soliton solutions of the FCNLS equation
(1.4) can be written in the form

N N N N
. 0,—06* — . 0,—0%* —
G =20 ) > eI MYy, q=2i ) > Brrie® T Yy,

k=1 ):1 k=1 J:1
- N (4.5)
. 0c—07 [ y—1 ; =67 (1
3 =2i ) > eI My, g =200 > G Tl (M,
k=1j=1 k=1j=1
where
_ 1 % * * *
My = ﬁ[(allakaj +agfra;+anTia; +anfia,
i~ M

+ a5, o B+ aga B B+ asa T By + as i B
+ a?;la;ir]- + a?;zfo’,frj + aggr;;*cj + a43C;ZT]-

05+,
+ a4 0+ @l Bl + ala TRC) + agalil et

—ririe % %], 1<kj<N.

Let us introduce the matrices

0 a1691 0L2e62 aNeeN \
Y*e_el* My My My
F=| 7r5e® My My My |,
\Y}k\;e_e” My, My Myn j
( 0 o Bre?t Poel ... Byen \
ﬁe_@l* My My ... My
G=| 71262 My My Myy |,
* ,—0% ‘
K Yye NV Myir My Myn )
( 0 Tleel 72602 ’L'NEGN \
Y*e_gi My My My
H= Y;e_ez My My, Moy ,
\ TNE O Myy My Myn j
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0 Ce% Loef L (et

YT6_21 M11 M12 . MlN

K=| 712¢? My My ... My
'}’;kve_eN MNl MNZ . MNN

needed for the representation of general N-soliton solutions. In particular, we have

— _oj detF — _oj detG — o detH — _oj detK
@ = detM® 127 detm’ BT detm’ 1T detM"’

(4.6)

The rest of this section is devoted to the soliton solutions for N =1and N =2. If N =1,
one-soliton solutions have the form

_ 2.“1)”?@91_&1* _ 2./51)/#{@91_0;
G =— Q=A—F7,
M, M, “.7)
_ 2.71}’}{@91_&1* _ Z.Clﬂeel_ef
Q3 =21———, Q4 =21———,
M, M,
where
M., = 1 [( 2 2 2 2
1= —1 arr|oq|® +agy|B1l” + agsl T + aguldql
1—M
+ag Bia; +aztiog +agnlio
+aj,a] Py +az i1 +asnlif
a3,y + a5, 71 +asd1T:
* 2 — *
+ayaily +ay, Bl + 023TTC1)301+01 —lr1l%e (01+01):|,
and 0; = —i(A1x + 2A2¢t). Furthermore, fixing y; = 1, A; = n; + im, and setting
2 2 2 2
- (a11|a1| + ag|Bq|” + ass|T1]" + agsllq]
+ag fiag +ag Tia; +aulio
+ a3, a1+ ast i+ agplif
+ 50T+ a3+ a3l T
+ay, a1y +a;, B8 +ajrgr*{§'1)=e2€1, (4.8)
we write relations (4.7) as
g = 2m1a1y*{e_51e91_9f sech(@i" +0; + 51),
qs = 2m1/31'}’>;e_§1601_9;< Sech(ei‘< + 91 + 51) , (4 9)

g3 = 2m171y*{e_€1e91_9f sech(@i" +0; + 51),
qq = 2m1C1YT€_51601_01* SeCh(Gik + 61 + 61) .
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Since 6y = —i(A,x + 2A7t), we have

0, — 0] = —=2in;x — 4in%t,

01+ 67 =2myx + 4im%t +8nym;t,
and the one-soliton solutions (4.7) can be written in the form

. .2

g, =2m, aly’{e_gle_zmlx_“mlt sech (Zmlx +4im3t +8nym;t + 51) ,
. .2

qs = 2m1/31y’{e_‘51e_2m1x_4m1t sech (Zmlx + 4im%t +8nymyt + 61) , 4.10)

. .2 .

qs = 2m171ﬁe_§1e_21”1x_4l”1t sech (Zmlx +4imjt +8nym;t + 51) ,

Q4 =2my Clﬁe_gle_zinlx_‘“”%t sech (2m1x +4imit +8nym;t + 51) .
According to the Eq. (4.10), the solution g; has the peak amplitude
T = 2m1|al||ﬁ|e_§1,
and the velocity
’(D’l == 21m1 + 4n1.

The peak amplitudes and the velocities of q,, g3 and g, have similar representations — viz.

T, = 2m1|/3’1||y’{|e_‘51, T3 = 2m1|71||}”{|9_€1> Ty = 2m1|§1||}”{|9_€1,

Wy = Zlml + 4n1, w3 = Zlml + 4n1, '(3'4 = 21m1 + 4n1.
The functions 17, T,, T3, T, depend on the imaginary part of A; and @, @,, @3, @4 depend
on the real and the imaginary parts of A;. Figs. 1 and 2 show the localised structure and
the dynamic behavior of one-soliton solutions. Solutions g,,q; and g, exhibit the same
behaviour and we do not show them here.

For single soliton solutions (4.10), we take a;; = —1if i = j and a;; = 0 if i # j.
Moreover, let a; = 7, = 5, = {; = 1/2—+/2/2i,y; = 1,n; = 1/3,m; = 1/2. The shape

(b) ©

Figure 1: One-soliton solution g; for y; =1,n;, =1/3,m; =1/2,a; =—1and a; =0ifi #j,i,j =1,2,3,4.
(a) Three dimensional plot at t =0. (b) Density plot. (c) Wave propagation along x-axis.
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(b) ©

Figure 2: One-soliton solution q, for a;; =—1 (i,j =1,2,3,4),y, =1,n, =1/3 and m; = 1/2. (a) Three
dimensional plot at t =0. (b) Density plot. (c) Wave propagation along x-axis.

of the solution q; is shown in Fig. 1. Fig. 2 shows solutions in the case where a;; = —1 if
i # j and other parameters are the same as in Fig. 1. Note that now the amplitude of the

soliton is smaller than in Fig. 1.
For N = 2, the two-soliton solutions can be written in the form

B —2i
M1 Mgy —Mq5Mo,
+ azYieez_eszl - azY;eez_G;Mn),
B —2i
M1 Moy —Mq5My,
0,— 07 0,— 0z
+ Bayie™ 1My — fBoyse” 2M11):
B —2i
M1 Moy — Mq5Ms,
+ TzY’{eez_el*le - TzYzeez_ez*Mu),
B —2i
M1 Mgy —Mq5My,
0,—0x 0,—0x
+ {oy1e” 1 My — {oyhe™ 2M1),

S x,0,—03
a1 (—a1yie My, + ayyie =% My,

0,07 0,—0:
e} (_ﬁl}”{e T My + Bryse” 2 My,

“4.11)
(_ 71}”{961_61 My, + T1Y3691—92*M12

qs

0,—67 0,—6;
(_517‘;6 T Myy + 875" 2 My

q4

where

1 2 2 2 2
M11=m[(a11|a1| + ago| B |” + asgs|T1|” + assldil
1 1

* * *
+ay fiog tagtia; +agfio
* * * *

+ aj,a]f1 +asa T 1+ sl b
* * ES * ES
+az,a]7; +a32/31T1 +a43C1T1

a1+ B+ T )l g PO

[(011aia2 +an Brag +ag Tiay +asliay
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* % * * *
+ a3, a7 g + ag By + asy T Po + asnli B
* % * p* * *
+a5,a7 Ty + a5, Ty +as3TiTo + s3] T

0:+6 —0F—6.
+‘121a¥2+‘122/5f52+a23TT52+a44CT52)3 1702 —yiye™ 2],

1
M21 = —A’ A* [(ana;al + a21[5§a1 + a31T;a1 + a41C>‘2<a1
17 742
+az, a5 + ag By B +as T +asn sy
+a5,05T1 + 5,571 +as3 75T + as38571
0x+6 —0X—0
+aya5ly +ay,B58 +ayT58 +a44§§§1)e 270 —y¥yie™% 1],
1 2 2 2 2
Mzz=—)L A*[(aH'aZ' + ag|Bal” + ags|Tol” + agsllsl
27

* * *

+az Byay +as Toas tag s
* % * *

+ a5, 0589 + asaT5 B + as0 5B
* % * @k *

+a5,a57Ty +a5,657To+as3057

0:+6
+ay 58y +ay, B, + ajrgrzgz)e 2102

— ly,l?e (%18,

and
0, =—i(Ax+22%t), Oy =—i(Apx+2A2t), Ay =ny+imy, Ay=n,+im,.
Choosing vy =y, =1,a7 = a9, 1 = B9, T = T9,{; = {5 and using the notation
21 := —(ayy oy |* + agl By |* + azs| 711 + agql 4 2
+ayfia;+as i +andio
+aj, a7+ as T fr +asnli B
+a50) T+ a3, BT +ag387 T
+ @G0+ 4, PTE 4T,
we write two-soliton solution (4.11) as

_21 —_0* _0*
(—aleel My, + are® 7% My,

N MMy, — MMy,
+ azeez_eszl - a2692—9§M11)’
127 M11M22_—23V!12M21 (= Bre" % My + Bre” % My,
+ Boe® T My, — /52362_62*1\/[11),
—2i 0,—67 0,—6;
4= My1May — M5 My, (_ et M et M,
+ 72692_91*M21 — Tzeez_efMH),
q4 = (= 1% Moy + L1607 %2 My,

M1 My — M3 My
+ 890 My — (e M),
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where

—e&1
Mll = ._COSh(Gik + 91 +§1),
1my

_26‘51
M, = cosh (6 + 6, + ,
12 nz_n1+i(m1 +m2) ( 1 2 51)
—2¢81
My = ¢ cosh (65 + 0, +&,),

ny—ny + l(m1 + mz)
_egl

M22 = COSh(Qék + 92 + 51)
1my

In Fig. 1 we show the elastic collision of two solitons. The solitons maintain their
original shape after the collision.

The graphs in Fig. 4 are constructed with the same parameters as for the Fig. 3 with one
amendment — viz. here we set a;; = —1, i # j. Fig. 4 shows that the energy of the soliton
is not transferred during the collision — i.e. this is an elastic collision. The solutions q,, g5
and g, exhibit the same behaviour. Therefore, they are not visualised here.

(b) ©

Figure 3: Two-soliton solution q; for a; =—1 and a;; =0 if i #j,i,j=1,2,3, 4,0, =71, =, ={; =
1/2=v2/2i, v, =1, =1L a; = a3, = P, Ty = 75,{; = {ony = —1/3,n, = 1/3,m; = 0.25 and m, = 0.5.
(a) Three dimensional plot at t =0. (b) Density plot. (c) Wave propagation along x-axis.

— =10 Flot
—— t=0Plat
— - — =10 Plat

(b) ©

Figure 4: Two-soliton solution g; for a; =—1 (i,j = 1,2,3,4),n; = —1/3,n, = 1/3,m; = 0.25,m, = 0.5.
(a) Three dimensional plot at t =0. (b) Density plot. (c) Wave propagation along x-axis.
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Changing values of the parameters f3;, a,, 32, {5 used for the graphs in Fig. 3 and hold-
ing other parameters unchanged, we arrive at another collision type — cf. Fig. 5. Before
the collision, the energy of the right soliton is higher than of the left ones. However, af-
ter the collision the right soliton reaches the left one and the energy diminishes rapidly.
Simultaneously, the soliton from the left reaches the right one and the energy increases
rapidly. Thus during this collision the energy transfers from one soliton to the other. Note
that similar effect is noted in [22,23].

The graphs in Fig. 6 are constructed mainly with the same parameters as in Fig. 5, but
a;; =—1,1 # j. The corresponding soliton collision shown in Figs. 6(a), 6(d) and 6(f) is
also inelastic and an energy transfer occurs during the collision. Besides, the soliton has
a smaller amplitude than the one in Fig. 5.

Remark 4.1. Considering Figs. 3-6, we note that the parameters a;;(i # j) influence the
amplitude of the solitons. If a; = a,, 1 = B2, T1 = T2, {1 = {5, there is no energy transfer
during soliton collision and solitons hold their original shapes — i.e. we have an elastic
collision. If a; # a,, B; # Pa, {1 # {5, an energy transfer occurs during the collision — i.e.
we have an inelastic collision. In both cases, the width of the solitons remain unchanged
during the collision.

o I —
3 i o
iy

(d (e)

Figure 5: Two-soliton solutions for a; = —1 and a;; =0 if i # j,i,j = 1,2,3,4,a, =7, = §; = 1/2—
V2/2i,6 = 1/2,7; =1, = 1,a, = =1/2+ v/2/2i,, = —0.3,7, = 1/2— v2/2i,{, = 1/2+ v/2/2i,n, =
—1/3,n, = 1/3,m; = 0.25,m, = 0.5. (a) Three dimensional plot at t = 0 for q;. (b) Density plot
for q;. (c) Wave propagation along x-axis for ¢;. (d) Three dimensional plot at t =0 for g,. (e) Three
dimensional plot at t =0 for q;. (f) Three dimensional plot at t =0 for q,.
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— =10 Flot
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Figure 6: Two-soliton solutions for a;; = —-1(i,j = 1,2,3,4),n; = —1/3,n, = 1/3,m; = 0.25,m, = 0.5.
(a) Three dimensional plot at t = 0 for q;. (b) Density plot for g;. (c) Wave propagation along the
x-axis time for g;. (d) Three dimensional plot at t =0 for g,. (e) Three dimensional plot at t =0 for g5.
(f) Three dimensional plot at ¢t =0 for g,.

5. Conclusions

We employ the Riemann-Hilbert approach in the study of a FCNLS equation (1.4) as-
sociated with a 5 x 5 Lax pair. In particular, we consider a spectral problem and use the
Jost functions in order to derive a Riemann-Hilbert problem for the equation mentioned.
We note a symmetry relation for the scattering matrix and study the temporal and spatial
evolution of the scattering data, solve the corresponding Riemann-Hilbert problem without
reflection and obtain N-soliton solutions of the FCNLS equation. Finally, we consider some
solutions in the case if N = 1 and N = 2, and describe the local structure and dynamic
behavior of one-and two-soliton solutions using their graphic representations.
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