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Abstract. The primal dual fixed point (PDFP) proposed in [7] was designed to solve
convex composite optimization problems in imaging and data sciences. The algorithm
was shown to have some advantages for simplicity and flexibility for divers applica-
tions. In this paper we study two modified schemes in order to accelerate its perfor-
mance. The first one considered is an inertial variant of PDFP, namely inertial PDFP
(iPDFP) and the second one is based on a prediction correction framework proposed
in [20], namely Prediction Correction PDFP (PC-PDFP). Convergence analysis on both
algorithms are provided. Numerical experiments on sparse signal recovery and CT
image reconstruction using TV-L2 model are present to demonstrate the acceleration
of the two proposed algorithms compared to the original PDFP algorithm.
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1 Introduction

We consider the optimization problem as follows:

min
x∈Rd

f (x)+(g◦B)(x), (1.1)

where g :Rm→R∪{∞} is convex, lower semi-continuous (l.s.c) and may not be differen-
tiable, B : R

d →R
m is a linear transform, and f : R

d →R∪{∞} is also convex l.s.c. with
1
β Lipschitz continuous gradient. This problem is widely considered in machine learning

and signal/image processing. For instance, for linear regression f (x)= 1
n ∑

n
i=1(a

T
i x−bi)
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and for binary classification f (x)= 1
n ∑

n
i=1 log(1+exp(−bia

T
i x)) where bi denotes the label

of the i-th sample ai. The second term (g◦B)(x), usually the so-called regularization term,
which can be taken as g(·) :=‖x‖1 ,‖x‖2

2 and B= I (I is identity). In some cases, B is cho-
sen as inverse covariance matrix for obtaining some graph guided sparsity [3]. In signal
and image processing, a classic example is total variation (TV) based image restoration
model:

min
x∈Rd

‖Ax− f‖2
2+g(∇x), (1.2)

where A is some linear operator, for example convolution operator for image deconvo-
lution and Radon transform for CT reconstruction, ∇ denotes the gradient operator and
g(·) is the function that ensures sparsity.

Many algorithms are proposed to solve the problem (1.1). If B= I one of the most pop-
ular methods is the proximal gradient method (PGM) (also known as proximal forward
backward splitting (PFBS) [10]) and its acceleration variants [4, 23]. The PGM proceeds
as follows:

xk+1=Proxγg(xk−γ∇ f (xk)), (1.3)

where γ>0 is a parameter and the operator Proxγg(·) is defined as

Proxγg(·)=argmin
y∈Rr

g(y)+
1

2γ
‖y−·‖2

2. (1.4)

When B 6= I, PGM needs to handle the term Proxg◦B(·) which may be as difficult as
the original problem. To overcome this difficulty, many algorithms based on augmented
Lagrangian and Fenchel duality were designed, such as the split Bregman method [16,25]
(a.k.a the alternating direction of multipliers method (ADMM) [12, 19]), the primal dual
hybrid gradient method (PDHG) [14, 29] (also known as Chambolle-Pock algorithm [6]),
Condat-Vu [11,27] algorithm, the fixed-point method based on proximity operator (FP2O)
[22] and the primal dual fixed point method (PDFP) [7]. In this paper we focus on PDFP
as it can maximally decouple subproblems and it was shown to be effective with parallel
implementation for many large scale imaging and data sciences problems [7–9]. The
scheme of PDFP for solving (1.1) is given as follows:

Algorithm: Primal dual fixed point method

Step 1: set x1∈R
d,p1∈R

m and γ>0,λ>0

Step 2: for k=1,2,···
xk+ 1

2
= xk−γ∇ f (xk)

pk+1=
(

I−Prox γ
λ g

)(

Bxk+ 1
2
+(I−λBBT)pk

)

xk+1= xk+ 1
2
−λBT pk+1

until the stop criterion is satisfied.
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The method PDFP only involves the forward gradient of f , matrix vector multiplica-
tion and the proximal operation of g, which is generally easy to be solved. The conver-
gence analysis of PDFP was established in [7] based on a fixed point iteration. Later its
three-block and multi-block extensions were studied in [8, 9]. Recently it was extended
to a stochastic setting for solving machine learning and image reconstruction problems
in [30].

In this paper we reformulate the PDFP from the variational inequality framework and
consider two types of acceleration schemes: one is based on the inertial variants [5, 21]
and the other is from the prediction correction perspective [17,18,20]. Generally speaking,
the idea of inertial variants utilizes a set of auxiliary variables based on two consecutive
iterates of the main sequences for the acceleration. To be more specific, let (xk,pk) be the
primal dual sequence of PDFP, two extra variables (zk,vk) are computed as follows:

{

zk = xk+θk(xk−xk−1),

vk = pk+θk M(pk−pk−1),
(1.5)

where M is a positive definite matrix to be defined and θk is an inertial factor. The new
iterate (xk+1,pk+1) is obtained by performing PDFP on (zk,vk). In [28], a different inertial
step was applied to PDFP, which leads to a different convergence analysis. As PDFP
recovers PGM when B= I,λ=1, we will show that our proposed inertial PDFP can also
reduce to the usual forms of inertial PGMs proposed in [2,4,23], while the method in [28]
does not.

The second modified scheme is based on the prediction-correction type method pro-
posed in [18, 20] to improve the performance of the original algorithm. The basic idea
is to first generate a prediction sequence (x̃k, p̃k) by first performing the basic algorithm
on the current estimate (xk,pk). Then in the correction step the new iterate (xk+1,pk+1)
is updated based on a weighted combination of two directions d1(xk, x̃k), d2(pk, p̃k), that
are computed based on the current optimality gap and the predefined estimate. The pro-
posed two algorithms are called inertial PDFP (iPDFP) and prediction-correction PDFP
(PC-PDFP) respectively. The convergence of the two algorithms are established. Numer-
ically, through the examples on sparse signal and CT reconstruction, we can obverse that
the two algorithms accelerate the original PDFP, both in terms of iterations number and
computation time.

The paper is organized as following: In Section 2, we present Algorithm 1: inertial
PDFP and Algorithm 2: prediction-correction PDFP. Convergence analysis is present
in Section 3 and more details can be found in Appendix. Finally, a synthetic example
for sparse signal recovery and CT reconstruction using TV-L2 model are performed to
demonstrate the performance of the two algorithms and the comparisons to the original
PDFP algorithm.
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2 Algorithms

In this section we present the details of the algorithms iPDFP and PC-PDFP. We first give
some useful definitions.

Definition 2.1. The conjugate function of g(·) at v is defined by

g∗(v)= sup
y∈dom(g)

{vTy−g(y)}, (2.1)

where v ∈ dom(g∗(·))={v|g∗(v)<∞}=V.

Definition 2.2. The following definitions are used throughout the paper:

• ρmin(·), ρmax(·) denote the minimum and maximum eigenvalues of a given matrix.

• Define M= I−λBBT, where 0<λ< 1
ρmax(BBT)

is a constant such that M is positive definite.

Lemma 2.1. The saddle point problem of (1.1) is

min
x∈Rd

max
p∈V

f (x)+〈Bx,p〉−g∗(p), (2.2)

where g∗(·) is the conjugate of g. The variational inequality reformulation of (2.2) is

{

(x−x∗)T(∇ f (x∗)+BT p∗)≥0, ∀x∈R
d,

(p−p∗)T(s∗−Bx∗)≥0, ∀p∈V, s∗∈∂g∗(p∗),
(2.3)

where (x∗,p∗)∈R
d×V is an optimal primal-dual solution of (2.2).

Remark 2.1. If g(·) is l1 norm, the conjugate g∗(·)= ιV(·) where ιV denotes the indicator
function of set V={p∈R

m : ‖p‖inf≤1} and ‖·‖inf is the maximum norm. Then the second
inequality of (2.3) becomes

(p−p∗)T(−Bx∗)≥0, ∀p∈V. (2.4)

In the following, we denote Ω=R
d×V, u=(x,p)∈Ω, u∗=(x∗,p∗)∈Ω∗, where Ω∗ is

the optimal primal-dual solution set. Let

F(x,p)=

(

∇ f (x)+BT p

s−Bx

)

, s∈∂g∗(p). (2.5)

Then (2.3) can be rewritten as

(u−u∗)TF(u∗)≥0, ∀u∈Ω. (2.6)
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We also denote the iterates in both algorithms as uk =(xk,pk) and ũk =(x̃k, p̃k). Now
we give a reformulation of PDFP by introducing an intermediate variable yk+1 as











yk+1= xk−γ∇ f (xk)−λBT pk,

pk+1=(I−Prox γ
λ g)(Byk+1+pk),

xk+1= xk−γ∇ f (xk)−λBT pk+1.

(2.7)

According to Moreau decomposition [10], for p∈R
m, one has

p= p⊕γ
λ
+p⊖γ

λ
, (2.8)

where p⊕γ
λ
=Prox γ

λ g(p) and p⊖γ
λ
= γ

λ Prox λ
γ g∗(

λ
γ p). Then the second equality of (2.7) can be

rewritten as

pk+1=(I−Prox γ
λ g)(Byk+1+pk)=

γ

λ
Prox λ

γ g∗

(λ

γ
Byk+1+

λ

γ
pk

)

. (2.9)

Let pk := λ
γ pk, then (2.7) can be reformulated as



















yk+1= xk−γ∇ f (xk)−γBT pk,

pk+1=Prox λ
γ g∗

(λ

γ
Byk+1+pk

)

,

xk+1= xk−γ∇ f (xk)−γBT pk+1.

(2.10)

Based on this formulation, we present the inertial PDFP by using an extrapolated primal-
dual pair (zk,vk) before performing PDFP steps, similar to [21]. The algorithm is de-
scribed as follows:

Algorithm 1: Inertial Primal Dual Fixed Point Method (iPDFP)

Step 1: set x1∈R
d, p1∈R

m and choose proper γ,λ,0< θk <1.

Step 2: for k=1,2,···
zk = xk+θk(xk−xk−1)

vk = pk+θk M(pk−pk−1)

yk+1= zk−γ∇ f (zk)−γBT pk

pk+1=Prox λ
γ g∗(

λ
γ Byk+1+vk)

xk+1= zk−γ∇ f (zk)−γBT pk+1

until the stop criterion is satisfied.
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We note that the proposed inertial step on the dual is different from the usual one, as
there is a matrix M inside, where M= I−λBBT as defined above. If B= I, λ= 1 iPDFP
becomes inertial PGMs [2, 4, 23].

The PDFP algorithm can be also formulated as an approximate proximal point al-
gorithm (APPA) [13, 26]. In [17, 18], a prediction correction framework was proposed
to improve the performance of APPA. Following this line, we consider such prediction
correction scheme on PDFP. In the following, we first present the framework for solving
(2.6).

• Step 1 (prediction): Derive a prediction ũk ∈Ω, two directions d1(uk,ũk), d2(uk,ũk)
and a function ϕ(uk,ũk) such that the following four conditions hold:

– (1) (u−ũk)
T(d2(uk,ũk)−d1(uk,ũk))≥0, ∀u∈Ω.

– (2) There exists κ>0 such that

‖d1(uk,ũk)‖≤κ‖uk−ũk‖.

– (3) The function ϕ(uk,ũk) satisfy

ϕ(uk,ũk)≥δ‖uk−ũk‖2,

for some δ>0 and ϕ(uk,ũk)=0⇔uk = ũk.

– (4) For u∗∈Ω∗, the following inequality holds:

(ũk−u∗)Td2(uk,ũk)≥ ϕ(uk,ũk)−(uk−ũk)
Td1(uk,ũk).

The condition (1), (3), (4) are used to such that the two directions d1(uk,ũk), d2(uk,ũk)
are descent directions with respect to the distant function ‖u−u∗‖2 at point uk (see
[17, Lemmas 2.1, 2.2]). The condition (2) is further used for the convergence. Based
on the two descent directions d1,d2 in step I, the following contraction method [18]
was proposed to improve the performance as a correction step.

• Step 2 (correction): The new update uk+1 is given by

uk+1=PΩ(uk−ηαkd(uk,ũk)), (2.11)

where PΩ is the projection onto the set Ω, d(uk,ũk)=(1−t)d1(uk,ũk)+td2(uk,ũk), for
some t∈ (0,1], η∈ [1,2) and the step size

αk =
〈uk−ũk,d1(uk,ũk)〉

‖d1(uk,ũk)‖2
2

. (2.12)

Now in the case of PDFP, we propose to define ũk, d1(uk,ũk),d2(uk,ũk) and ϕ(uk,ũk)
as follows:
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– The prediction ũk is generated by performing PDFP steps.

– The two directions d1(uk,ũk),d2(uk,ũk) are defined as:

d1(uk,ũk)=

( ∇ f (x̃k)−∇ f (xk)− 1
γ (x̃k−xk)

G(pk− p̃k)

)

, (2.13)

where G= γ
λ M and

d2(uk,ũk) :=F(ũk)=

(

∇ f (x̃k)+BT p̃k

sk−Bx̃k

)

, sk ∈∂g∗( p̃k). (2.14)

– The function ϕ(uk,ũk) is defined as

ϕ(uk,ũk)=(uk−ũk)
Td1(uk,ũk). (2.15)

We will show that ũk, d1(uk,ũk), d2(uk,ũk) and ϕ(uk,ũk) as defined above satisfy the four
conditions in step I, thus the correction and the related convergence analysis proposed
in [18] can be applied. To be more specific, the proposed prediction-correction PDFP is
summarized as follows:

Algorithm 2: Prediction Correction Primal Dual Fixed Point Method

Step 1: Set x1∈R
d, p1∈R

m and u1=(x1,p1). Choose η∈ [1,2), λ,γ>0, t∈ [0,1].

and let G= γ
λ M.

Step 2: For k=1,2,···
• Prediction:

ỹk = xk−γ∇ f (xk)−γBT pk

p̃k =Prox λ
γ g∗(

λ
γ Bỹk+pk)

x̃k = xk−γ∇ f (xk)−γBT p̃k

Let ũk=(x̃k, p̃k)

• Compute the two directions:

d1(uk,ũk)=

( ∇ f (x̃k)−∇ f (xk)− 1
γ (x̃k−xk)

G(pk− p̃k)

)

d2(uk,ũk)=

(

∇ f (x̃k)+BT p̃k

sk−Bx̃k

)

, sk ∈∂g∗( p̃k)

• Correction:

uk+1=

(

xk+1

pk+1

)

=PΩ(uk−ηαk((1−t)d1(uk,ũk)+td2(uk,ũk)))

where αk =
〈uk−ũk,d1(uk,ũk)〉

‖d1(uk,ũk)‖2
2

.

until the stop criterion is satisfied.
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3 Convergence analysis

3.1 Convergence of iPDFP

The following theorem states the convergence of the sequence generated by iPDFP algo-
rithm.

Theorem 3.1. Suppose f (x) has 1
β Lipschitz continuous gradient. Then if the parameters satisfy

• 0<λ<
1

ρmax(BBT)
and 0<γ<2β;

• θk is non-decreasing and 0≤ θk <min
{−(2c+1)+

√
8c+1

2(1−c)
, 1

3

}

for c= 2β−γ
2β ,

then the sequence uk=(xk,pk) generated by iPDFP converges to a solution u∗=(x∗,p∗).

Before we prove this theorem, we first define a normed space for the primal dual
iterates and present some necessary lemmas.

Definition 3.1. For two vectors u1=(x1,p1), u2=(x2,p2) in H=R
d+m, define the inner product

as followed:

〈u1,u2〉H= 〈x1,x2〉+〈p1,Rp2〉, (3.1)

where R= γ2

λ M and 〈·,·〉 denote the usual inner product in Euclidean space. It can be seen that
H is a Hilbert space and the induced norm is

‖u‖2
H=‖x‖2

2+‖p‖2
R , (3.2)

where ‖p‖2
R = 〈p,Rp〉.

Lemma 3.1. [1] Let (ϕk)k∈N, (δk)k∈N and (αk)k∈N be the sequences in [0,+∞) such that
ϕk+1≤ ϕk+αk(ϕk−ϕk−1)+δk for all k≥1, ∑k∈N δk <∞ and there exists a real number α with
0≤αk ≤α<1 for all k∈N. Then the following holds:

• ∑n≥1[ϕk−ϕk−1]+<∞, where [a]+=max{t,0};

• there exists ϕ∗∈ [0,∞) such that limk→∞ ϕk= ϕ∗.

Lemma 3.2. (Opial [24]) Let C be a nonempty set of H and (xn)n∈N be a sequence in H such
that the following two conditions hold:

• for every x∈C, limn→+∞‖xn−x‖ exists;

• every sequential weak cluster point of (xn)n∈N is in C.

Then the sequence (xn)n∈N converges weakly to a point in C.
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Lemma 3.3. Suppose x∈R
d and p∈V satisfy







p=Prox λ
γ g∗

(λ

γ
Bx+p

)

,

x= x−γ∇ f (x)−γBT p,

(3.3)

then (x,p)∈Ω∗.

Lemma 3.4. The following inequality holds:

γ(B(xk+1−x∗))T(pk+1−p∗)+Ek+1
x ≤θkEk

x+
γ−2β

4β
‖xk+1−zk‖2

2+
θk+θ2

k

2
‖xk−xk−1‖2

2, (3.4)

where Ek
x =

1
2‖xk−x∗‖2

2− 1
2‖xk−1−x∗‖2

2.

Lemma 3.5. The following inequality holds:

−γ(pk+1−p∗)T(B(xk+1−x∗))+Ek+1
p ≤ θkEk

p+
θk+θ2

k

2
‖pk−pk−1‖2

R, (3.5)

where Ek
p=

1
2‖pk−p∗‖2

R− 1
2‖pk−1−p∗‖2

R.

Lemma 3.6. Let c= 2β−γ
2β , choose 0<γ<2β, 0<λ<

1
ρmax(BBT)

and a nondecreasing sequence θk

such that
c(1−θk)

2−θk(1+θk)≥ ε,

1−3θk ≥ ε,
(3.6)

for some ε>0. Then
∞

∑
k=1

‖uk−uk−1‖2
H<∞. (3.7)

The above four lemmas are essential for the proof of Theorem 3.1, for their proofs can
be found in Appendix. In the following, we present the proof for Theorem 3.1.

Proof of Theorem 3.1. The proof of Theorem 3.1 can be divided into three steps.

STEP I: By the choice of θk, it can be verified that the condition in Eq. (3.6) in Lemma 3.6
is satisfied, thus ‖uk−uk−1‖2

H→0 and

∞

∑
k=1

θk‖uk−uk−1‖2
H<

∞

∑
k=1

‖uk−uk−1‖2
H<∞. (3.8)

Let Ek=Ek
x+Ek

p=
1
2‖uk−u∗‖2

H− 1
2‖uk−1−u∗‖2

H. By adding Eq. (3.4) and Eq. (3.5), we obtain

Ek+1≤ θkEk+
γ−2β

4β
‖xk+1−zk‖2

2+
θk+θ2

k

2

(

‖xk−xk−1‖2
2+‖pk−pk−1‖2

R

)

= θkEk+
γ−2β

4β
‖xk+1−zk‖2

2+
θk+θ2

k

2
‖uk−uk−1‖2

H. (3.9)
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Let ∆k = θk‖uk−uk−1‖2
H. Using the fact that 0<γ<2β, 0≤ θk <1 and

θk+θ2
k

2 ≤ θk, we have

Ek+1≤ θkEk+
θk+θ2

k

2
‖uk−uk−1‖2

H≤ θkEk+∆k. (3.10)

According to Eq. (3.8), we can see that the second term of the right hand side of (3.10) is
summable. Let ϕk=

1
2‖uk−u∗‖2

H, αk=θk, δk=∆k in Lemma 3.1, it follows that limk→∞‖uk−
u∗‖2

H exists.

STEP II: Suppose there exists a subsequence uik
= (xik

,pik
) → (x,p) = u. Since ‖uk−

uk−1‖2
H→0 we have xik

−xik−1
→0, pik

−pik−1
→0 and

zik
= xik

+θk(xik
−xik−1

)→ x,

vik
= pik

+θk M(pik
−pik−1

)→ p.
(3.11)

For pik+1,xik+1, we have

‖pik+1−p‖≤‖pik+1−pik
‖+‖pik

−p‖→0,

‖xik+1−x‖≤‖xik+1−xik
‖+‖xik

−x‖→0.
(3.12)

Thus pik+1→ p,xik+1→ x.

Then by the update of Algorithm 1, we have

xik+1= zik
−γ∇ f (zik

)−γBT pik+1

→ x= x−γ∇ f (x)−γBT p. (3.13)

Further the update of yik+1 leads to yik+1→ x. And

pik+1=Prox λ
γ g∗

(λ

γ
Byik+1+vik

)

→ p=Prox λ
γ g∗

(λ

γ
Bx+p

)

. (3.14)

We then have






p=Prox λ
γ g∗

(λ

γ
Bx+p

)

,

x= x−γ∇ f (x)−γBT p.

(3.15)

It follows that (x,p) is optimal by using Lemma 3.3.

STEP III: Let C=Ω∗ in Lemma 3.2 and combining the results in Step I and Step II, we get
the convergence of iPDFP.
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3.2 Convergence of PC-PDFP

The following lemma verifies that the chosen ũk, d1(uk,ũk), d2(uk,ũk) and ϕ(uk,ũk) in
Algorithm 2 satisfy the four conditions described above.

Lemma 3.7. Recall the definition of ũk, d1(uk,ũk), d2(uk,ũk) and ϕ(uk,ũk). Choose 0<γ< β
and 0<λ<

1
ρmax(BBT)

, then the following results hold:

• (u−ũk)
T(d2(uk,ũk)−d1(uk,ũk))≥0, ∀u∈Ω.

• ‖d1(uk,ũk)‖2
2 ≤κ‖uk−ũk‖2

2, for κ=max
{ 2β2+2γ2

β2γ2 , γ
λ −γρmin(BBT)

}

.

• (ũk−u∗)Td2(uk,ũk)≥ ϕ(uk,ũk)−(uk−ũk)
Td1(uk,ũk).

• ϕ(uk,ũk)≥δ‖uk−ũk‖2
2, where δ=min

{ β−γ
γβ , γ

λ −γρmax(BBT)
}

.

Proof. By the optimality condition of the second equation of (2.9), we have

(p− p̃k)
T
(λ

γ
s̃k+ p̃k−pk−

λ

γ
Bỹk

)

≥0, ∀ s̃k ∈∂g∗(pk), p∈V∗

⇔ (p− p̃k)
T
(λ

γ
s̃k+ p̃k−pk−

λ

γ
B(xk−γ∇ f (xk)−γBT pk)

)

≥0

⇔ (p− p̃k)
T
(

s̃k−Bx̃k+G( p̃k−pk)
)

≥0, (3.16)

where G= γ
λ M. Then the update of variable x and p in prediction step can be rewritten

as

(x− x̃k)
T(∇ f (x̃k)+BT p̃k−(∇ f (x̃k)−∇ f (xk)−

1

γ
(x̃k−xk)))≥0, ∀x∈R

d,

(p− p̃k)
T
(

s̃k−Bx̃k+G( p̃k−pk)
)

≥0, ∀p∈V.

(3.17)

(1): The first argument is given as follows: recall

d1(uk,ũk)=





∇ f (x̃k)−∇ f (xk)−
1

γ
(x̃k−xk)

G(pk− p̃k)



, (3.18)

d2(uk,ũk)=F(ũk)=

(

∇ f (x̃k)+BT p̃k

sk−Bx̃k

)

, (3.19)

then the inequality (3.17) can be rewritten as

(u−ũk)
T(d2(uk,ũk)−d1(uk,ũk))≥0, ∀u∈Ω. (3.20)
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(2): The second argument is given by the following estimate:

‖d1(uk,ũk)‖2
2=‖∇ f (x̃k)−∇ f (xk)−

1

γ
(x̃k−xk)‖2

2+‖G(pk− p̃k)‖2
2

≤2‖∇ f (x̃k)−∇ f (xk)‖2
2+

2

γ2
‖x̃k−xk‖2

2+
(γ

λ
−γρmin(BBT)

)

‖pk− p̃k‖2
2

≤ 2

β2
‖x̃k−xk‖2

2+
2

γ2
‖x̃k−xk‖2

2+
(γ

λ
−γρmin(BBT)

)

‖pk− p̃k‖2
2

≤max
{2β2+2γ2

β2γ2
,
γ

λ
−γρmin(BBT)

}

‖uk−ũk‖2
2

=κ‖uk−ũk‖2
2. (3.21)

(3): For the third inequality: Let ϕ(uk,ũk)=(uk−ũk)
Td1(uk,ũk), we then have

(ũk−u∗)Td2(uk,ũk)

=(ũk−u∗)TF(ũk)

≥ (ũk−u∗)TF(u∗)

≥0= ϕ(uk,ũk)−(uk−ũk)
Td1(uk,ũk). (3.22)

(4): The final estimate is given as follows:

ϕ(uk,ũk)=(uk−ũk)
Td1(uk,ũk)

=(xk− x̃k)
T
(

∇ f (x̃k)−∇ f (xk)−
1

γ
(x̃k−xk)

)

+(pk− p̃k)
TG(pk− p̃k)

≥ 1

γ
‖x̃k−xk‖2

2−〈∇ f (x̃k)−∇ f (xk), x̃k−xk〉

+
(γ

λ
−γρmax(BBT)

)

‖p̃k−pk‖2
2

≥min
{β−γ

γβ
,
γ

λ
−γρmax(BBT)

}

‖uk−ũk‖2
2

=δ‖uk−ũk‖2
2. (3.23)

The condition 0<γ<β yields δ>0. This completes the proof.

Theorem 3.2. Choose 0<γ≤ β and 0<λ<
1

ρmax(BBT)
, 1≤ η < 2, u∗=(x∗,p∗)∈Ω∗, then the

sequence generated by PC-PDFP is Féjer monotone, i.e.

‖uk+1−u∗‖2
2≤‖uk−u∗‖2

2−η(2−η)
δ2

κ2
‖uk−ũk‖2

2, (3.24)

and uk converge to the optimal solution u∗.
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Proof. The Féjer monotonicity follows by using Lemma 3.7 and results in [17,18]. Since uk

is Féjer monotone and it is bounded, thus there exits a subsequence uik
such that uik

→u.
Then it can be verified that d1(uik

,ũik
)→0, d2(uik

,ũik
)→F(u) and from the first condition

in Lemma 3.7, we have

(u−u)TF(u)≥0, ∀u∈Ω, (3.25)

which implies u is optimal. Using the fact that

‖uk+1−u‖2
2≤‖uk−u‖2

2, (3.26)

we obtain the convergence of uk.

4 Numerical experiments

In this section, we consider numerical experiments on sparse signal recovery and CT
image reconstruction using TV-L2 model.

4.1 Sparse signal recovery

The optimization problem is given as follows:

argmin
x∈Rd

1

2
‖Ax−b‖2

2+µ‖Bx‖1, (4.1)

where A∈R
n×d is a random matrix whose entries are drawn i.i.d from normal distribu-

tion and we choose n=1000, d=200 here. The matrix B∈R
(d−1)×d is a discrete gradient

operator whose diagonal entry are −1 and the upper diagonal entry is 1 and all the other
entries are zeros. For the ground truth vector x0, we first simulate a vector with all entries
1, then we randomly perturb 5% of its entries and the vector b is computed by b=Ax0+ε
where ε is unit random Gaussian noise. The regularization parameter is set as µ=10−4.

The settings of the comparison are given as follows:

• For PC-PDFP, we consider the direction d2 in the correction step i.e. we set t=1 in
Algorithm 2 as it gives the best performance.

• The comparisons between PDFP and iPDFP are performed by fixing the step sizes γ
of the two methods, and choosing proper inertial parameters θk for iPDFP. In Table
1, we list the parameters and the name of the methods. We note that for some cases
the inertial parameters θk can be chosen larger than the bound obtained in Theorem
3.1 and they can lead to faster convergence.

• The parameter λ is fixed as λ= 1
4 (which meets the conditions in the convergence

analysis) for all the methods.
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Table 1: Summary of the parameters for PDFP and iPDFP.

θk

γ
γ=0.8β γ=1.2β γ=1.7β

θk =0 PDFP-0.8 PDFP-1.2 PDFP-1.7

θk =0.5 iPDFP-0.8 iPDFP-1.2 −
θk =0.01 − − iPDFP-1.7

Figure 1: Relative error of function value v.s. iterations number (left) and v.s. time (right).

Figure 2: Relative error of iterate v.s. time (left) and v.s. iterations number (right).

• The relative error of the objective value is computed with respect to the optimal
one, which is obtained by running PDFP for 10000 step when the convergence is
observed. And the relative errors of the iterates are computed with respect to the
ground truth signal.

Figs. 1 and 2 give the relative error of both function value and iterate over iteration
number and time respectively. The observations are summarized as follows:
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• Both iPDFP and PC-PDFP accelerate the original PDFP algorithm. In particular,
with the same step size, iPDFP is faster than PDFP (see PDPF-0.8 v.s. iPDFP-0.8;
PDPF-1.2 v.s. iPDFP-1.2). Moreover, the gain is more obvious with smaller stepsize
γ. When the stepsize γ is approaching the theoretical upper bound, the improve-
ment is marginal.

• It can be seen that iPDFP-1.2 is still faster than the best of PDFP algorithm: PDFP-
1.7. This implies that using small stepsize and combining with the inertial step,
iPDFP can achieve a better performance than the best of PDFP. In practice the best
convergence of PDFP usually occurs near the upper bound 2β. But when the Lips-
chitz constant 1

β is over-estimated which leads to a small stepsize, applying iPDFP

can improve the convergence speed.

• From Figs. 1 and 2, we can also see that PC-PDFP gets the best performance in terms
of iteration number among three methods but it is not as fast as iPDFP in terms of
computation time. This is due to the fact that PC-PDFP needs extra computation in
the correction step. We can also observe some oscillation near the optimal, which
may due to the adaptive step-size.

4.2 Image reconstruction

In this section we use the TV-L2 model for CT image reconstruction with total variation
regularization. The model still takes a similar form:

min
x∈Rd

‖Ax− f‖2
2+ν‖∇x‖1, (4.2)

where x is the image to be reconstructed and its dimension is d=512×512. The operator
A is the X-ray transform and here we use fan beam scanning geometry [15] for which the
number of detectors is 512 and the number of viewers is 180. The measured projection
f is computed by applying A to the ground truth and adding the Gaussian noise with
variance 0.3. The transform ∇ is the 2D discrete gradient operator and ν= 1 is the reg-
ularization parameter. The experiments are performed on TITAN RTX GPU with 4608
cores and the version of Matlab is 2018b.

The parameters setting is listed in Table 2 for the comparisons of PDFP and iPDFP.
Here γ∗ is the (numerical) upper bound for the stepsize γ that ensures the convergence
of the algorithms. The parameter λ is set as λ=1/8 for both PDFP and iPDFP, 1/20 for
PC-PDFP. And the rest of parameters are tuned such that all the methods achieve the best
performance.

Figs. 3 and 4 show the plot of PSNRs and the objective values of different methods
over time and iterations number respectively. Some similar observations can be obtained.
In particular, both PC-PDFP and iPDFP perform better than the original PDFP. In terms
of iterations number, PC-PDFP and iPDFP with proper parameters (θk = 0.6) perform
the best; in terms of computation time, the objective values decreases faster and PSNR
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Table 2: Summary of parameters of PDFP and iPDFP.

θk

γ
γ=γ∗ γ= 1

3 γ∗ γ= 2
3 γ∗

θk =0 PDFP-B PDFP-0.3 PDFP-0.6

θk =0.001 iPDFP-B − −
θk =0.9 − iPDFP-0.3 iPDFP-0.6

Figure 3: Objective value v.s. iterations number (left) and v.s. time (right).

Figure 4: PSNR v.s. iteration (left) and v.s. time (right).

increases faster with iPDFP than that of PC-PDFP. Fig. 5 present the reconstructed images
of the three methods and the respective computation times. With the same image quality,
we can see that both iPDFP and PC-PDFP converge faster and iPDFP is the fastest.



124 Y.-N. Zhu and X. Zhang / CSIAM Trans. Appl. Math., 2 (2021), pp. 108-130

(a) Ground truth (b) PDFP, PSNR=40.2 (110.0 s)

(c) IPDFP, PSNR=40.2 (30.0 s) (d) PC-PDFP, PSNR=40.2 (78.6 s)

Figure 5: Reconstructed images and the respective computation times.

5 Conclusions

In this paper we discussed two acceleration schemes for PDFP: iPDFP and PC-PDFP.
The convergence analysis of both algorithms were established. Numerical results on
sparse signal reconstruction and CT reconstruction were present to demonstrate the per-
formance of the two algorithms. We can observe that both algorithms are faster than
PDFP and generally the energy of PC-PDFP decreases the fastest in terms of iterations
number while iPDFP with proper inertial parameter is the fastest in terms of computa-
tion time, as iPDFP needs less computation at each iteration. Both algorithms can be
potentially useful for some real applications in signal and image processing.
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Appendix

In this section we give some details of the convergence analysis of iPDFP and PC-PDFP.

Proof of Lemma 3.3. By the optimal condition in the first equation of (3.3), we have

(p−p)T
(λ

γ
s− λ

γ
Bx
)

≥0, s∈∂g∗(p)

⇔ (p−p)T(s−Bx)≥0, s∈∂g∗(p), ∀p∈V. (A.1)

Using the second equation of (3.3), we get

∇ f (x)+BT p=0. (A.2)

Recall Eq. (2.2) we get the desired result.

Proof of Lemma 3.4. By the update formula of the primal variable x, one has

(x−xk+1)
T(γ∇ f (zk)+γBT pk+1+xk+1−zk)≥0, ∀x∈R

d. (A.3)

Let x= x∗, then
(x∗−xk+1)

T(γ∇ f (zk)+γBT pk+1+xk+1−zk)≥0. (A.4)

By the optimality condition of (1.1): ∇ f (x∗)+BT p∗=0, it follows that

(x∗−xk+1)
T(γ(∇ f (zk)−∇ f (x∗))+γBT(pk+1−p∗)+xk+1−zk)≥0. (A.5)

Using the definition of zk and the identity 〈a,b〉= 1
2‖a+b‖2

2− 1
2‖a‖2

2− 1
2‖b‖2

2, one gets

(x∗−xk+1)
T(γ(∇ f (zk)−∇ f (x∗))+γBT(pk+1−p∗)+xk+1−xk−θk(xk−xk−1))≥0

⇔ γ(x∗−xk+1)
T(∇ f (zk)−∇ f (x∗))+γ(B(x∗−xk+1))

T(pk+1−p∗)+
1

2
‖xk−x∗‖2

2

−θk(x∗−xk+1)
T(xk−xk−1)≥

1

2
‖xk+1−x∗‖2

2+
1

2
‖xk+1−xk‖2

2

⇔ γ(x∗−xk+1)
T(∇ f (zk)−∇ f (x∗))− 1

2
‖xk+1−xk‖2

2+
θk

2
‖xk−xk−1‖2

2

+θk(xk+1−xk)
T(xk−xk−1)

≥ 1

2
‖xk+1−x∗‖2

2−
1

2
‖xk−x∗‖2

2−θk(
1

2
‖xk−x∗‖2

2−
1

2
‖xk−1−x∗‖2

2)

+γ(B(xk+1−x∗))T(pk+1−p∗). (A.6)
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Estimate the first term of the left hand side of the last inequality of (A.6), we obtain

(x∗−xk+1)
T(∇ f (zk)−∇ f (x∗))

=(x∗−zk)
T(∇ f (zk)−∇ f (x∗))+(zk−xk+1)

T(∇ f (zk)−∇ f (x∗))

≤−β‖∇ f (zk)−∇ f (x∗)‖2
2+β‖∇ f (zk)−∇ f (x∗)‖2

2+
1

4β
‖zk−xk+1‖2

2

=
1

4β
‖xk+1−zk‖2

2. (A.7)

Moreover

θk(xk+1−xk)
T(xk−xk−1)

=(xk+1−xk))
T(zk−xk)

=−1

2
‖xk+1−zk‖2

2+
1

2
‖xk+1−xk‖2

2+
θ2

k

2
‖xk−xk−1‖2

2. (A.8)

Recall Ek+1
x = 1

2‖xk+1−x∗‖2
2− 1

2‖xk−x∗‖2
2 and combine Eq. (A.6), Eq. (A.7) and Eq. (A.8),

we have

γ(B(xk+1−x∗))T(pk+1−p∗)+Ek+1
x ≤θkEk

x+
γ−2β

4β
‖xk+1−zk‖2

2+
θk+θ2

k

2
‖xk−xk−1‖2

2. (A.9)

This completes the proof.

Proof of Lemma 3.5. Recall the update of pk+1, we have

(p−pk+1)
T
(λ

γ
sk+1+pk+1−vk−

λ

γ
Byk+1

)

≥0, sk+1∈∂g∗(pk+1), ∀p∈V. (A.10)

Let p= p∗, and use the definition of vk,xk+1 and M, we then get

(p∗−pk+1)
T
(λ

γ
sk+1+pk+1−vk−

λ

γ
Byk+1

)

≥0

⇔ (p∗−pk+1)
T
(λ

γ
sk+1+pk+1−vk−

λ

γ
B(zk−γ∇ f (zk)−γBT pk

)

≥0

⇔ (p∗−pk+1)
T
(

γsk+1−γBxk+1+R(pk+1−pk)−θkR(pk−pk−1)
)

≥0, (A.11)

where R= γ2

λ M.
Since g(·) is closed convex and ∂g(Bx∗)∈ p∗, we have Bx∗ ∈ ∂g∗(p∗). Therefore the

inequality (A.11) can be rewritten as

(p∗−pk+1)
T
(

γsk+1−γs∗−γB(xk+1−x∗)+R(pk+1−pk)−θkR(pk−pk−1)
)

≥0, s∗∈∂g∗(p∗).
(A.12)
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By the monotonicity of ∂g∗(·), we have

(p∗−pk+1)
T
(

−γB(xk+1−x∗)+R(pk+1−pk)−θkR(pk−pk−1)
)

≥0. (A.13)

Using the identity 〈a,b〉= 1
2‖a+b‖2

2− 1
2‖a‖2

2− 1
2‖b‖2

2 and a similar argument as before we
get

1

2
‖pk+1−p∗‖2

R−
1

2
‖pk−x∗‖2

R−θk

(1

2
‖pk−p∗‖2

R−
1

2
‖pk−1−p∗‖2

R

)

−γ(pk+1−p∗)T(B(xk+1−x∗))

≤−1

2
‖pk+1−pk‖2

R+
θk

2
‖pk−pk−1‖2

R+θk〈pk+1−pk,R(pk−pk−1)〉

≤−1

2
‖pk+1−pk‖2

R+
θk

2
‖pk−pk−1‖2

R+
1

2
‖pk+1−pk‖2

R+
θ2

k

2
‖pk−pk−1‖2

R

=
θk+θ2

k

2
‖pk−pk−1‖2

R, (A.14)

where the last inequality follows from 〈a,Rb〉≤ 1
2‖a‖2

R+
1
2‖b‖2

R.

Recall Ek+1
p = 1

2‖pk+1−p∗‖2
R− 1

2‖pk−p∗‖2
R, then Eq. (A.14) can be rewritten as

−γ(pk+1−p∗)T(B(xk+1−x∗)+Ek+1
p ≤ θkEk

p+
θk+θ2

k

2
‖pk−pk−1‖2

R. (A.15)

This completes the proof.

Proof of Lemma 3.6. Let

Rk =

(

c(θk−1)2−θk(1+θk) 0
0 (1−3θk)R

)

. (A.16)

The condition (3.6) indicates

Rk≥ ε

(

1 0
0 R

)

. (A.17)

Recall Eq. (A.14), one has

Ek+1
p −Ek

p−γ(pk+1−p∗)T(B(xk+1−x∗))

≤−1

2
‖pk+1−pk‖2

R+
θk

2
‖pk−pk−1‖2

R+θk〈pk+1−pk,R(pk−pk−1)〉

≤−1

2
‖pk+1−pk‖2

R+
θk

2
‖pk−pk−1‖2

R+
θk

2
‖pk+1−pk‖2

R+
θk

2
‖pk−pk−1‖2

R

=
θk−1

2
‖pk+1−pk‖2

R+θk‖pk−pk−1‖2
R. (A.18)
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Recall c= 2β−γ
2β , combining Eq. (A.18) and Eq. (3.4), we get

Ek+1−θkEk ≤− c

2
‖xk+1−zk‖2

2+
θk+θ2

k

2
‖xk−xk−1‖2

2+
θk−1

2
‖pk+1−pk‖2

R

+θk‖pk−pk−1‖2
R

≤ (θk−1)
c

2
‖xk+1−xk‖2

2+(θk−θ2
k )

c

2
‖xk−xk−1‖2

2+
θk+θ2

k

2
‖xk−xk−1‖2

2

+
θk−1

2
‖pk+1−pk‖2

R+θk‖pk−pk−1‖2
R. (A.19)

Let ∆uk+1=(xk+1−xk,pk+1−pk)
T, then Eq. (A.19) can be rewritten as

Ek+1−θkEk≤ (θk−1)
1

2
‖∆uk+1‖2

A+
θk

2
‖∆uk‖2

Bk
, (A.20)

where

A=

(

cI 0
0 R

)

, Bk=

(

((1−θk)c+1+θk)I 0
0 2R

)

. (A.21)

It can be seen that −Rk =(θk−1)A+θkBk.
Let

Φk =
1

2
‖uk−u∗‖2

H− θk

2
‖uk−1−x∗‖2

H+
θk

2
‖∆uk‖2

Bk

=Qk−θkQk−1+
θk

2
‖∆uk‖2

Bk
. (A.22)

Using the nondecreasing property of θk, we obtain

Φk+1−Φk ≤Ek+1−θkEk+
θk+1

2
‖∆uk+1‖2

Bk+1
− θk

2
‖∆uk‖2

Bk

≤ (θk−1)
1

2
‖∆uk+1‖2

A+
θk

2
‖∆uk‖2

Bk
+

θk+1

2
‖∆uk+1‖2

Bk+1
− θk

2
‖∆uk‖2

Bk

≤ 1

2
‖∆uk+1‖2

(θk+1−1)A+θk+1Bk+1

=−1

2
‖∆uk+1‖2

Rk+1
. (A.23)

Thus Φk is non-increasing and

1

2
‖uk−u∗‖2

H−θ
1

2
‖uk−1−u∗‖2

H≤ 1

2
‖uk−u∗‖2

H−θk
1

2
‖uk−1−u∗‖2

H≤Φk ≤Φ1. (A.24)

It follows that

1

2
‖uk−u∗‖2

H≤ θk 1

2
‖u0−u∗‖2

H+Φ1

k−1

∑
i=0

θi ≤ θk

2
‖u0−u∗‖2

H+
Φ1

1−θ
. (A.25)
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Meanwhile sum Eq. (A.23) for k=1,··· ,K,

K

∑
i=1

1

2
‖∆uk+1‖2

Rk+1
≤Φ1−ΦK

≤Φ1+
θK

2
‖uK−1−u∗‖2

H

≤ θK

2
‖u0−u∗‖2

H+
Φ1

1−θ
+Φ1. (A.26)

According to the condition

Rk ≥ ε

(

I 0

0 R

)

, (A.27)

we get
∞

∑
k=1

‖uk−u∗‖2
H=

∞

∑
k=1

‖xk−xk−1‖2
2+‖pk−pk−1‖2

R <∞. (A.28)

This completes the proof.
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