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1 Introduction

1.1 Overview

This paper is oriented around the initial-boundary value problem:

( pe—(PQ)2=Duas ze(0,1)
4~ (P +€4°)e =Euas re(0,1)
(p,q)(z,0)=(po.q0) (), z€(0,1)

Pla=op=alt), qle=01=p(t), t>0, when >0,

( Ple=01=a(t), t>0, when =0,

, >0,
, >0,

(1.1)

where v >1 and ¢ are constant parameters, and po(z), go(x), a(t), and S(t) are
given functions. Assuming appropriate conditions for po(x), qo(x), a(t) and 5(t), w

establish global stability of strong solutions to (1.1). Moreover, when a(t)=/(t)=0,
we show that solutions to (1.1) with e >0 converge to that with e=0, as ¢ —0, in
certain topology.

@

1.2 Background

The system of balance laws in problem (1.1) is derived from the following chemotaxis
model of Keller-Segel type with logarithmic sensitivity:

{ = Dug,— x(u(lne), )., (1.2)
Ct =ECyy —M’QZ)(U)C—O'C,
when ¢(u)=u". Here, the unknown functions u(z,t) and ¢(x,t) denote, respectively,
density of cellular population and concentration of chemical signal at position x at
time ¢t. The parameters: D >0 stands for diffusion coefficient of cellular density,
x # 0 coefficient of chemotactic sensitivity, ¢ >0 diffusion coefficient of chemical
signal, p1(u)#0 density-dependent production/degradation rate of chemical signal,
¥(u) >0 given function of cellular density, and o >0 denotes natural degradation
rate of chemical signal. The sign of y dictates whether the chemotaxis is attractive
(x>0) or repulsive (x<0), and |x| measures the strength of chemotactic response.
Moreover, the logarithmic sensitivity entails that the chemotactic response of cellular
population to chemical signal follows Weber-Fechner’s law (c.f. [1,2,4,14]), which
appeared in one of the original Keller-Segel models of chemotaxis (c.f. [15]).
Derivation of the system of balance laws in (1.1) from (1.2) can be realized by
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first performing the following change of variables and rescaling;:

Cx
p=u, gq=[In(e""c)],= -

Xl vV xe : X
t——t, x———x, q——SIgn(X){/74
D D 0\ T
after which (1.2) becomes
Pe=(Pq)e = Pea,
€ (1.3)

0~ (SiEn(un)v(p) ") =0

Then, taking y=—1, D=1 and <0 in (1.3), one obtains

{ Pt—(P9) e = Paa> (1.4)

a—(V(p)+eq®) s =€quq-

Note that the case of y <0 and pu <0 corresponds biologically to the chemotactic
process in which the chemotaxis is repulsive and the chemical signal is being pro-
duced. Moreover, since the specific values of y <0 and D >0 do not affect the
qualitative behavior of the solution, our choice of the parameter values is to simplify
the presentation.

1.3 Literature review

In an effort of studying the chemotactic movement of organisms, such as myxobacte-
ria, that deposit little- or non-diffusive chemical signals modifying succeed passages
in local environment, Othmer-Stevens [29] and Levine-Sleeman [16] proposed the

model:
{ = Dy, — x(u(lne),).,

c=—puc—oc,

(1.5)

which corresponds to (1.2) when e=0 and ¢ (u) =w. Among the first generation of
analytical studies of (1.5), we refer the reader to [5-7,18-20,37] for results concerning
global well-posedness and large-time behavior of large-data solutions in one space
dimension, and to [13,21,22] for nonlinear stability of one-dimensional traveling
wave solutions.

Recently, the appended version of (1.5) (by adding diffusion to the second equa-
tion):

{ Ut:DUmm_X(anc)l‘)iB? (1.6)

Ct =ECpp— pUC—OC,
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has been investigated in a series of works [8,19,23,24,28,30,33,36], where in addition
to global well-posedness, large-time behavior of large-data solutions and nonlinear
stability of traveling waves in one space dimension, the vanishing diffusivity limit
(as € —0) and boundary layer formation associated with one-dimensional solutions
are studied. There are also similar results in multi-dimensional spaces, and we refer
the reader to [9,10,31,32, 35| for details.

More recently, the authors of [38] studied another version of (1.2):

{ U= Ditge — x(u(In€)2 ),

(1.7)
Ct=ECyr—pu’c—oc,

where v>1 is a constant. Applying the same transformation and scaling as above

to (1.7), one obtains the system of balance laws in (1.1). In [38], it is shown that

the Cauchy problem of the transformed model possesses global (in time) large-data

solutions with ~-dependent regularity, and the chemically diffusive (¢>0) and non-

diffusive (¢=0) solutions are consistent in the limiting process as £ — 0.

One of the major contributions of the results reported for the 1D models (1.5),
(1.6) and (1.7) is the global stability of constant equilibrium solutions subject to
various initial and/or boundary conditions. The proofs are constructed by utilizing
LP-based energy methods. One of the key ingredients consists in the implementation
of entropy-entropy fluxes associated with the models, which is inspired by analytical
techniques in hyperbolic conservation/balance laws.

It is also worth mentioning that very recently the following model:

{ U =Ugz — X (u(InC)z ),

Ct=ECzp—uc™, m>0,

(1.8)
which is one of the original models proposed by Keller and Segel [15], is studied in [3].
Indeed, (1.6) is a special case of (1.8) when m=1. By considering the model (1.8)
on the half line, [0,00), and imposing zero-flux and Dirichlet boundary conditions
at the left end-point for v and w, respectively, and zero boundary condition at the
far field, the authors studied the existence and stability of spike-layer solutions to
the model. To the authors’ knowledge, this is the first rigorous mathematical study
dealing with the long-time asymptotic behavior of solutions to the model (1.8) when

m##1.
1.4 Motivation and goal

In this paper, we continue the analytical study of (1.7) by considering the model
on a finite interval and studying the initial-boundary value problem (1.1) for the
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transformed model. A search in the database shows that such a problem has not been
investigated in the literature. In real world, physical/biological processes always
occur in bounded regions with constraints from boundaries, where initial-boundary
value problems appear. Solutions to initial-boundary value problems usually exhibit
different behaviors and much richer phenomena comparing with the Cauchy problem.

Our first work targets the long-time dynamics of large-data solutions to (1.1)
when «a(t) and 5(t) are non-trivial functions. One of the motivations of our study
comes from the observation that boundary conditions oftentimes vary in time in
many in vivo environments such as tumor angiogenesis (c.f. [30]). Since model (1.7)
is deeply connected with (1.5) and (1.6) which have found applications in modeling
tumor angiogenesis (see e.g., [17]), the problem considered in this paper becomes
biologically relevant. Moreover, note that under dynamic boundary conditions, the
initial-boundary value problem (1.1) can be reformulated as

Dt —(Dq) 2 = Daa+F1,

G — V(D) +q%) 2 =EGra+Fa,
(9,9)(,0) = (po—(0),q0—B(0)) (),
Ple=01=0, le=01=0,

(1.9)

where p=p—a(t), §=q—f(t), and the feedback controls are given by F; =a(t)q,+
B(t)p.—/(t) and Fo=2e5(t)G+ (Y (p+a(t))—(p)).— ' (t). Hence, the perturbed
problem (1.9) can be viewed as a control problem of (1.1) subject to zero Dirichlet
boundary conditions with control actions F; and F,. As a typical question in
control problem, one would ask: For what kind of feedback controls F; and F;
does the closed-loop system (1.9) stabilize, i.e., its solution (p,q) tends to zero in an
appropriate topology, as t—o0o? We aim to give a definite answer to such a question
in this paper.

The second goal of this paper is to investigate the zero chemical diffusivity limit
of solutions to (1.1) when p and ¢ satisfy the homogeneous Dirichlet boundary
conditions. In all of the previous studies concerning initial-boundary value problems
for model (1.6), it has been shown that if p is supplemented with Dirichlet (including
time-dependent) boundary conditions, then the transformed variable g=“* develops
boundary layers at endpoints of the spatial interval as e =0, see [8,9,19,30]. The
inconsistency between chemically diffusive and non-diffusive solutions is caused by
the mismatch of boundary conditions for the models with >0 and =0, respectively.
Naturally, one would expect that the singular phenomenon also occurs to solutions
to (1.1), no matter what condition «(t) is prescribed with. Indeed, by adopting the
energy method in this paper and the idea of effective viscous flux in [30], one can
show that as long as the boundary datum of p is not identical to zero, boundary
layers develop at endpoints of the spatial interval. On the other hand, however, we
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discovered that this is not the case when p=0 at =0 and x=1. Roughly speaking,
since (p?),=7p" " 'ps, the zero boundary condition for p generates the same boundary
condition for (p7), when v>1. Hence, ¢;=0 at the endpoints when ¢=0. This is a
strong indication, based on previous studies in [19,36], that the chemically diffusive
solutions converge to the non-diffusive one as ¢ — 0. Such a phenomenon is new in
this specific research area, and we give it a rigorous demonstration in this paper.

1.5 Statement of results

Now we state the main results of this paper. The first two theorems demonstrate
that large-data solutions to (1.1) stabilize as t— o0o. The first theorem is concerned
with the case when €>0.

Theorem 1.1. Consider the initial-boundary value problem (1.1) when €>0. Sup-
pose that the initial data satisfy po>0, (po,qo) € H*((0,1)) and are compatible with
the boundary conditions. Assume that

e there eist constants a,@,f3, such that 0<a<a(t)<a and |B(t)| < B, for all
t>0,

o (a/(t),8(t)) € LY(0,00)NL3(0,00).

Then for any fized e >0 and v>1 there exists a unique global-in-time strong solution
(p,q), such that (p—a(t),q—B(t)) € L>(0,00;H*(0,1))NL?(0,00; H?(0,1)) and

i ([p(-8) ~a(®) [ + ()~ BE) ) =0.
When £ =0, we have the following:

Theorem 1.2. Consider the initial-boundary value problem (1.1) when e=0. Sup-
pose that the initial data satisfy po>0, (po,qo)€H((0,1)) and are compatible with the
boundary conditions. Assume that there exist constants o, @, such that 0<a<a(t)<a
for all t>0, and o/(t) € L*(0,00)NL*(0,00). Then for any fived v>2 there exists a
unique global-in-time strong solution (p,q), such that (p—a(t))e€ L>*(0,00; H(0,1))N
L?(0,00; H*(0,1)), (¢—q) € L>(0,00; H'(0,1))NL?*(0,00; H(0,1)) and

im ([lp(-.£) —a(8) [+ la-.8) ~ ) =0,
where q denotes the spatial average of qq.

We have several remarks regarding Theorem 1.1 and Theorem 1.2.
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Remark 1.1. The results recorded in Theorem 1.1 and Theorem 1.2 are the first
ones regarding the transformed model in (1.1) on a bound domain with time-
dependent boundary conditions. One of the crucial assumptions in current work
is that p(0,t) =p(1,t) and ¢(0,t) =¢q(1,t). From the physical point of view, it is
more desirable to study the case when the unknown functions are subject to un-
matched boundary values, i.e., p(0,t) =ag(t), p(1,t) =aa(t), q(0,t) = Bo(t), and
q(1,t) = p1(t), where ap(t) # ay1(t) and By(t) # f1(t). In this case, the underlying
arguments will be significantly different, and more involved than those presented
in this paper. The major obstruction lies in the fact that the original functions
need to be perturbed around linear functions with respect to the spatial variable,
i.e., ap(t)+(aq(t)—ap(t))x for p(x,t) and Bo(t)+(B1(t)—Fo(t))x for q(x,t), in order
to generate zero boundary values of the perturbed functions for subsequent energy
estimates. In particular, the entropy estimate, see Subsection 2.1, must be revised
to a great extent to accommodate the complex situation encountered in this more
“realistic” situation. The detailed analysis is beyond the scope of this paper, and
we leave the investigation in a future work.

Remark 1.2. The assumptions for «(t) and 5(t) in Theorem 1.1 and Theorem 1.2
imply that the boundary data converge to constants as time goes to infinity. By
utilizing the energy methods in this paper, we can show that when there are no
variations in the boundary data, i.e., constant Dirichlet boundary conditions, the
perturbations converge exponentially rapidly to zero as time goes to infinity. In this
case, quantities in the energy estimates involving derivatives of the boundary data
vanish, and exponential decay of the perturbations follow from Poincaré’s inequality.
We omit the technical details to simplify the presentation.

Remark 1.3. Another set of boundary conditions that has been frequently stud-
ied for the transformed systems of the chemotaxis models (1.5) and (1.6) is the
Neumann-Dirichlet boundary conditions, i.e., p;|s—01 =0, ¢|s—01=0. In this case,
the spatial integral of p is conserved. By adopting the energy methods in this paper,
one can show that (p,q) converges to (p,0), where p denotes the spatial average of
Do, exponentially rapidly as time goes to infinity. One of the key ingredients in the
proof is the fact that for any ¢ >0, there exists z; € (0,1), such that p(z},t)=p, due
to the conservation of the spatial integral of p. Such a fact enables one to imple-
ment Poincaré’s inequality, leading to the exponential decaying of the perturbations.
Moreover, by utilizing the energy framework in this paper and the idea of [38], we
can show that under the Neumann-Dirichlet boundary conditions, the chemically
diffusive solutions (i.e., £>0) converge to the non-diffusive one (i.e., e=0) in certain
topology as € — 0.

The third theorem is concerned with the consistency between the chemically dif-
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fusive and non-diffusive solutions under the homogeneous Dirichlet boundary con-
ditions, which has not been observed in previous studies for related models.

Theorem 1.3. Consider the initial-boundary value problem (1.1) with o(t)=0(t)=0.
Suppose that the initial data satisfy po >0, (po,qo) € H'((0,1)) and are compati-
ble with the boundary conditions. Then for any fived v>2 and € >0, there ex-
ists a unique global-in-time strong solution (p,q), such that for any 0 <T < oo,
(p,q) € L>(0,T; H(0,1))NL*(0,T; H*(0,1)) when >0, and pe L*(0,T;H*(0,1))N
L*(0,T;H?(0,1)) and g€ L>(0,T;H*(0,1))NL*(0,T;H*(0,1)) when e=0. Moreover,
let (p°,¢°) and (p°,q°) denote, respectively, the solution with e >0 and e=0, with the
same initial data. Then for any t >0 it holds that

(0" =p") O[I72+ 1l (@"=p") (D)7 S C(t)e,
where the constant C(t)>0 is independent of € and remains finite for any finite t>0.

The rest of the paper is devoted to proof of Theorems 1.1-1.3. We utilize entropy-
and L*-based energy methods. Similar to the proof constructed in [38], the point of
departure is to implement an entropy-entropy flux pair associated with the system
of balance laws in (1.1), which consists of the first order Taylor expansion of a
power function of the unknown function p around its boundary datum a. The
entropy estimate provides a uniform (with respect to t) bound of the L? norm of the
perturbation around boundary data. However, the first order dissipation associated
with p, generated from the entropy flux, may be degenerate (c.f. (2.14)). This is
caused by the lack of a strictly positive a priori lower bound of p, which can not be
achieved by the entropy estimate. To gain a non-degenerate dissipation mechanism
of p, we then perform a series of nonlinear energy estimates. The detailed estimates
differ case by case, depending on the value of y. The proof is carefully crafted by
examining some fine properties of power function. On the other hand, because of the
time-dependency of the boundary data, the proof constructed in this paper is more
involved than the one devised in [38] where the equilibrium solution is constant.
We put a considerable amount of effort to make the energy framework developed
in [38] fit into the complex situation encountered in this paper. Due to the structural
difference between the chemically diffusive (¢>0) and non-diffusive (¢=0) problems,
the proof of Theorem 1.1 is different from that of Theorem 1.2. Major difference
consists in the estimation of the first order spatial derivative of the solution. For
Theorem 1.1, the proof takes advantage of the positivity of chemical diffusivity, while
for Theorem 1.2 we extract a non-homogeneous wave type equation for ¢,, which
serves as the foundation for deriving the desired energy estimates of the solution.
Lastly, Theorem 1.3 is proved by utilizing the energy frameworks developed for
Theorems 1.1-1.2 and exploring the zero boundary condition.
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2 Proof of Theorem 1.1

This section is denoted to the proof of Theorem 1.1. First of all, using stan-
dard arguments (see e.g., [25-27,34]), one can show that under the assumptions
of Theorem 1.1 there exists a unique local solution to (1.1) with € >0, such that
(p,q) € L>=(0,T*; H(0,1))NL*(0,T*; H*(0,1)) for some T* € (0,00), and p(x,t) >0 for
any (x,t) €(0,1)x(0,7%). The technical details are omitted to simplify the presen-
tation. This section is largely devoted to deriving a priori estimates of the local
solution, which not only extend the local solution to a global one, but also play an
important role in investigating the global stability of the solution. The following
technical lemmas are frequently utilized in the subsequent analysis (c.f. [11,12,38]).

Lemma 2.1. Let a>—1 and AX>2. Then it holds that
(a+1)/\—1—)\a2%a2.
Lemma 2.2. Let a>—1 and N\>2. Then it holds that
(a+1)*—1=Xa>|a| .
Lemma 2.3. Let a>—1 and A\>1. Then it holds that
(a+1)*>1+)a.
Lemma 2.4. Let a>0 and 0<A<1. Then it holds that
la*—1]<|a—1].

Next, we establish the a priori estimates of the local solution utilizing entropy-
and L?-based energy methods.

Notation 2.1. Throughout the rest of the paper, unless otherwise specified, we
use C' to denote a positive generic constant which is independent of the unknown
functions and time. The value of the constant may vary line by line according to
the context.

2.1 Entropy estimate

We first derive a uniform estimate based on the entropy-entropy flux pair associated
with the initial-boundary value problem (1.1). For this purpose, let us define for
any non-negative functions f,g€ L7,

E(fag)zﬁfo =97 =g (f—g)]dz.

Since > 1, then it follows from Taylor’s theorem that E(f,g)>0.
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Lemma 2.5. Under the assumptions of Theorem 1.1, there exists a constant C' >0
which is independent of t and e, such that

Blpa)+la- 5O+ [ (P pa(r)|Fadr 2 / le@lhdr<c. @)

Proof. We divide the proof into three steps.

Step 1. By a direct calculation, we can show that
P —a’ =" Hp—a)li=1(P" " —a")p =y’ P (p—a)d/(1). (2-2)

For the first term on the right-hand side of (2.2), using the first equation in (1.1)
and noting that « is independent of x, we can show that

V(" =" ),
=y(p"" =) et (pa)a]
=y =" ) (patp) e =y (Y= DP  peg =y (y=1)p" 2 (p2)?. (2.3)
Substituting (2.3) into (2.2), we deduce that
P —a”—ya " (p—a)l,
=y[(0" ™ =" ) (Pg+pa) e —v(y=1)p" ' pag
—y(y=1)p" " (ps)* =y (p— ) (t). (24)
Dividing (2.4) by 7—1, then integrating the result with respect to x from 0 to 1 and
using the boundary condition for p, we deduce

d Lo
g Ea )+7/ P2 (pe)’da
0
a2

1 1
:_7/ P’ ppqda— / (p—a)d(t)d. (2.5)
0 v=1 Jo
On the other hand, we derive from the second equation of (1.1) that

(=)= (P )a=6(q—B)aat22(q—B)(q—B)a+26B(q—B)a—B'().  (2.6)
Taking L? inner product of (2.6) with ¢— 3 and using the boundary conditions yield
1d

2dt

:/Ol(q_g)(pmdx—/Ol(q—ﬁ)ﬁ’(t)dl“

z/olq(p”)xdfv—/Ol(q—ﬁ)ﬁ'(t)dl“
= [ 1t [ @m0 (2.7

—lla=BIlz-+ell(g—B)al 72
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Adding (2.7) to (2.5), we obtain

d

1 1
G (B3 la=81: )+ [ 27200 e el =)

:_% Oloﬂ2(p—oz)o/(t)d:c—/Ol(q—ﬁ)ﬁ’(t)dx. (2.8)

Step 2. In this step, we derive a bound for the L' norm of p in terms of F(p,a). The
idea is to make use of the convexity of the entropy expansion, E(p,«), and compare
it with a linear function of p. For this purpose, we set

1 1y ok
Fu(p)= ﬁ[PV—aV—VM_l(P—OZ)H (Ofv_l*%) —p.

By direct calculations, we can show that

for p>0, a>0. Moreover, since
p'—a?—ya" " (p—a) >0

for any p>0, >0, we have

1
Fa((a’71+7—_1) ”‘1) >0.
Y

These imply that F,(p) >0 for any p>0,a>0. Hence, it holds that

1
0<p<——[p"—a" =" (p—a)|+ (Oﬂ*“r

7—1)rh
v—1

fY

and therefore,

0</1p(x,t)dx§E(p,a)+<oﬂ1+7—_1>M. (2.9)
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Step 3. Utilizing (2.9), we derive from (2.7) that

d 1 !
G (P51 1 [ 2200 de el

[ e a)al(de— / (=B)F (D)da

v—=1Jo
f)/ —2 / ! / !
<02 (0] [ Ip-alde+1500)] [ la—plds
0 0

i 2o v -2\ 1 . -1 7%
SﬁOﬂ 2|a (t)‘E(p,og)+7_1a“/ 2|a (t)\(oﬂ 1_'_7)
+%Oﬂ—l|a/(t)|+|ﬁ2(t ‘ ‘6( )| || /BHLQ (210)

Using the assumptions in Theorem 1.1 and applymg Gronwall’s inequality to (2.10),
we have

1
E(p,c)+3lla—BIIz»

)
gexp{/ot(yll—v—ﬂa( 418 )ar |
X[/;(%mﬂo/@ﬂ(oﬂ 1,77 1) 71 +%

-1
1
+ B(po,t0)+5 a0 — Boll:]

a’y—l|a/(7_)|+ ‘5/<T)‘>d7'

ol 2

<C, V>0, Ve >0. (2.11)
Substituting (2.11) into (2.10), then integrating the result with respect to ¢, we have
/ / =2, dxd7+e/ (g=B)alPadr<C,  ¥t>0,  Ves0. (212)
Combining (2.11) and (2.12) completes the proof of Lemma 2.5. O

Next, we derive the key estimate in this paper.

2.2 [? estimate

Letting p=p—a, ¢= —B the IBVP (1.1) is reformulated as
)a— Gy~ BPr =Pz — (1), z€(0,1), t>0,
@~ (p+a )Z qm+25qql«+256qm p(t), x€(0,1), >0,
)(2,0)=(po—(0),q0—£(0))(x), z€(0,1),
Pla=01=0, le=01=0, t>0.

(2.13)
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In terms of the perturbed functions, (2.1) is rewritten as

~ 1 R t 1 R o t .
B(po)+lalt+y [ [ Gray 2. rdedrre [alidr<c. @1
0 Jo 0

where

E(ﬁ,a) =E(p+a,a)= %/0 [(p+a)’—a”—ya " plda. (2.15)

Note that when v>2, letting azg in Lemma 2.1, we obtain

() —a"=1a"p= a0 = a0, (2.16)
which implies
~ '7/ _ B
Blp.0)> 5 s il (217)
Moreover, letting azg in Lemma 2.2, one has
E(5 1 1 517 Losim
B(po)> — | laPde=—151}. (218)
In light of (2.14), (2.17) and (2.18), we see that
. _ 2(yv=1)C
1Bz < (v=1)C, Hp(t)”%2§W7 v>2. (2.19)

The estimates in (2.19) are frequently utilized in the subsequent proof. Note that
the first L?L? estimate in (2.1) may be degenerate since we do not have a strictly
positive lower bound of p. Next, we derive a non-degenerate estimate of ||p|| ;212

Lemma 2.6. Under the conditions of Theorem 1.1 for any v>1, €>0, and t>0,
there exists a positive constant C', which is independent of t and € such that

t
[tz <c. e,
o (220
[ ([ sl )ar<c, a4
0 0

We divide the proof of Lemma 2.6 into four sub-cases, namely, 1<y<2, 2<~<3,
3<vy<4, and >4, since the technical details differ case by case.
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2.2.1 Proof of Lemma 2.6 when 1<y<2

Step 1. Multiplying the first equation of (2.13) by (p+a«a)”—a” and the second
equation by agq, after integrating by parts, we obtain

d 1 P Q. b 1 -
(5 [ Boader S1alR) +1 [ oy () e <allgl
0

dt \v+1 Jy
. P | ' ' ( )
[ oy =) [ pda—ap) [ a3, (221)
0 0
where
E(p,0) = () —a™ —(y+1)a"p.
Since 1<y <2, by choosing a—g in Lemma 2.1, we can show that
~ 1
B(p.a) =10 15, (2:22)
which implies
1 1 -t
— | E D72 2.23
1 [ B ol (2.25)

Step 2. Multiplying the first equation of (2.13) by —2a772p?, then integrating by
parts, we can show that

d v 1 1
E(‘gav_Q/ ﬁ3d$> —70ﬂ_2/ P(pe)?da
0 0
1 1
:’70472/ ﬁQ(jﬁmdﬂﬁL’Wﬂ’l/ pgp.dz
0 0
1 i 1
—i—%oﬂQo/(t)/ ﬁzdx—%ofﬂsa’(t)/ prd. (2.24)
0

0

Multiplying the first equation of (2.13) by a7~ 353, then integrating by parts, we

can show that
d 1 1
(5o / pdz)+ya7~? / (P)?da
0 0
1 1
:_70573/ ﬁsqﬁxdx_’yaVQ/ ]52(jﬁ$dl‘
0 0

3 1
—%oﬂ’%/( )/ 3dx+%oﬂ4a’(t)/ pdr. (2.25)
0 0
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Combining (4.2), (2.24) and (2.25), we have

d
&G(t)+H(t):K(t), (2.26)
where
G(t):i/lﬁ(ﬁ Oz)dchrch]H2 —lay_2/1ﬁ3dx+lay_3/lﬁ4dx
v+1Jo ’ 26 0 12 0 ’

1

1 1
H() = [ (o) (o deteal Gl 1072 [ 5. e+ [ (.2,
0 0 0

1 1 1
K(t)=— / ()" — " |fgpedz—ya? / B ipadz—ya™a/(t) / pda
0 0 0

1 /t 1 2 1
—af ) / ddo+ D a1z, 4 L0 (1) / Pde— L a3l (t) / P
0 2 2 0 6 0
-3 1
—i—LfV )0[740/(15)/ plde.
12 ;

Step 3. We have the following observations regarding G(t), H(t) and K(t). First,
by virtue of (2.23), we can show that

y—1 1 1 1
G(t)za / ﬁde—zoﬂ_Q/ ;53dx+loﬂ_3/ ﬁ4dx+g||c]||%z
2 Jo 6 0 0 2

12
(B=7) 1~ Y oAv3he. ~ =~ Yooaa~ .
=g+ ar 20— e+ ke Bl Sl (2.27)

For H(t), by a direct calculation, we can show that

1
- _ 11/~ Yo o1~ Yo oA - e
1= [ 5+a) " =3 e+ Jar fulRa+ a7 lap. il
0

Y 3y )
+5 07 1Bpellzz el dal 72 (2.28)

Using Lemma 2.4 and the Cauchy-Schwarz inequality, we can show that

1
(p+a) ™ =" > a7 |p| > —a"H(p)* — a7 (2.29)

Using (2.29), we update (2.28) as

Toy—1y~ Vo - A Frpe ~
H ()2 L0 5lE+ 207 ap,— i lRe— o0 S5 e +eal @l (2:30)
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Since 0 < a<a <@, using the Cauchy-Schwarz inequality, we can show that

1 1
K(t)S—V/ [(ﬁ+04)7I—QVI]ﬁdﬁxdx—Voﬂ?’/ P qp.de
0 0

Y _ a 8 o), -
+o@ 1IO/(t)I(IIPII%z+1)+§IB'(t)I(IIQIIiQHH 5 141172
8 2 2 72 3 4 2
+5a7" IO/(t)IIIPIILﬁEQV_ &' ()|l 74+ 15]]72)
Y(3—7) . _
+ T 0 (1)l (2.31)

In view of (2.27), we see that there exists a generic constant C'>0, such that

1 1
K(t)<—v / (5+0) ™ — a7 |gpada—rya™? / P ipada
0 0

+C (|’ OB (ODE @) +C (o' (1) +]5'(1)]). (2.32)

Step 4. We note that the third term on the right-hand side of (2.30) is non-positive.
To compensate such a term, we add (2.25) to (2.26) to get

d
SX(+Y(?)

1 1
<=7 / [(p+a) ™ = ]pgp.dr—27a> ™ / Pqp.de
0 0

e / Pipeda+C(|a' (O] +F (ONX () +C( (B +F W), (233)

where we used (2.32) and arguments similar to those in (2.31), and

1
X(t):G(t)Jrloﬂ_?’/ pidz,
12 0
Y (t)=H(t)+7a"*||ppall7--
According to (2.30), we have
Yt>1“’*1~2 Vo8l s == 12 y=3as 12 ~ 12 934
()2 Lo ot Lo lape— il 0 el eal @il (2:34)
For the first term on the right-hand side of (2.33), due to Lemma 2.4, it holds that

|(p+a) ™ =" <a”?p], (2.35)
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by using which we update (2.33) as

d B 1 o B 1 B B
GXO+Y @ <2007 [ pPlallpalde 2907 [ |5lallde
0 0 |

-~ -~

=1 =J2

+O(Jo/(0)]+[8 DX @) +C (| )+ (). (2.36)

For the first two terms on the right-hand side of (2.36), by using the same method [38,
Lemma 5.1], we can show that

1
~ - 9~ T oA~ PV ST
RO ([ 0y 2o dn) + e pulat T e, (237
0

and

1
~ ~ 9/~ Y 1~ Y o3 an
RO [ 0y (G de) + e M plt T e (239
0

Using (2.38) and (2.37), we update (2.36) as

E X0+ (0 <C (1) +180)] ++C / (5+a) (52 ) X (1)

dt 2
+C (o’ @)+ 6/ (2.39)

Applying Gronwall’s inequality to (2.39) and using (2.12) and the assumptions in
Theorem 1.1, we can show that

X(t)+/tY(7‘)dT <C.

According to (2.27), the definition of X (), and (2.34), we conclude that

t
HﬁH%z+|!25H‘i4+|!d|!i2+/0 (152122 +17Po 172+l G172 ) dr < C.

This completes the proof of Lemma 2.6 when 1<~y <2. U

2.2.2 Proof of Lemma 2.6 when 2<~v<3
Step 1. Using (2.14), (2.15), and the assumptions for a, we update (2.10) as

d/~ _ I t _ o - N
G (BGa 3 lal) 7 [ [5+ar = (@) de w1072 3+l
0

<C(l/(B)]+15'@®)])- (2.40)
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Since 2 <+ <3, choosing a=(p+«)/a in Lemma 2.3 and using Young’s inequality,
we deduce that

~2

a7 Apr a2

((p+a) = <Pl < =+
which implies
v—4 2 y—2 Y—4 2 y—2
~ =2 __ 772>_a p _a >_Q p _Q 241

where the lower bound of « is used. Using (2.41), we update (2.40) as

d 1, . 0% _ -
= (EG.0)+5 1152 ) + 32721l — 307155 |52 +2 2.1

<C(l/(O)]+]8 @) (2.42)

Step 2. To control the term —Za?* fol (ppx)?dz on the left-hand side of (2.42), we
multiply the first equation of (2.13) by 45, then integrate by parts to derive

1

d, . . L . .
G20t =12 [ P [P @y
0 0

For the first term on the right-hand side of (2.43), we use Holder’s inequality to
derive

1
12 / P+ 0)ide|
0
1
SlQ(/ (p-'-Oé "/ 2 pm 2d.’13‘ (/ p+Oé 4f’yﬁ4q2dx)2
0
pa:

)
:12(/01(p+0z =2 2d1‘> (/ P +ap?)t P de)
)

1
S”(/ (5+0) 2522 ) 5+ 0. 151720l
0

1

<o( [ Gray=2oar) (11 +HIF1E ) Il (244

where we applied the uniform estimate of ||g||z2 recorded in (2.14). For the first L
estimate on the right-hand side of (2.44), since p|,—o=0, using Hélder’s inequality,
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we deduce

|ﬁ3<x,t>|=]3 / Phade| <3 / 72/7s] e

1 1
<s( [ opa) ([ - mra)’
0

<o( [ maran)’

where we applied (2.19) when deriving the last inequality. Hence, we have

iy ! .
71 <0 ([ Gt (2.45)
Moreover, since p|,—o=0, we can show that
P =2 [ a2l <Clplo
where we used (2.19) for the estimate of ||p|| 2. Hence, it holds that
I3l <l (2.46)

Using (2.45) and (2.46), we update (2.44) as
1
12 [ . ra)ds
0
! 3 ! e 4y 12
<o( [ rar2@rde) ([ @oras) T Il 180T @)
0 0
When 2 <~ <3, applying Young’s inequality, we can show that
! ~1 4=y~ \2 ZITTV - B2 e
([ 9@z 1l el
1 4—y
~ — ~ T4 ~ :LQ ~
([ 15 Gran) BT
0 . %
= ([ 1) e, when y=2
0

1 1
S(/ |ﬁ\477(ﬁm)2dx)2+2|]]§ZHL2, when € (2,3],
0
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by using which we update (2.47) as
1
12 [ (o)
3 ! !
<c( [ Grar2@ae) [ [ @) 205l e|
0 0

Using Young’s inequality and noticing that v € [2,3], we can show that

\]5|477 =p°, when ~y=2,
<p*+1, when ~ve(2,3].

Hence, we update (2.48) as
1
|12 / P+ a)ida|
0

1
2

<o( [ Grar=2.2ae) 1l e+ 302

<lonlte+0 [ rarppanro( [ Grap e ol

Substituting (2.48) into (2.43), we obtain
ot 11157
<¢ [(rar=rparsc( [ orar=e.ta) Ins
) [l

(2.48)

(2.49)

(2.50)

Next, we make a coupling of (2.42) and (2.50) to gain a non-degenerate dissipation

mechanism associated with p,.

Step 3. Let M, =22 - Multiplying (2.50) by M;, then taking the sum of the

1
result with (2.42), we obtain

d vy -
< (BGh.o) a3+ M5 ) + 207l 3o+ a7 U o+ el

9=
1

<Ol @ +FOD+C [ o) 5o da+0( [ oy ar) 5l

0

1
+C|o/(t)|/ 1pda.
0

(2.51)
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Using Young’s inequality, we estimate the last two terms on the right-hand side of
(2.51) as

1

1 1
o ([ Grar2m.rn) Il <0 ([ +ay 2 @)rds)+ Ja e,
0 0 4

1
. C|O/(t)|/0 [pPPda <Cla’ 1Pl +151Z2) <Cla (OBl s +Clo (2],

where we applied (2.19) for the uniform estimate of ||p||z2. Then we update (2.51)
as

d/~ _ 1, . 5 Yoo~ Yo d ~n -
= (B0)+ 513+ MallBlEe )+ 5725 207 55l 2+l
1
§C|o/(t)|||ﬁ||i4+0(lo/(t)l+I6’(t)l)+0/ (p+a) % (p.) da. (2.52)
0

Applying Gronwall’s inequality and using the assumptions in Theorems 1.1 and
(2.14), we can show that

~ 1, . _
E(p,a)+§||61||%z+M1||p||i4SC- (2.53)

Applying the uniform estimate of ||p||;+ obtained above to (2.52), then integrating
the result with respect to ¢, we finally reach the desired estimate (2.20). This
competes the proof of Lemma 2.6 when 2 <~ <3. O
2.2.3 Proof of Lemma 2.6 when 3<vy<4

Step 1. Since 3<y<4, by choosing a:g in Lemma 2.3, we have
(pHa) 2 >a" 4+ (y=2)a" ). (2.54)

Note that in this case we still have (2.40), i.e.,

d/~ _ 1. L ~
(EG.)+5ldllE)+7 [ G+a) (5 do+e] 4|1
0

<C(l'@1+16'®)])- (2.55)

Inserting (2.54) into (2.55), we obtain

d/~ _ I - (M N
G (BGa) 3 llEe) #1072 lpalarr (-2 [ 55, do-veldn
0

<C(l/(B)]+15'®)])- (2.56)
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Note that since 0 <a<a<a and 3<~v<4, then

1
2 2a - (y—2)a7 / AR
0

2~ Vo2~ Y A~
2707 Bl 32 = 50 BT~ 5 (v = 2% 5 7
f)/
> 2Bl — 5 (=2 max{La™ | 7. (2.57)

Using (2.57), we update (2.56) as

d L Y oA PLy- - 8
= (B 0)+ 5l ) +3a7 217 15— S50 15+l 3

<C(l' @ +16'1)1), (2.58)
where p; =~v(vy—2)*max{1,07"*}. Next, we derive a similar estimate as (2.50).
Step 2. Similar to (2.43), we can show that

1

d . . v . .
G 12153 =-12 [ 75+ a)qds—aa'(e) [ Fda
0 0

<2 [ @) ([ e ptear) a0l )

—ia( [ orar=m.7) / a4 Cla't)

<tz [ Gray=2.an) |7+ | Il +Cla')

<o [ oy ar) [5+as'| 2 I+l 2:59)

where we used (2.53) for the estimates of ||¢||z2 and ||p||zs, and (2.46). For the L*>
norm of p°+ap* on the right-hand side of (2.59), we observe that

|9 (w,t) +ap’ (2,1)]

:‘5 Fp.dr+4a / ﬁ?’ﬁmdx‘
0 0

<5 [ 133 (+a)|puldata / %15 da
0

1 1 1 1
<s( [ Poraw) ([ Grapre) [ da o)
0 0 0
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which implies

T b N RN L
|7+ <515+ i ll2 (| 5+e)o o) v [ 5Plpuddo
0 0

83

1 . . 1 R R B 1 o
<5170l +C [ Gra)fdosa [ s, (200
0 0

where we used (2.19) for the estimate of ||p||z2. For the last term on the right-hand

side of (2.61), by using (2.46), we can show that
1
@ [ 15l < 2 <C (14 1)
Substituting (2.62) into (2.61), we have
1
|7+ <C [ (o) o)t C (1l + 175 2).
0
Substituting (2.63) into (2.59), we obtain
d, . .
1817 +121552 172

<o( [ wray=.a)

1
2

4

1 =7
([ ) st 53 7 1707+ Cla'0),

Using Young’s inequality, we can show that

4

1 -
([ Gra)mar-+ e lda) ™ 13"
1 4=y
<( [ Gradmar) ™ 1l e+ 15
1 1
<( [ Gra)mar) e+ 17
Using (2.65), we update (2.64) as

d, . .
Al + 120571

gc(/ol(ﬁJra)”(ﬁz)Qd‘U)% K/O

+O|d ().

1

1
(5+0) (7)) "+ 112+ |55 12

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)
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Noting that

1

1 1 1
([ o ran)” <(imlie+ @0l
<15l 2+ VAT [ 12
we update (2.66) as
d, . o
L+ 12001
1 1
<0( [ G+ ay=2(p.de) (15 lo+ |el12) +Cla’ ()
0
1 1 %
<l +C [ oy g e [ a2, ds) 5
0 0
Ol ()], (2.67)
which yields
d, . .
1+ 111550
1 1 1
<C [ ey . derC( [ Gray e rde) I+ Cla'o). (268)
0 0

Step 3. Let M,=£2;. Multiplying (2.68) by M,, then adding the result to (2.58),
we obtain

(B0 g 1l Malllts ) + Lol + 22 1 3o+l
<¢ [(@ray=rareo( 1(ﬁ+a)7‘2(ﬁ$)2dx) ol OO+ )
Tl [ Gy e O O] +70) (2:60
which implies
(Bt gl Mol ) + Lol 3o -2 3o+l
t ) 2 4=
<C [ (p+ay =2, Pe Ol 04150 (2:70)

Integrating (2.70) from 0 to ¢, using (2.14) and the assumptions in Theorem 1.1, we
obtain (2.20). This competes the proof of Lemma 2.6 when 3 <~y <4. O
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2.2.4 Proof of Lemma 2.6 when >4

Step 1. In this case, (2.56) is still valid. Since >4, using Young’s inequality, we
have

1
@l (-2 [ 5V
0

1
_ - _ o 2y=4, 2
a2 [ |2 = (7 —2)a7 / 1755 15,75 |l
0

2= [
>~a 25, |12 _Za%? 5. (|2, — al/ 517115, [2da
270" [P |2 — 5 " |B Iz (-1 i P [Pe

1
VoA—2)~ P2 y—1] ~
>La) 2||px||ia——/ 157 P *da,
9 2 /s

where
2y (y=2)""°

(y=1)p~!

P2=

Similar to (2.58), we have

d 1. . 7 _
= (Ba)+5ldlE) + 307215l - / [P |pe P -6

<C(lo' @) +15" (D)) (2.71)

Step 2. Multiplying the first equation of (2.13) by (y+1)|p|”~'p, then integrating
by parts with respect to = over (0,1), we obtain

d ! 1 ! 1 2
AL a4 (y41) / 77 (5,)da
dt(/o ) A
1
(4 D) / (F+0)dlF[Fudz— (7+ e / e, (272)
0

Since 7>4 and p+a >0, we estimate the first term on the right-hand side of (2.72)
as

1
[ )]
0

1 1
~ ~ 20 ~ ~ —
<( [ Grarlpbas) a1
0

! - PO S o fa- % - iy —
([ GraipdToin dx) ||q||Lz||p||zo£
0

1
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where we used the uniform estimate of ||¢[|z2 in (2.14). For the term involving the
L norm of p on the right-hand side of (2.73), we note that

)= [ ()5) do= -0 [l
0
) / 51315121l de
1 1 1 1
<(—1) / ) / 375, 2dz)
(] wraz)*( )

1 1
<o [ o ipapas)
0

where we used (2.19). This implies

1 1
o= <o [ 1) 2.71)
0

Substituting (2.74) into (2.73), we have
1
[ el pds]
0
1 %2 1 ~ ~ % ~ :L;l
<o ([ ey Pac) 7 ([ 150 par) I
0 0
1 %2 1
<o [ray=2ippar) ™ ([l Pa ) 1905
0 0

1 1 o
o Pl I) T IR @)
0 0

4

where § >0 is a constant to be determined, and we used the inequality: |p|7=* <
|7t +1 due to y>4, and Young’s inequality. For the second term on the right-hand
side of (2.72), using (2.19), we can show that

o0 ) [P <Gl G <Ol 7
Substituting (2.75) and (2.76) into (2.72), we obtain
d 1 1
- ~1v+1 S5 )2
(] ras) a6 [

1 1
<C [ oyl o | e 15l T Il
0 0

+Cl/ (1) (2.77)

4
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Using Young’s inequality, we can show that
1
~ A — ~ ~ 2 6
/ 7 e P+ 1l 2 ) 1l 2

v—4
N1 d ) ~ 2
< T2 ([ Pl ) +

< / 7 o+
0

Hence, we update (2.77) as

d 1 1
G rnas) a6 [
(] rae) s+ |
1 1
<C [ a2l Pdors( [ 150l de IR ) OO (279)
0 0

Step 3. Multiplying (2.77) by M3= then adding the result to (2.71), we have

_p2
y(y+1)?

d 1 1 v
E 1G22 + M ~7+1d) 1
dt( () +5 llqllz=+ 3/0 [p™dz )+

o3
P2 !
22 [0 puda-+el
0

1 1
<C [ oyl Pda M [ 150 o7
0 0
+C(a' (1) +8 (1)) (2.79)

Choosing

1
0="qp minfra™ %02},

we obtain from (2.79) that

d
dt

1 1
E(p,a)+=|ql2+Ms [ |p] de +1QH||1%||%2
2 4
0

1
22 [l P el
0
1
<C [ (+a) o+ C(a0)] +50)). (2:30)
0

Integrating (2.80) with respect to time, using (2.14) and the assumptions in Theorem
1.1, we obtain (2.20). This competes the proof of Lemma 2.6 when ~>4. O
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2.3 H! estimate
Now we improve the regularity of the solution.

Lemma 2.7. Under the assumptions in Theorem 1.1, there exists a constant C' >0,
which is independent on t, such that

152 (6) 172+ IICLU(t)IIiﬁ/O (IPae (D72 + |G () [[72) dT < C. (2.81)

Proof. Taking L? inner products of the first equation of (2.13) with —p,,, and the
second with —¢,,, respectively, then adding the results, we have

1d . . . -

1 1
__ / (G0 4Pl +-0s 4B )radz+a (8) / pandlr
0 0

S\ 4

=R, =T,

1 1 1

0 0 0

=Ry =Ry =Rs
1

(0 [ Gude. (2.82)
0
—_———

=Rg

Using the Cauchy-Schwarz, Sobolev and Poincaré inequalities, we can show that
Ry < i”ﬁmm”%2+4(Hq~H%°°”ﬁm”%2+Hﬁ”%‘x’”(LH%Q+OZ2”61H%2+BQHZZ:H%2)
< L Beal o AN 3o+ 4021 e 2 45 e
Ry < 5 el (),
Ry < 5 el t 8eal el 3 < 5 1+ 82013201 35
Ry < |32+ 828 |4 7
For Rj, by the Cauchy-Schwarz inequality, we have

2,72 1

€
Rs <~ ~:m:2 -
s < glawelia = |

(p+a)* 0 (p,) da. (2.83)
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When 1<~ <4, using Sobolev and Poincaré inequalities, we can show that

1
/ (54?0 (5, de
0
1
<[5+l / (5+a)2(5,) e
0
1
<C(Ipl~+a) [ o+ (p s
0
N ERIE o —20= 2
<O (I E1I51E+a) / () 2(5,)d
. 1
<l f+1) [ Gray (s
0
1 1
<11l / (5+a)2(7,)2da+C / (5+a)7(5,)*dz,
0 0

where we also used (2.19) and Young’s inequality. When ~ >4, by using (2.74), we
have

1
/ ()20 D (5,)de
0
- 2(v—1 ~
<|p+all?2 V|52

1
<o [ I e+ 5
0
1
<[ 7 et I+
0

where we used similar arguments as in (2.75). For R, it is straightforward to show
that

€~ 2
Re < 2 l1dellz2+ 18 (1) (2.84)
Substituting the estimates of R; (i=1,---,6) into (2.82), we have
1d,
2dt

1
gc(/o (ﬁ+a)7—2(ﬁm)2dx+||ﬁx”%2+||(Im||%2>(||ﬁx\|%2+||(’jm||%2)

- - 1, . £
prHi2+HqﬂcH%2)+§HpmH%?"i‘inMH%?

1
+o( /0 (5+0) (B0 e+ o3+ Gl 2+ 0/ (D +18' (D), 1<7<4, (2.85)
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and

1d
2dt
1
<[ 77 G e Il Nl ) (15 + 121
0

+C (a7 + Gl 72+ 1 B +18' @), >4 (2.86)

- N 1, . €.
(||px||%2+||Q$||%2)+§Hpara:”%2+§||qxx||%2

Applying Gronwall’s inequality to (2.85) and (2.86), and using the assumptions in
Theorem 1.1 and estimates established in Subsections 2.1 and 2.2, we see that the
estimate (2.81) holds. This completes the proof of Lemma 2.7. O

Now we show the asymptotic stability of the solution to complete the proof of
Theorem 1.1.

2.4 Global stabilization

In what follows, we prove that ||(p,q)(t)||3.€W*!(0,00), which implies ||(p,4)(¢)]|3.—
0 as t—o0. First, from (2.14) and (2.20), we see that

152 (|72 +11G (£)[72 € L1 (0, 00).
Then it follows from Poincaré inequality that
15(E) |7 +11a(t) 13 € L1(0,00). (2.87)
Next, testing the two equations in (2.13) by p and ¢, respectively, we have
d, . -
- (IBl72+l14ll72)

1 1
—||p e 22 2 —2 / Bipadz—2a/() / pda
0 0

1 1 1
+2a/ (jxﬁdx—l—Q”y/ (ﬁ+a)71ﬁmcjdx—25'(t)/ qdz, (2.88)
0 0 0

from which we deduce that

d, . ~

- UIBl72+l14ll72)
-~ ~l‘ L2 ~$ 12 D Lo q 12 ~$ 12 ! D L2
<2|pa 72 +2el|Gu |22+ 1Bl e (1G] 22 + 1B 172) + 1 (8) 2+ 112

+a(1Goll 72+ 1811 72) + 715+l 7= (1Pl + l1l172)
+|B' )1+ 11172 (2.89)
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Using previous energy estimates and Sobolev and Poincaré inequalities, we update

(2.89) as

(|!pHL2+H<JHL2) CI1DalIZ2+ 1 GallZ2+ 10/ O +18 () ). (2.90)

Integrating (2.90) in time and using (2.87) and the assumptions in Theorem 1.1, we
obtain

%(Ilﬁ(t)lliﬁlld(t)lliz) €L'(0,00). (2.91)

Combining (2.87) and (2.91), we obtain ||(p,q)(¢)||3. € W(0,00), which implies
1(5,q)(?)]|3. — 0 as t — oo. Decay of the first order spatial derivatives of the per-
turbation can be proved in a similar fashion. We omit the details for brevity. This
completes the proof of Theorem 1.1. O

3 Proof of Theorem 1.2

In this section, we study the global dynamics of large-data solutions to the chemically
non-diffusive problem. Letting p=p—a, =q¢—¢q, where ¢ denotes the spatial average
of qo, then we have a new initial-boundary value problem for (p,q):

ﬁ (q>m_a(h q_ﬁm:ﬁ:m:_()él(t),

Gi—[(p+a)].=0,

(9,9)(x,0) = (po—(0),q0— ) (), (3.1)
ﬁ|m=0,1:0-

Note that under the boundary conditions, it holds that

1
— [ G(z.)dz=0
dtoq(ﬂi,)w :

/OIQ(x,t)dx:/Old(x,O)dx:/Olqo(x)dx_/olquzo.

Hence, ¢ satisfies Poincaré inequality.

To prove Theorem 1.2, we first recall that the energy estimates in Lemma 2.5
and Lemma 2.6 are independent of . Moreover, it can be readily checked that the
arguments in Subsections 2.1-2.2 are valid (indeed simpler) if () is a constant.
Hence, by replacing §(t) by the constant ¢ and repeating the arguments in those
two sections, one can establish the following lemma.

which implies
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Lemma 3.1. Under the conditions of Theorem 1.2, for any v>2 and t >0, the
solution to (3.1) satisfies the following energy estimates:

t
15(0) 2+ 1)+ / 1a(P)|Padr <.
t
[lnliar<e, unen yel,
0

t 1
// ] (Pe)?dadT <C, when >4,
0 JO

where C' is a positive constant which is independent of t.

The rest of this section is largely devoted to the H'-estimate of (p,G). Note
that when deriving the H'-estimate in Subsection 2.3, we used the Cauchy-Schwarz
inequality by taking advantage of the positivity of €, see (2.83) and (2.84). Appar-
ently, such an approach does not work when € =0. Hence, we need to develop a
different method to deal with such a degeneracy. The major result of this section is
recorded in the following lemma.

Lemma 3.2. Under the conditions of Theorem 1.2, for any fized v>2 and t >0, it
holds that

P2 ()17 + IICL:(t)Hiﬁ/O (I1Bza (P12 + 162 (7)]172)dr < C, (3.2)

where C' 1s a positive constant which is independent of t.

To overcome the technical barrier brought about by the lack of chemical diffusion,
we take 0, to the second equation of (3.1), multiply the first equation by ya?~1
then take difference of the resulting equations to get

Cja:t :/yav_l [ﬁt - (ﬁQ)x - O“ja: - Cﬁaa: +O/(t)]

+y(y=1)(B+a) " (Ba)* +9(B+ ) =" s (3.3)
Multiplying (3.3) by ¢, and integrating by parts, we can show that
1d . -
5 g7 Gelze+a7 g |22
a4 /! 1 1 1
=" — | pgpdr—ya’! / Plizdz —ya™! / Padrdtya™ o/ (1) / Goda
dt /o 0 0 0

1 1
—ya ! / (5q) 2 Godz+y(y—1) / (P+a) *(ps)’G.dz
0 0

1
oy / (5+a)! — 0" praduda
0
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d 1 1 6
:E (’7&7_1/ ﬁCdeZL‘) —’Y(’Y— 1)0(7—20/(75)/ ﬁqxd;p+ZJk (34)
0 0

k=1

Next, we carry out energy estimates for J;—Js. The proof is divided into three
subsections for the cases: 2<y<3, 3<v<4, and y>4.

3.1 Estimates of J, when 2<~<3

Step 1. Note that when 2 <~y <3, it holds that
(p+a) = <272(|p " a7 ).

Again, when 2<~v <3, by Young’s inequality, we have |p|"~1 <|p|>+1. Then it holds
that

(b)) <22 (|pP +1+a77). (3.5)

Using (3.5), integration by parts, and the assumptions for a, we estimate .J; as

1 1
|| =ya" / Pluda] =777 / Poed]
0 0
| / (5+a) (52 de] < C(IpulZe+ 15112, (3.6)

where we also used the second equation of (3.1). For J,, using the Cauchy-Schwarz
inequality, we can show that

[Tl <A@l Dol 2 Ml Gall 2 < 011Gz (172 +C () 150172 (3.7)
where 0 >0 is a constant to be determined later. Similarly, it holds that
[T <@ o/ () 1Gall 1 <C (1 ()] + 10/ () 14:1172)- (3.8)

Using the Sobolev inequalities: [|p[|re= <||ps||z2 (due to zero boundary condition)
and |G|z <||q@z|| 2 (due to mean-free condition), and Lemma 3.1, we can show that

[ Jal <y (IBall 2z 1l o + 1Bl o ol 2) 1o 2
<001 GullZ2+C () 1Pall 121122 (3.9)
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Since 2 <~ <3, it holds that (p+a)’2<|p|""2+a7~2. Then we estimate J;5 as

1
[l =16-)] [ 40y (s
0
1 1
<c( / (51 (Pe)* |2+ / (52)?|d|dz
0 0
1 1 ~ i ~ ~
SC(/O BP0 (52)?Az) 2| | oo |1l 22+ Cllpo | oo 1l 221Gl 22— (3:10)
Since 2 <~ <3, then 0<2(y—2)<2. It follows from Young’s inequality that
BP0 < [p*+1. (3.11)

Since ply—0,1=0, then using Poincaré’s inequality, we can show that

1 1
0 0
which implies
For ||ps|| e, using Gagliardo-Nirenberg inequality and (3.12), we have
- O - R S
17z <C(WBall lfacl Fo +1Ball 22 ) SCIBl Fa Bl o (313)

Using (3.11) and (3.13), we update (3.14) as

S L L
| Js| <C(18Pll72 +112l172) 2 152l 22 Pl 221G | 2
2 2 4
<O Pa |72+ C(8) (I8P |72+ 1Dl 72) * 152152 122 7
<O P |72+ C(8) [(1552 |1 72 + 1P ll72) G 172+ (11 72]- (3.14)

Note that by Taylor’s theorem, (p+a)’ ' —a? ' =(y—1)w~2p, where w is between
p+a and a. Since p+a>0 and a>0, we must have 0 <w <|p|+«. Moreover, since
2<~v<3, it holds that w2 <(|p|+«)? 2. Hence, we have

|(p+a) " =" < (v=1)(|p]+) 2l < (v=1) (I] >+ %) |p]. (3.15)
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Using (3.15), we can estimate Jg as

1
sl =~ / (5+a) " =" |l ||
0

1
<y(y-1) / (572 4+3"2) |51 [oe ||
0
<= DI Wl Wl = D2 121
<CIFNT + 15202 el 2ol

where we used the interpolation inequality:

11
15l < V21|51 22 152132

and Lemma 3.1. Using Young’s inequality, we can show that

(A TA AT A
<61 PualF=+C(8) (1172 172 + 1152 | 221l 72),
where the two terms on the right-hand side can be estimated as
C@)IBa 1721172 < (C OBl +0) 1217
1Bl 2@l 72 < COPalI 721Gl 72+ 0] el 72
Hence, we update (3.16) as
| Tol < 61w |72 +20 | ga |72 +C () 1Pl 221G 2
Substituting the estimates (3.6)-(3.9), (3.14) and (3.17) into (3.4), we have
d . ~ 12
G (Glanlt—0 [ piude) +re0l

(y=D)ar 2 (t) / P+ 28] pl |72 +40]8.] 32
0

+C(0) (el z2 + Dol 72+ 10 (1)) 1 G2 172
+C(8) (1PDa 172+ 11172+ o/ ()]).-

95

(3.16)

(3.17)

(3.18)

Using Lemma 3.1, we estimate the first term on the right-hand side of (3.18) as

1
(7= 1)a72/(t) / P,
0

<y(y=1a 2|’ ()] (|18]172+ G2 ]I72)
<Cla/ ()] (14+1Gu|72)-
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So we update (3.18) as

d b _
G Glintt—rar [ pde)ea il

<20||Pallz2 + 4011 Gall72 +C (8) (15Dl 72+ 1Ball72 + e (1)) 1 GaI7-
C(0) (155172 + 1P| 22 + e/ (0)]), (3.19)

where we used the lower bound of a. Next, we turn to the estimate of p,.

Step 2. Taking L? inner product of the first equation of (3.1) with —p,,, we can
show that

1d
2dt

1 1 1 1
_ / (§0)frad—a / Gopadr—7 / Bupandaal(t) / Pandlr
0 0 0 0

1Poo 72 +2(1PoG+5Ge 172+ 0 (1Ge [ 72+ 1P | 72+ 10 (1))

— N1BallZ2 + 1 Pasl |72

IA

VAN
N — DN

Poc 122 420 | GallZ2 +C (1P| 22 1G22 + 1P | 22 + [0 (B)]), (3.20)

where we used similar arguments as those in deriving (3.9). After rearranging terms,
we have

1d

th”erL2+ HpmHm<2@2H(J:::HL2+C(HP$HL2H%l!m+|!pm|!m+\04( ). (3.21)

Let @1— 2= Taking the sum of (3.21) and (3.19)x©;, we obtain

d v 1, . o
dt( |!pmHL2+ Gell2e—©17var~ 1/ pqxdx)+§HpmH%2+a2qu|!i2

SQ@lé”pmm”L?+4@15Hq$HL2+C< ) (19D 122+ 12l + o (0)]) 1 4o 172
+C(0) (1Pl 2+ 1B2 172 + o/ (6) |+ (1)) (3.22)

Choosing 6 =min{(80;)!, @*(80;)7'}, we update (3.23) as

d O . PR
S (Gl Sl ~0ur0 [ pcie) + Ll S 1

sO(HﬁﬁmHLﬁpruiﬁla’(tﬂ)H@H%Q
+C (1B |72+ |Bal 72+ & (8) |+ (8) 7). (3.23)
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Note that the quantity inside the temporal derivative in (3.23) may not be positive.
In order to apply Gronwall’s inequality, we make coupling of (3.23) with the entropy
estimate (2.8).

Step 3. First, we observe that the quantity inside the temporal derivative in (3.23)
satisfies

@ R B 1
fl!qm!\%r@woﬂ 1/ Fode> 2L anzHLz—@w a0V 15| 7. (3.24)

Next, we recall the entropy estimate (2.8) which, for (3.1), reads

1

d 1 L years - i
G (BGayt3la) 47 [ ray 2@ =—ra @) [ pn, 329
0 0
where E(p,) is defined in (2.15). Note that according to (2.17), it holds that

E(j,a) > oI 7. (3.26)

g
2(y=1)
Multiplying (3.25) by O,, then adding the result to (3.23),

2(v—1)

Let ©,=40-16i™77
O[‘/
we obtain

d
—G H,(t
T 1(t)+Hy(2)
<C(||ppallze+ B2 ll72+ e/ ()| Gz |72
1
+C(||13;5x||iz+IIﬁxlliﬁla’(t)l+|O/(t)l2)—@woﬂ20/(75)/ pd, (3.27)
0

where

1
_ = Oy, .
e L e 8

1
Hy(t)= ||pm||L2+ ||qx||L2+@27/ (p+0)~*(px)*da.

Note that according to (3.24), (3.26) and the definition of @2, it holds that

Gi(t) = ||pac||Lz+ (|3 172+ 0170 ||p||L2+ 114117 (3.28)

Hence, we update (3.27) as

RYERT t)+Hy (1) <C(|ppalliz +[1Pa I 22 + o/ (1)) Gr (1)

dt
+C (1P |72+ 1Pall 72 + 1o/ ()] + |0/ (1) 7). (3.29)



98 Z. F. Feng, J. Xu, L. Xue and K. Zhao / Ann. Appl. Math., 37 (2021), pp. 61-110

where we applied the Cauchy-Schwarz and Poincaré’s inequalities to the last term
on the right-hand side. Applying Gronwall’s inequality to (3.29) and using Lemma
3.1 and the assumptions for o, we can show that

¢
t +/ Hy(m)dr <C, (3.30)
0

where the constant C'>0 is independent of ¢. By (3.28) and definition of H,(t),
(3.30) yields (3.2). This completes the proof of Lemma 3.2 when 2 <~ <3. O

3.2 Estimates of J, when 3<~<4
Step 1. Similar to (3.6), we can show that

/ ()5

[ i|=y%a!
1
<ot 2| [ ()
<C(IIpl7= +1) 1772 (3.31)
For the L* norm on the right-hand side of (3.31), using p|,—o=0, we can show that
AT @)= w0 = [ 165,
0
—~-1) [ 1o gy
o %
([P0 e
1 1
SC(/ PO (G, ) (3.32)
0

where we used Lemma 3.1 when deriving the last inequality. Since x € (0,1) is
arbitrary, the estimate (3.32) implies

1572 <c / 152073 (5 2d:c) . (3.33)
Note that since 3 <~y <4, it follows from Young’s inequality that

[P0~ <[p*+1, (3.34)
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by which we update (3.33) as

1
15C DN < C (1pallz2+ [17:ll72) . (3.35)
Using (3.35) and the Cauchy-Schwarz inequality, we update (3.31) as
|| S C (18Pl 22+ 152l 72 ) 12l 72 +C ||l 72 (3.36)

The estimates of Jy, J3 and J,; are identical to (3.7), (3.8) and (3.9), respectively.
Next, we re-estimate J5 and Jg.

Step 2. For J;, since 3<~ <4, the function 2772 is convex on [0,00). This implies
(P+a)T2 <2773 (|p 2 +a772).
Then we can show that
1
=16 [ 4y, s
0
1 1
<o [ 2o e+ [ G adar). (3.37)
0 0
For the first term on the right-hand side of (3.37), using (3.34), we can show that
1
¢ [ 153l
0
1
SCHﬁHLwHMHLw/O 152 |pal| G| de

1 1
<Clpll~lpall= (| 1570215 de) a1
0
1 ~
<Clp e Nl (150 3+ el 132) * i 2 (3.39)

Since ply—o=0, we have
11
15]| Lo < V201 2211523,

which together with Lemma 3.1 and the estimate (3.13), implies

1
12l oo [|Pel | oo < Cllpall 2]l Pac | -
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Then we update (3.38) as
1
C [ 155l
0
1 . ~ 1
<ONBellzz|Boell 72 (18P 72+ 152l 72 ) 2 1ol 2
0, - I ~ 2.4
<G Brallze+CONDallZ: (1752 172+ 1521172) * 122122

0, - . . . -
<G Brallze+C(O) (1BPall72 +1Pell e+ 152172 11dell72), (3.39)

where we used Young’s inequality. For the second term on the right-hand side of
(3.37), we can show that

1
C/O (P2)*| ol <Clpe | o 1zl 21 Gall 2

SR AT
<2 ael o+ O el e
< peala + OOl Il 2) . (3.40)
Using (3.39) and (3.40), we update (3.37) as
| 5| < 0l1Paall 2 +C0) (1Pl 22+ 1P 172 + 152l 1o 172) - (3.41)
For Jg, similar to (3.16), we can show that
[ Ts] SOy =BT el 22 Gl 2+ (= 1)@ 2 [Bll oo 1P| 221Gl 2. (3.42)
For the first term on the right-hand side of (3.42), using (3.35), we can show that
YO = DIPIZ 1Foall 2 11Go | 2
<Ol + 172132) e 221112
<2 a3+ COO 155 3+ 1 22 1 (3.43)
For the second term on the right-hand side of (3.42), we can show that

V(=12 1pll o | Paell 221G [ 2
<Cl1pzl 2l Pac | 2] G || 2

0, . -
<5 [1BaallZ2 +C () 1Pl 72 13 122 (3.44)
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Using (3.43) and (3.44), we update (3.42) as

[Jo| <0llPaallzz+C (0) (I1PPalI 72+ 1Pall72) 1GalIZ-- (3.45)
Using the estimates for Ji, we can get an inequality that is similar to (3.19):

d b .
GGl [ dde) e i

<20|paallz2 +2011Ga 172+ C(0) (Do 122 + 1Pl 22+l (B)]) (11|72 + 1P 1 Z2)
+C(8) (1PDa 172+ 1= 1172+ o/ ()]).- (3.46)

By repeating the arguments in Step 2 and Step 3 in Subsection 3.1, we can establish
(3.2). This completes the proof of Lemma 3.2 when 3 <~ <4. O

3.3 Estimates of J; when >4

Similar to Subsection 3.2, we only need to estimate .J;, J5 and Jg. For Jp, it follows
from (3.31) that

1
alC( [ 1 e+ ) (3.47

Note that the right-hand side of (3.47) is uniformly integrable with respect to time,
thanks to Lemma 3.1. For J;, recalling (3.37), we have

1 1
<0 ([ 1@ e | . ld)
0 0
1 1
([ @ ialar [ Golalas) (3.48)
0 0

where we used Young’s inequality: [p|"=2 < |p|""'+1. For the first term on the
right-hand side of (3.48), we can show that

o [ 0= o ladar <Clploe [ 1570 0202) Nl

1
<Ol l17l% / A7 (52 ) Nl (3.49)
0

Recalling (2.74), we have

1

1 1 1
I <0 [ paar) <o [ Paes i) 650
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where we used Young’s inequality due to v>4. Using (3.50), we update (3.49) as
1
¢ [ 18 5.l
0
1 1 ! i [t 3
<CBal 32 sl / P B2+ 15 122) / 77 (5)2d) e
O 12 — 1~'\/—1~2 _ o )3 1~'y—1~2 5y d
e el 1 oA [ O A X e T 7 N O A R O R B TP
0 0
0 - _ _ L _
<l o+ Ol Nal2e) ([ 17 P+l (3.51)

where we used Young’s inequality at various places. The estimate of the second
term on the right-hand side of (3.48) is identical to (3.40). Hence, we obtain

1
o] 00l +C00) (134 121) ([ 15 Pk )
+C )]l 72- (3.52)
Lastly, similar to (3.42)—(3.44), using (3.50), we can show that

1
9l <817uale+ ([ 150 Pk 1) 2l
0

Following the arguments in Subsection 3.1 and using Lemma 3.1, we can establish
(3.2). This completes the proof of Lemma 3.2 when ~v>4. O

Lemma 3.1 and Lemma 3.2 provide the desired energy estimates for the solution
to (3.1), as stated in Theorem 1.2. Long-time behavior of the solution can be
established via the same method in Subsection 2.4 for the diffusive problem. We
omit the technical details to simplify the presentation. This completes the proof of
Theorem 1.2. 0

4 Proof of Theorem 1.3

In this section, we give a sketched proof of Theorem 1.3. Recall the IBVP:

( pt_(pq)x:pxl‘a xe(oal)a t>07
G— (P +eq?) e =G, x€(0,1), t>0,
(p,q)(2,0)=(po,q0)(x), x€(0,1), (4.1)

p‘x:(],l :0, Q|m:O,1:07 t>0, when 8>0,

( Ple=0,1=0, t>0, when £=0.
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4.1 Energy estimates

Step 1. For any €>0, testing the first equation of (4.1) with ﬁp”ﬁl and the second
equation with ¢, and adding the results, we can show that

d

I 1 !
Ydz—+ = llall2 ) =2(p )2d 2. =0
dt(w—l/o p dr QHQHB +’Y/O P (pe) dz+te| a7z =0,

which implies

1 t 1
[ rastlalt [ ([ pwrdseeali)drse, @)
0 0 0

where C'is independent on t and €. Multiplying the first equation of (4.1) by p, in-
tegrating by parts, and applying interpolation and the Cauchy-Schwarz inequalities,
we can show that

1d 2 2 '
7Pl el == [ paprae
< IpellZa+ 1
< 7llpelZa+2llpl e lpel el
<2 a2+ 4l gl
which, together with (4.2), implies

d
Pl +lpel7 <Clpla. (4.3)

Applying Gronwall’s inequality to (4.3), we infer that

Hp(t)Hinr/O Ipe(7)[I2d7 <C (), (4.4)

where C(t) is increasing with respect to ¢, but is independent of . Moreover, using
similar arguments in previous sections, we can show that

t
/prxH%szﬁC(t), when 2<~vy<4,
p (4.5)

t pl
/ / p" H(py)?dadr <C(t), when >4,
0 Jo
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where the constant C'(t) is increasing with respect to ¢, but is independent of .

Step 2. Note that since v>2 and p|,—o1=0, then it holds that (p”).|,—01=0. Also
note that when >0, since ¢|,—o1=0, it holds that ¢|,—o1=0. Hence, the second
equation of (4.1) implies ¢uu|z—01=0. For any >0, taking L? inner product of
the first equation of (4.1) with —p,,, differentiating the second one with respect to
x, then taking L? inner product of the resulting equation with ¢,, and using the
boundary conditions, we can show that

| ~

(IpallZ2 +lgallZ2) + IpssllZ2 +€llguall 2

DO | —
(oW

t
1 1
:_/ (pr+pqx)pa:a:dx_25/ qqua:a:dx
0 0

[ /N J/
~~ N

Ell EIQ

1 1
+7(y-1) / P2 (pe)*quda 4y / P pragede, (4.6)
0 0

-~ -~

513 =1y

where integration by parts is applied to obtain I, when ¢ >0. Using interpolation,
Sobolev, and Young inequalities and (4.2), we can show that

Ll < (llpallzellgll 2 + 1Pl 2o llge | £2) | Paal 2
1 3
<Clpallzellpasllf2+Cllpal 2 12| 22 [[Pac | 22

1
SngmHiﬁC(HmHifr 1Pl 214z 172) (4.7)
and

€ 3
|52 < S guellze +22 lall 22102 172 < 5 l1gue 172+ Cellga 172 (4.8)

Step 3. When 2 <~ <3, since p?0~2 <p?+1, we can show that

1 1
B1<2G=0( [ 7072 %0z Ipsl=la

1
2

1 1
<C(lIppalliz+1lpallzz) > 1po 72 llpecll: 1o 2

1
<z lpeallze+CL(lIppalze+Ipallze) lgelze +IpellZ2] (4.9)
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and by (4.4), we have
[ Lal <Pl sl 2l s 22

21 a1
<Clpllz Ipallz [1Paall2llgall 2
L_l
<CWOllpzll" lprell 2l gz 2

1 .
<z lpaallze+C @ P27 a7
1
<z lpaallze +C @) (Ipellze +1) g2 1z

Substituting (4.7)-(4.10) into (4.6), we can show that

d
<C(t) (lppallze+ Ipall72 +1) (Ilpall7e + 2 1172) + Cellgal z2.

105

(4.10)

(4.11)

Applying Gronwall’s inequality to (4.11) and using (4.2), (4.4) and (4.5), we can

show that

t
pell2e + llgs 2+ / (IpralZa+ell ool 2) dr < C(0),

where the constant C() is independent of ¢.
Step 4. When 3<v<4, we can show that

1
|3 <Cllpll o lpol = / 7 pollgs|de
0

1 1 1 i
<Olplslpalialpaalta( [ 720202200) al
0

<CO a2 Ipeall 2 (lopa s+ P l122) a2
e L (2 PR P ORI A
< S paell3a+C0) (lppels + el e+ Ol
and by (3.35), we have
L] <Clpl3= el 2 g
<O (IIppellZe + 1P 122) * paall 2l gz 1 22

1
<G lPae 22+ C(0) (Ippollze + 112 1Z2) gz 122

(4.12)

(4.13)

(4.14)



106 Z. F. Feng, J. Xu, L. Xue and K. Zhao / Ann. Appl. Math., 37 (2021), pp. 61-110

Substituting (4.7), (4.8), (4.13) and (4.14) into (4.6), we get (4.11), and then (4.12).
Step 5. When v>4, using Young’s inequality, we can show that

1
Bly-1) [ it Planlds
0
' 4 2 2 13
<=0 ([ 7402 de) Il oo
0

1 1 5
<c( / P ) e sl ) Il el o llaslle (4015)

Since p>0 and p|,—o=0, we can show that

p”zv/oxp“pydy<7(/lp ) (/ " 1dl“>
Sv(/olp“(pm)zdx);(/ de) C(/O P 1(pm)2dw)1,

where we used (4.2). This implies

1

ol 1 1
ol <0 [ o)

Substituting the above estimate into (4.15) and invoking interpolation inequality,
we deduce

1 3 1 1
— 4 = =
1 <C( [ 57 P ele) alllel ool
0
Lo PR ) AP
< lpeclet O [ 577 o) de a3 Y o U oo
0
1 b
<glmlter O [ 5o k) (el i) 010)
Lastly, using (3.50), we can show that

| Ll <Pl E 1poe 22 o 2

1 1
— 2
<c( [ v et nlie) Il ol
0

1 b
<Gl C (| 77 et ) ool (417
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Substituting (4.7), (4.8), (4.16) and (4.17) into (4.6), we get
d
7 (P llZe +llaelze) + 1prellze +2ll gl 2

1
<[ 7wl 1) (Il + o ) + Celaal
0

Applying Gronwall’s inequality and invoking (4.2), (4.4) and (4.5), we arrive at
(4.12).

It should be stressed that for all v>2, the constants in the energy estimates
(4.2), (4.4), (4.5) and (4.12) are independent of ¢ and remain finite for any finite
time. Therefore, the energy estimates stated in Theorem 1.3 are established.

4.2 Diffusion limit

Let (pf,¢°) and (p°,¢°) denote, respectively, the solution to (4.1) when £>0 and £=0,
with the same initial data, and let (P,Q)=(p*—p",¢°—¢°). Then (P,Q) satisfies

P~ (p°Q)r—(Pq)z = P, z€(0,1), t>0,
Q=) =(")"], =25, +2eq°¢;, €(0,1), >0,
(P,Q)(z,0)=(0,0), z€(0,1),
Ply=01=0, t>0.

Using the energy estimates established in Subsection 4.1, we can show that
PO+ QI <C(t)e, (4.18)

where C(t) >0 is independent of € and remains finite for any finite time. The
argument leading to (4.18) is in the same spirit of [38], and we omit the details to
simplify the presentation. This completes the proof of Theorem 1.3. U
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