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Abstract. We give an alternative proof of a recent result in [1] by Caffarelli,
Soria-Carro, and Stinga about the C1,α regularity of weak solutions to trans-
mission problems with C1,α interfaces. Our proof does not use the mean value
property or the maximum principle, and also works for more general elliptic
systems with variable coefficients. This answers a question raised in [1]. Some
extensions to C1,Dini interfaces and to domains with multiple sub-domains are
also discussed.
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1 Introduction and main results

In a recent paper [1], Caffarelli, Soria-Carro, and Stinga studied the following trans-
mission problem. Let Ω∈R

d be a smooth bounded domain with d≥2, and Ω1 be
a sub-domain of Ω such that Ω1⊂⊂Ω and Ω2=Ω\Ω1. Assume that the interfacial
boundary Γ(= ∂Ω1) between Ω1 and Ω2 is C1,α for some α∈ (0,1). Consider the
elliptic problem with the transmission conditions











∆u=0 in Ω1∪Ω2,

u=0 on ∂Ω,

u|+Γ =u|−Γ , ∂νu|
+
Γ−∂νu|

−
Γ =g,

(1.1)
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where g is a given function on Γ, ν is the unit normal vector on Γ which is pointing
inside Ω1, and u|+Γ and u|−Γ (and ∂νu|

+
Γ and ∂νu|

−
Γ ) are the left and right limit of u

(and its normal derivative, respectively) on Γ in Ω1 and Ω2. The main result of [1]
can be formulated as the following theorem.

Theorem 1.1. Under the assumptions above, for any g∈Cα(Γ), there is a unique

weak solution u∈H1(Ω) to (1.1), which is piecewise C1,α up to the boundary in Ω1

and Ω2 and satisfies

‖u‖C1,α(Ω1)
+‖u‖C1,α(Ω2)

≤N‖g‖Cα(Γ),

where N=N(d,α,Ω,Γ)>0 is a constant.

The proof in [1] uses the mean value property for harmonic functions and the
maximum principle together with an approximation argument. We refer the reader
to [1] for earlier results about the transmission problem with smooth interfacial
boundaries. The main feature of Theorem 1.1 is that Γ is only assumed to be in
C1,α, which is weaker than those in the literature. In Remark 4.5 of [1], the authors
raised the question of transmission problems with variable coefficient operator and
mentioned two main difficulties in carrying over their proof to the general case.

In this paper, we answer this question by giving a alternative proof of Theorem
1.1, which does not invoke the mean value property or the maximum principle, and
also works for more general non-homogeneous elliptic systems in the form















Lu :=Dk(A
klDlu)=divF+f in Ω1∪Ω2,

u=0 on ∂Ω,

u|+Γ =u|−Γ , AklDluνk|
+
Γ−AklDluνk|

−
Γ =g,

(1.2)

where the Einstein summation convention in repeated indices is used,

u=(u1,··· ,un)⊤, Fk=(F 1
k ,··· ,F

n
k )

⊤, f=(f 1,··· ,fn)⊤, g=(g1,··· ,gn)⊤,

are (column) vector-valued functions, for k, l=1,··· ,d, Akl=Akl(x) are n×n matrices,
which are bounded and satisfy the strong ellipticity with ellipticity constant κ>0:

κ|ξ|2≤Akl
ijξ

i
kξ

j
l , |Akl|≤κ−1,

for any ξ=(ξik)∈R
n×d.

Theorem 1.2. Assume that Ω1, Ω2, and Γ satisfy the conditions in Theorem 1.1,
Akl and F are piecewise Cα in Ω1 and Ω2, g∈C

α(Γ), and f∈L∞(Ω). Then there is a
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unique weak solution u∈H1(Ω) to (1.2), which is piecewise C1,α up to the boundary

in Ω1 and Ω2 and satisfies

2
∑

j=1

‖u‖C1,α(Ωj)
≤N‖g‖Cα(Γ)+N

2
∑

j=1

‖F‖Cα(Ωj)+N‖f‖L∞(Ω),

where N=N(d,n,κ,α,Ω,Γ,[A]Cα(Ωj))>0 is a constant.

We also consider the transmission problem with multiple disjoint sub-domains
Ω1,··· ,ΩM with C1,α interfacial boundaries in the setting of [5,6]. As in these papers,
we assume that any point x∈Ω belongs to the boundaries of at most two of the Ω′

js,
so that if the boundaries of two Ωj touch, then they touch on a whole component
of such a boundary. Without loss of generality assume that Ωj⊂⊂Ω, j=1,··· ,M−1
and ∂Ω⊂∂ΩM . The transmission problem in this case is then given by















Lu=divF+f in
⋃M

j=1Ωj ,

u=0 on ∂Ω,

u|+∂Ωj
=u|−∂Ωj

, AklDluνk|
+
∂Ωj

−AklDluνk|
−
∂Ωj

=gj, j=1,··· ,M−1.

(1.3)

In the following theorem, we obtain an estimate which is independent of the distance
of interfacial boundaries, but may depend on the number of sub-domains M .

Theorem 1.3. Assume that Ωj satisfy the conditions above, A
kl and F are piecewise

Cα′

for some α′∈(0,α/(1+α)], gj∈Cα′

(∂Ωj), j=1,··· ,M−1, and f ∈L∞(Ω). Then
there is a unique weak solution u∈H1(Ω) to (1.3), which is piecewise C1,α′

up to the

boundary in Ωj , j=1,··· ,M, and satisfies

M
∑

j=1

‖u‖C1,α′(Ωj)
≤N

M−1
∑

j=1

‖g‖Cα′(∂Ωj)
+N

M
∑

j=1

‖F‖Cα′(Ωj)
+N‖f‖L∞(Ω),

where N=N(d,n,M,κ,α,α′,Ωj,[A]Cα′ (Ωj)
)>0 is a constant.

It is worth noting that in the special case when Aαβ and F are Hölder continuous
in the whole domain, by the linearity the result of Theorem 1.3 still holds with α′=α.

Our last result concerns the case when the interfaces are C1,Dini, and Akl satisfy
the piecewise Dini mean oscillation in Ω, i.e., the function

ωA(r) := sup
x0∈Ω

inf
Ā∈A

(

 

Ωr(x0)

|A(x)−Ā|dx
)

satisfies the Dini condition, where Ωr(x0)=Br(x0)∩Ω and A is the set of piecewise
constant functions in Ωj , j=1,··· ,M .
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Theorem 1.4. Assume that Ωj satisfy the C1,Dini condition, Akl and F are of piece-

wise Dini mean oscillation in Ω, gj is Dini continuous on ∂Ωj , j=1,··· ,M−1, and
f ∈L∞(Ω). Then there is a unique weak solution u∈H1(Ω) to (1.3), which is piece-

wise C1 up to the boundary in Ωj , j=1,··· ,M .

We note that the piecewise Dini mean oscillation condition is weaker than the
usual piecewise Dini continuity condition in the L∞ sense.

2 Proofs

The idea of the proof is to reduce the transmission problem to an elliptic equa-
tion (system) with piecewise Hölder (or Dini) non-homogeneous terms, by solving a
conormal boundary value problem. These equations arose from composite material
and have been extensively studied in the literature. See, for instance, [5,6], and also
recent papers [2,4]. We will apply the results in the latter two papers, the proofs of
which in turn are based on Campanato’s approach.

Proof of Theorem 1.2. Let w∈H1(Ω) be the weak solution to the conormal boundary
value problem



















∆w=c in Ω1,

wν=g on ∂Ω1,
ˆ

Ω1

wdx=0,

(2.1)

where c=−|Γ|−1
´

Γ
g is a constant. The existence and uniqueness of such solution w

follows from the trace theorem and the Lax–Milgram theorem, and

‖w‖H1(Ω1)≤N‖g‖L2(Γ), (2.2)

where N =N(d,Ω1). Since g ∈ Cα(Ω1), by the classical elliptic theory (see, for
instance, [7, Theorem 5.1]), we have

‖w‖C1,α(Ω1)≤N‖g‖Cα(Γ), (2.3)

where N =N(d,α,Ω1). By using the weak formulation of solutions, from (2.1) it is
easily seen that (1.2) is equivalent to

{

Lu=divF̃+f̃ in Ω,

u=0 on ∂Ω,
(2.4)
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where
F̃ =1Ω1∪Ω2

F−1Ω1
∇w, f̃=f+1Ω1

c.

By the Lax–Milgram theorem, there is a unique solution u∈H1(Ω) to (2.4) and

‖u‖H1(Ω)≤N‖F‖L2(Ω)+‖∇w‖L2(Ω1)+‖f‖L2(Ω)+‖c‖L2(Ω1),

≤N‖F‖L2(Ω)+‖g‖L2(Γ)+‖f‖L2(Ω), (2.5)

where we used (2.2) in the second inequality. Since F̃ and Aαβ are piecewise Cα, it
follows from [2, Corollary 2 and Remark 3(ii)], (2.3), and (2.5) that

2
∑

j=1

‖u‖C1,α(Ωj)

≤N‖u‖L2(Ω)+N‖F−∇w‖Cα(Ω1)+N‖F‖Cα(Ω2)+‖f+1Ω1
c‖L∞(Ω)

≤N‖g‖Cα(Γ)+N
2
∑

j=1

‖F‖Cα(Ωj)+N‖f‖L∞(Ω).

The theorem is proved.

Proof of Theorem 1.3. The proof is similar to that of Theorem 1.2. In each Ωj ,
j=1,··· ,M−1, we find a weak solution to























∆wj=cj in Ωj ,

∂νwj |
+
∂Ωj

=gj on ∂Ωj ,
ˆ

Ωj

wjdx=0,

(2.6)

where

cj=−|∂Ωj |
−1

ˆ

∂Ωj

gj

and wj satisfies
‖wj‖C1,α′(Ωj)

≤N‖gj‖Cα′(∂Ωj)
. (2.7)

By using the weak formulation of solutions, it is easily seen that (1.3) is equivalent
to

{

Lu=divF̃+f̃ in Ω,

u=0 on ∂Ω,
(2.8)

where

F̃ =1∪M
j=1

Ωj
F−

M−1
∑

j=1

1Ωj
∇wj, f̃=f+

M−1
∑

j=1

1Ωj
cj .
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As before, by the Lax–Milgram theorem, there is a unique solution u∈H1(Ω) to
(2.8). Since F̃ and Aαβ are piecewise Cα′

and ∂Ωj is piecewise C1,α, by using (2.7)
and appealing to [4, Corollary 1.2 and Remark 1.4], we conclude the proof of the
theorem.

Finally, we give

Proof of Theorem 1.4. We claim that under the conditions of the theorem, if wj is
the solution to (2.6), then Dwj satisfies the L2-Dini mean oscillation condition in
Ωj . Assuming this is true, then the conclusion of the theorem follows from the proof
of Theorem 1.3 and [4, Theorem 1.1]. We remark that the C1 continuity of wj was
proved in [7, Theorem 5.1] for more general quasilinear equations, but in general
Dwj may not be Dini continuous in the L∞ sense.

To prove the claim, we follow the argument in the proof of Theorem 1.7 of [3].
We only give the boundary estimate since the corresponding interior estimate is
simpler. By using the C1,Dini regularity of Ωj and locally flattening the boundary, it
then suffices to verify Lemma 2.1 below.

In the sequel, we denote x=(x′,xd), where x
′=(x1,x2,··· ,xd−1)∈R

d−1, and Γr(x):=
Br(x)∩{xd=0} for x∈R

d and r>0. We say that a function f satisfies the L2-Dini
mean oscillation in Ω if

ω̃f(r) := sup
x0∈Ω

(
 

Ωr(x0)

|f(x)−(f)Ωr(x0)|
2dx

)1/2

satisfies the Dini condition.

Lemma 2.1. Let u∈H1(B+
4 ) be a weak solution to

Dk(a
klDlu)=0 in B+

4

with the conormal boundary condition adlDlu=g(x′) on Γ4=B4∩{xd=0}, where akl=
akl(x) satisfy the uniform ellipticity condition and are of L2-Dini mean oscillation

in B+
4 , and g is a Dini continuous function on Γ4. Then Du is of L2-Dini mean

oscillation in B+
1 .

Proof. We set

gd(x)=gd(x′,xd) :=g(x′),

which satisfies Ddg
d=0. Therefore, the above problem is reduced to the standard

conormal boundary problem
{

Dk(a
klDlw)=Ddg

d in B+
4 ,

adlDlw=gd on Γ4.
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Similar to [3, Section 3], for x∈B+
3 and r∈(0,1), we define

φ(x,r) :=

(

 

Br(x)∩B
+

4

|Du−(Du)Br(x)∩B
+

4
|2

)
1

2

,

where

(Du)Br(x)∩B
+

4
=

 

Br(x)∩B
+

4

Du.

Fix a smooth domain D satisfying

B+
1/2⊂D⊂B+

1

and for x̄∈∂Rd
+, we set Dr(x̄)=rD+x̄. We decompose u=w+v, where w∈H1(Dr(x̄))

is a weak solution of the problem

{

Dk(ā
klDlw)=−Dk((a

kl−ākl)Dlu)+Dd(g
d−ḡd) in Dr(x̄),

āklDlwνk=−(akl−ākl)Dluνk+(gd−ḡd)νd on ∂Dr(x̄),

where ākl and ḡd are the average of akl and gd in Dr(x̄), respectively. By the H1-
estimate, we have

(
 

B+
r (x̄)

|Dw|2
)1/2

≤Nω̃A(2r)‖Du‖L∞(B+

2r(x̄))
+Nω̌g(2r). (2.9)

Here ω̌g is the modulus of continuity of g in the L∞ sense. Note that v := u−w
satisfies

Dk(ā
klDlv)=Ddḡ

d in B+
r (x̄),

ādlDlv= ḡd on Γr(x̄).

Then for any c∈R and k=1,2,··· ,d−1, ṽ :=Dkv−c satisfies

Dk(ā
klDlṽ)=0 in B+

r (x̄),

ādlDlṽ=0 on Γr(x̄).

By the standard elliptic estimates for equations with constant coefficients and zero
conormal boundary data, we have for any c∈R,

‖DDkv‖L∞(B+

r/2
(x̄))≤Nr−1

(
 

B+
r (x̄)

|Dkv−c|2
)1/2

, k=1,··· ,d−1.
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Then by using

Dddv=−
1

ādd

∑

(i,j)6=(d,d)

āijDijv,

we obtain

‖D2v‖L∞(B+

r/2
(x̄))≤N‖DDx′v‖L∞(B+

r/2
(x̄))≤Nr−1

(
 

B+
r (x̄)

|Dx′v−c|2
)1/2

,

where we used the notation Dx′v=(D1v,··· ,Dd−1v). Therefore, we have

‖D2v‖L∞(B+

r/2
(x̄))≤Nr−1

(
 

B+
r (x̄)

|Dv−q|2
)1/2

, ∀q∈R
d.

Let µ∈(0,1/2) be a small number. Since
(

 

B+
µr(x̄)

∣

∣

∣
Dv−(Dv)B+

µr(x̄)

∣

∣

∣

2
)1/2

≤2µr‖D2v‖L∞(B+
µr(x̄))

,

we see that there is a constant N0=N0(d,κ)>0 such that
(

 

B+
µr(x̄)

∣

∣

∣
Dv−(Dv)B+

µr(x̄)

∣

∣

∣

2
)1/2

≤N0µ

(
 

B+
r (x̄)

|Dv−q|2
)1/2

, ∀q∈R
d.

By using the decomposition u= v+w, we obtain from the above and the triangle
inequality that

(

 

B+
µr(x̄)

∣

∣

∣
Du−(Dv)B+

µr(x̄)

∣

∣

∣

2
)1/2

≤

(

 

B+
µr(x̄)

∣

∣

∣
Dv−(Dv)B+

µr(x̄)

∣

∣

∣

2
)1/2

+

(

 

B+
µr(x̄)

|Dw|2

)1/2

≤N0µ

(
 

B+
r (x̄)

|Du−q|2
)1/2

+Nµ−d/2

(
 

B+
r (x̄)

|Dw|2
)1/2

.

Setting q=(Du)B+
r (x̄) and using (2.9), we obtain

φ(x̄,µr)≤N0µφ(x̄,r)+Nµ−d/2
(

ω̃A(2r)‖Du‖L∞(B+

2r(x̄))
+ω̌g(2r)

)

. (2.10)

By using an iteration argument as in the proof of [3, Theorem 1.7], from (2.10) and
the corresponding interior estimate, it is easily seen that Du is of L2-Dini mean

oscillation in B+
1 with a modulus of continuity depending on d, κ, ‖Du‖L2(B

+

4
), ω̌g,

and ω̂A. The lemma is proved.
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