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Dynamics Analysis of an SIS Epidemic Model with
the Effects of Awareness∗

Yanan Sun1, Yakui Xue1,†, Boli Xie1 and Song Sun2

Abstract In this paper, an SIS model incorporating the effects of aware-
ness spreading on epidemic is analyzed. Four kinds of equilibria of the model
are given, and a new method is used to prove the stability of the equilibria.
The threshold of awareness is Ra

1 , which measures whether awareness spreads.
When awareness does not spread, the basic reproduction number of disease is
Rd

1, it is Rd
2 when awareness spreads. The relationship among the three kinds

of thresholds is discussed in details. Specially, the effects of various awareness
parameters on epidemic are analyzed. Our theoretical results suggest that
raising awareness can effectively reduce the basic reproduction number of dis-
ease and reduce the spread of disease. Furthermore, numerical simulations are
performed to illustrate our results.

Keywords Awareness spreading, Epidemic model, Cooperative system, Sta-
bility.
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1. Introduction

In recent decades, many infectious diseases have broken out, including Ebola, swine
flu, Zika virus and so on. At the end of 2019, an infectious disease named COVID-19
broke out in the world for the first time. It is highly infectious and no vaccine is
available. In a short period of time, thousands of people were infected and many
people died unfortunately. These epidemics seriously affect people’s health and
cause great economic losses. Due to the significant development of science and
technology, the spread of awareness between people is becoming more and more
convenient. Usually, the spread of disease information can raise people’s awareness
of the disease, which makes people take a series of protection measures [1]. When
people try to prevent themselves from contracting an epidemic, the results may
show lower susceptibility. Meanwhile, thanks to self-isolation or better sanitary
conditions, the recovery time is shorter and the infectivity will also decrease [2].
Although the best way to control epidemic is to vaccinate, the cost of vaccination
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is very high. Worse still, there are some diseases that do not have vaccines (such as
malaria, Hepatitis C, etc.). In this case, raising the awareness of the epidemic can
control the epidemic more effectively. Especially, in developing and underdevelope-
d countries, mass media campaigns can play an important role in changing public
health-related behaviors [3]. In view of the complex changes in mass behavior under
awareness circumstances, it is very important to understand how awareness affects
the spread of epidemics.

Many mathematical models are proposed to study the effects of awareness on
epidemics. These models can be divided into two major classes: network-based
models [4− 6] and mean-field models [7− 9]. So far, there are two ways to explain
the effects of awareness: (i) by introducing a mass media compartment to repre-
sent the public interaction with mass media [10− 14], (ii) by changing the rate of
diseases transmission and taking preventive measures [15, 16]. For the choice of
the affecting way of awareness, we choose the case (ii) in this paper. For the case
(ii), there have also been a few studies in recent years. Kiss et al. [1] extended a
simple SIRS model to account for the treatment class. They proved that although
the awareness of the whole population did not affect the epidemic threshold, but
it could reduce the prevalence of infection. An SIRS model that considering the
effects of private and public awareness on epidemic was studied [8, 17].

Medical research had shown that many epidemics, including some bacterial and
sexually transmitted diseases, do not have permanent immunity. These epidemics
can be constructed as SIS models [18, 19]. In this paper, we establish an SIS model
to study the effects of awareness spreading on epidemic. There have been some
related previous studies. Samanta et al. [20] used an SIS model to study the ef-
fects of awareness program in epidemics outbreak - a slow fast dynamics. Liu et al.
[21] investigated the stochastic diseases dynamics of an SIS epidemic model on two
patches incorporating media coverage. Granell et al. [22] established an SIS-UAU
model, the dynamical interplay between awareness and epidemic spreading in mul-
tiplex networks was investigated.

Our research is based on [23], there are still many differences. More practical
factors are considered than previous work. Due to the effects of awareness, the two
types of basic reproduction numbers of disease are given. Further, the relation-
ship among three thresholds and the effects of various parameters on the epidemic
threshold are analyzed. These have not been analyzed in previous works. In short,
a comprehensive and detailed theoretical analysis is provided in this paper, the con-
tent of our research is more in line with the real life. Therefore, the research of this
paper carries certain theoretic meaning and applied value.

The organization of this paper is as follows. The SIS model is described in Sec-
tion 2. The four kinds of equilibria and three kinds of threshold expressions are
given in Section 3. The stability of equilibria is analyzed in Section 4. Paramet-
ric analysis and numerical simulation are in Section 5. The main conclusions are
summarized in Section 6.

2. The model description

We divide the overall population into four compartments: susceptible and unaware
(Sn), susceptible and aware (Sa), infected and unaware (In), infected and aware
(Ia). Specially, in this paper, the unaware individuals are the individuals without
disease awareness and the individuals who have disease awareness but do not take
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protective measures. The transition relations of all compartments are summarised
in Figure 1. Dotted lines represent the infectious effect of the corresponding infected
on the susceptible.

Figure 1. Classes and transitions in the model.

The remaining model parameters are as follows:

Table 1. Description of parameters

ω1,ω2 Awareness losing rate
α1,α2 Awareness spreading rate
γ Recovery rate of unaware infected
θγ Recovery rate of aware infected
β Infection rate from unaware infected to unaware susceptible
σ1β Infection rate from aware infected to unaware susceptible
σ2β Infection rate from unaware infected to aware susceptible
σ1σ2β Infection rate from aware infected to aware susceptible

where we assume 0 < α1 < α2 < 1, 0 < ω2 < ω1 < 1, θ > 1 and 0 < σ1, σ2 < 1
hold. Different from the previous work, in fact, susceptible individuals have a more
significant reduction in the spread of the epidemic, so σ2 < σ1.

Under the above assumptions, the model for the spread of awareness and epi-
demic is as follows

dSn(t)

dt
= − (In + σ1I

a)βSn

N
− α1 (Sa + Ia)Sn

N
+ ω1S

a + γln,

dSa(t)

dt
= − (In + σ1I

a)σ2βS
a

N
+
α1 (Sa + Ia)Sn

N
− ω1S

a + θγIa,

dIn(t)

dt
=

(In + σ1I
a)βSn

N
− α2 (Sa + Ia) In

N
+ ω2I

a − γIn,

dIa(t)

dt
=

(In + σ1I
a)σ2βS

a

N
+
α2 (Sa + Ia) In

N
− ω2I

a − θγIa.

(2.1)

Since the system (2.1) does not include vital dynamics, so there are no births
or deaths of the population, which means that the total population Sn(t) +Sa(t) +
In(t)+Ia(t) = N is constant. It is easy to show that the system (2.1) is well-posed,
its solutions are non-negative for all t ≥ 0. For more convenient calculation, we
perform the following scale transformation on the system variables
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Sn(t) = Sn(t)
N , Sa(t) = Sa(t)

N , In(t) = In(t)
N , Ia(t) = Ia(t)

N .

Simplify system (2.1) and substitute Sn = 1− Sa − In − Ia to obtain

dSa(t)

dt
= − (In + σ1Ia)σ2βSa + α1 (Sa + Ia) (1− Sa − In − Ia)− ω1Sa + θγIa,

dIn(t)

dt
= (In + σ1Ia)β (1− Sa − In − Ia)− α2 (Sa + Ia) In + ω2Ia − γIn,

dIa(t)

dt
= (In + σ1Ia)σ2βSa + α2 (Sa + Ia) In − ω2Ia − θγIa,

(2.2)
where the set Γ = {(Sa, In, Ia) ∈ R3

+|In + Sa + Ia ≤ 1} is positively invariant for
system (2.2).

3. Equilibria and basic reproduction number

3.1. Equilibria and their types

It is easy to obtain the system (2.2) has a disease-free awareness-free equilibrium

E1
0 =

(
S0
a, I

0
n, I

0
a

)
= (0, 0, 0),

a disease-free awareness-endemic equilibrium

E2
0 = (S0

a, I
0
n, I

0
a) = (α1−ω1

α1
, 0, 0),

and a disease-endemic awareness-free equilibrium E1 = (S∗
a , I

∗
n, I

∗
a) = (0, β−γβ , 0).

The equilibrium E2
0 and E1 are only biologically feasible, providing the condi-

tions

Ra1 =
α1

ω1
> 1 and Rd1 =

β

γ
> 1

hold respectively.

Theorem 3.1. There is only a disease-endemic awareness-endemic equilibrium for
system (2.2), which is recorded as E2 = (S∗∗

a , I
∗∗
n , I∗∗a ).

Proof. For more convenient calculation, we assume α1 = α2 = α and ω1 = ω2 =
ω. It is not a restriction, all our calculations can be made without this assumption.
It is easy to know that the equilibrium E2 satisfies

− (In + σ1Ia)σ2βSa + α (Sa + Ia) (1− Sa − In − Ia)− ωSa + θγIa = 0,

(In + σ1Ia)β (1− Sa − In − Ia)− α (Sa + Ia) In + ωIa − γIn = 0,

(In + σ1Ia)σ2βSa + α (Sa + Ia) In − ωIa − θγIa = 0.

(3.1)

From the first and the third equations of (3.1), we can obtain

In =
αSa − αI2a − (2βSaσ2σ1 + 2αSa − γθ − α) Ia − αS2

a − ωSa
βSaσ2 + αIa + αSa

, (3.2)

In =
Ia (−βSaσ2σ1 + γθ + ω)

βSaσ2 + αIa + αSa
, (3.3)

by (3.2) and (3.3), we have Ia = α−ω
α −Sa and substitute it into equation (3.3), we

obtain
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In =
(α− ω − αSa) (−βSaσ2σ1 + γθ + ω)

(βSaσ2 + α− ω)α
.

Substituting the values of In and Ia into the second equation of (3.1), we obtain
that Sa is the positive root of the quadratic equation

c1S
2
a + c2Sa + c3 = 0. (3.4)

where
c1 = −β2ασ2 (ω (σ1 + σ2) + σ1(α− ω) (σ1 − σ2) + γσ1 (θ − σ2));
c2 = βα(αγ (θσ1 − σ2) + ω(α− ω) (σ1 − σ2) + γ2

(
θ2 − σ2

)
+ ωγθ (2− σ1)) +D;

c3 = −γ(α− ω)
(
α2 + αγ + (σ1(α− ω) + γθ + ω)βθ

)
;

D = βσ1σ2(α− ω)2(βσ1 + α) + β2ωσ2(γθ + ω) + ω2αβ
+β(α− ω)[βσ1σ2(γθ + ω) + βωσ1σ2 + αγσ1σ2].

when Ra1 = α1

ω1
> 1, α1 = α2 = α, and ω1 = ω2 = ω, we can obtain α > ω. Since

θ > 1 > σ2, σ1 > σ2, so c1 < 0, c2 > 0 and c3 < 0. After calculation, one root of
equation (3.4) corresponds to the equilibrium E2

0 =
(
S0
a, I

0
n, I

0
a

)
= (α1−ω1

α1
, 0, 0). By

the relationship between root and coefficient, it is easy to get that there are two
positive roots of equation(3.4). If Rd2 > 1, the other positive root exists and makes
In > 0, Sa > 0, Ia > 0, that is the equilibrium E2.

3.2. Threshold of awareness and disease

It can be seen from above that the threshold of awareness is Ra1 = α1

ω1
, when aware-

ness does not spread, the basic reproduction number of disease is Rd1 = β
γ . Next,

we calculate the epidemic threshold when awareness spreads. According to the con-
cepts of next generation matrix and the basic reproduction number presented in
[25], we define

F =

β (1− 2In − Sa − σ1Ia − Ia) σ1β (1− In − Sa − 2Ia)− βIn

σ2βSa σ1σ2βSa

 ,

V =

γ + α2 (Sa + Ia) α2In − ω2

−α2 (Sa + Ia) −α2In + ω2 + θγ

 ,

FV −1
(
E2

0

)
=

 ω1G1 ω1G2

σ2 (α1 − ω1)G1 σ2 (α1 − ω1)G2

 ,
where

G1 =
βα1 (γθ + ω2) + σ1βα2 (α1 − ω1)

α1γ (α1α2θ + α1γθ − α2θω1 + α1ω2)
,

G2 =
βα1 (σ1γ + ω2) + σ1βα2 (α1 − ω1)

α1γ (α1α2θ + α1γθ − α2θω1 + α1ω2)
.

Hence, a straightforward calculation of ρ(FV −1) gives that the basic reproduc-
tion number of disease is Rd2 = ψ0 when awareness spreads, where
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ψ0 =
β
[
σ1σ2α2 (α1 − ω1)

2
+m (α1 − ω1) + α1ω1 (γθ + ω2)

]
α1γα2θ (α1 − ω1) + α2

1γ (γθ + ω2)
,

m = α1σ2γθ + α1σ2ω2 + σ1ω1α2.

4. The stability of equilibria

4.1. Local stability of equilibria

Theorem 4.1. If Ra1 < 1 and Rd1 < 1, then the disease-free awareness-free equilib-
rium E1

0 is locally asymptotically stable.

Proof. The Jacobian matrix of system (2.2) at E1
0 is

J
(
E1

0

)
=


α1 − ω1 0 α1 + θγ

0 β − γ σ1β + ω2

0 0 −ω2 − θγ

 .

The characteristic equation of J
(
E1

0

)
is

Φ1(λ) = (λ− α1 + ω1) (λ− β + γ) (λ+ ω2 + θγ) = 0.

where λ denotes the eigenvalue and

λ1 = α1 − ω1, λ2 = β − γ, λ3 = −ω2 − θγ < 0.

Thus, if Ra1 < 1 and Rd1 < 1, then the λ1 = α1 − ω1 < 0, λ2 = β − γ < 0. All
roots of Φ1(λ) have negative real parts. Hence, E1

0 is locally asymptotically stable.

Theorem 4.2. If Ra1 > 1 and Rd2 < 1, then the disease-free awareness-endemic
equilibrium E2

0 is locally asymptotically stable.

Proof. The Jacobian matrix of system (2.2) at E2
0 is

J
(
E2

0

)
=


ω1 − α1 n1 n2

0 a b

0 c d

 ,

where

n1 =
(σ2β + α1) (ω1 − α1)

α1
, n2 =

(σ1σ2β + α1) (ω1 − α1)

α1
+ ω1 + θγ,

we use symbol M1 and

M1 =

a b

c d

 =

 βω1 − α2 (α1 − ω1)

α1
− γ βσ1ω1 + α1ω2

α1
(βσ2 + α2) (α1 − ω1)

α1

σ1σ2β (α1 − ω1)

α1
− θγ − ω2

 .

The eigenvalues of J
(
E2

0

)
are
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λ1 = ω1 − α1,

λ2,3 =
1

2
(tr(M1)±

√
(tr(M1))2 − 4det(M1)) =

1

2
[(a+ d)±

√
(a− d)2 + 4bc].

If Ra1 > 1, then α1 > ω1, so λ1 < 0 and bc > 0. It is easy to show that
Reλ2,3 < 0 if and only if (a+ d) +

√
(a− d)2 + 4bc < 0, that is det(M1) > 0. Using

that

det(M1) =
−β
[
σ1σ2α2 (α1 − ω1)

2
+m (α1 − ω1) + α1ω1 (γθ + ω2)

]
α2
1

+
γα2θ (α1 − ω1) + α1γ (γθ + ω2)

α1
> 0.

We can easily prove that if Ra1 > 1 and Rd2 < 1, then detM1 > 0, so E2
0 is locally

asymptotically stable.

Theorem 4.3. If Ra1 < 1 and Rd1 > 1, then the disease-endemic awareness-free
equilibrium E1 is locally asymptotically stable.

Proof. The Jacobian matrix of system (2.2) at E1 is

J (E1) =
1

β


(γ − β)σ2β + γα1 − βω1 0 βθγ + γα1

(β + α2) (γ − β) β(γ − β) α2(γ − β) + σ1γ + ω2β

(βσ2 + α2) (β − γ) 0 α2(β − γ)− θγβ − ω2β

 .

The characteristic equation of J (E1) is

Φ2(λ) = (λ− γ + β) |λE −M2| = 0,

where

M2 =

−
(β − γ)σ2β − γα1 + βω1

β

βθγ + γα1

β
(β − γ)σ2β − γα2 + βα2

β
−βθγ + γα2 + β (ω2 − α2)

β

 .

The eigenvalues of J (E1) are

λ1 = γ − β, λ2,3 =
1

2
(tr(M2)±

√
(tr(M2))

2 − 4det(M2)).

If Rd1 > 1, then λ1 < 0, using the same argument in Theorem 4.2, the necessary

and sufficient condition for Reλ2,3 < 0 is det(M2) > 0. We define M2 =

a b

c d

, if

Ra1 < 1, then α1 < ω1, α2 < ω2. Since α1 < α2, ω2 < ω1, so |a| > |c|, |d| > |b|, that
is det(M2) > 0, Reλ2,3 < 0. Hence, E1 is locally asymptotically stable.

4.2. Global stability of equilibria

In this subsection, for simplicity, we assume that α1 = α2 = α and ω1 = ω2 = ω.
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Theorem 4.4. If Ra1 < 1 and Rd1 < 1, then the disease-free awareness-free equilib-
rium E1

0 is globally asymptotically stable.

Proof. Consider a Lyapunov function defined by

V1 = Sa +
ω − α
ω + γθ

In + Ia.

Differentiating V1 along the solutions of system (2.2) leads to

V̇1 =− αS2
a −

β(ω − α)

ω + γθ
I2n −

(βσ1 + α) (ω − α)

ω + γθ
I2a −

(β + α)(ω − α)

ω + γθ
SaIn

− (ω − α) (γθ − βσ1)

ω + γθ
Ia − (ω − α)Sa −

(γ − β)(ω − α)

ω + γθ
In − 2αSaIa

− βσ1(ω − α)

ω + γθ
SaIa −

(ω − α) (βσ1 + β + α)

ω + γθ
IaIn

=− αS2
a − 2αSaIa −

(
1−Rd1

)
(1−Ra1) γω

ω + γθ
In − (1−Ra1)

ω (γθ − βσ1)

ω + γθ
Ia

− (1−Ra1) (
(β + α)ω

ω + γθ
SaIn +

βσ1ω

ω + γθ
SaIa +

ω (βσ1 + β + α)

ω + γθ
IaIn)

− (1−Ra1) (
βω

ω + γθ
I2n +

(βσ1 + α)ω

ω + γθ
I2a + ωSa).

Therefore, if Ra1 < 1 and Rd1 < 1, then V̇1 ≤ 0. V̇1 = 0 if and only if Sa = In =
Ia = 0. That is {(Sa, In, Ia) |V̇1 = 0} =

{
E1

0

}
. Using the same argument in [26], by

LaSalle’s Invariance Principle[27], the E1
0 is globally asymptotically stable.

Theorem 4.5. If Ra1 < 1 and Rd1 > 1, then the disease-endemic awareness-free
equilibrium E1 is globally asymptotically stable.

Proof. Consider a Lyapunov function defined by

V2 = Sa +
3(β + ω)

ω − α
In +

3(β + ω)

ω − α
Ia.

Differentiating V2 along the solutions of system (2.2) leads to

V̇2 =− (β (1− In)− γ)
2

β(β − γ)
− 3α(β + ω) + βσ1(ω − α)

ω − α
I2a −

3α(β + ω)

ω − α
S2
a

− (β − γ)(σ1 + 1 +
α

β
)InIa − (β − γ)(1 +

α

β
)InSa −

6α(β + ω)

ω − α
IaSa

− (βσ1 (1− Ia − Sa) + ω)
Ia
In
− (ω − α+

γ(α+ β) + 2β(β + ω)

β
)Sa

− 2β2 (1− σ1) + β (ω − α+ γσ1 + ω + γ) + αγ

β
Ia − βσ1IaSa

=− (β (1− In)− γ)
2

βγ
(
Rd1 − 1

) − 3α(β + ω) + βσ1ω (1−Ra1)

ω (1−Ra1)
I2a −

3α(β + ω)

ω (1−Ra1)
S2
a

− γ
(
Rd1 − 1

)
(σ1 + 1 +

α

β
)InIa − γ

(
Rd1 − 1

)
(1 +

α

β
)InSa −

6α (β + ω)

ω (1−Ra1)
IaSa

− (βσ1 (1− Ia − Sa) + ω)
Ia
In
− (ω (1−Ra1) +

γ(α+ β) + 2β(β + ω)

β
)Sa
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− 2β2 (1− σ1) + β (ω (1−Ra1) + γσ1 + ω + γ) + αγ

β
Ia − βσ1IaSa.

Therefore, if Ra1 < 1 and Rd1 > 1, then V̇2 ≤ 0. V̇2 = 0 if and only if Sa = Ia = 0,
In = β−γ

β . That is {(Sa, In, Ia) |V̇2 = 0} = {E1}. By LaSalle’s Invariance Principle,
the E1 is globally asymptotically stable.

Theorem 4.6. If Ra1 > 1 and Rd2 < 1, then the disease-free awareness-endemic
equilibrium E2

0 is globally asymptotically stable. If Ra1 > 1 and Rd2 > 1, then the
disease-endemic awareness-endemic equilibrium E2 is globally asymptotically stable.

Proof. If Ra1 > 1, then the corresponding disease-free equilibrium is E2
0 . It shows

that, as t → ∞, we have Sa(t) + Ia(t) → α−ω
α , Sn(t) + In(t) → ω

α , so the limiting
system of system (2.2) is

dIn(t)

dt
= (In + σ1Ia)β(

ω

α
− In)− (α− ω)In + ωIa − γIn,

dIa(t)

dt
= (In + σ1Ia)σ2β(

α− ω
α
− Ia) + (α− ω)In − ωIa − θγIa.

(4.1)

Since Γ is positively invariant with respect to system (2.2), the dynamics of
system (4.1) can be explored on this restricted region

∆ = {(In, Ia) ∈ R2
+|In ≤ ω

α , Ia ≤
α−ω
α }.

Next, we study the globally asymptotic stability of the equilibrium E2
0 and the

equilibrium E2 by studying the limit system (4.1). Motivated by the method in
[28, 29], define

f(u) =

 f1 (u1, u2)

f2 (u1, u2)


=

 (u1 + σ1u2)β(ωα − u1)− (α− ω)u1 + ωu2 − γu1
(u1 + σ1u2)σ2β(α−ωα − u2) + (α− ω)u1 − ωu2 − θγu2

 .

Then f : R2
+ → R2

+ is a continuously differentiable map. Obviously, f(0) = 0,
fi(u) ≥ 0 for all u ∈ ∆, ui = 0, i = 1, 2.

A straightforward calculation of Df(u) gives

Df(u) =

 q1 σ1β(ωα − In) + ω

βσ2(α−ωα − Ia) + α− ω q2

 .

Where

q1 = β(ωα − In)− β(Iaσ1 + In)− α+ ω − γ,

q2 = βσ1σ2(α−ωα − Ia)− βσ2(Iaσ1 + In)− γθ − ω.

If Ra1 > 1, then
∂fi
∂uj

≥ 0(i 6= j), u ∈ ∆, so f is cooperative on ∆. Obviously,

|Df(u)| 6= 0, so Df(u) is irreducible on u ∈ ∆.
For every k ∈ (0, 1) and u ∈ ∆, we have
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f1 (ku1, ku2) = (ku1 + σ1ku2)β(
ω

α
− ku1)− (α− ω)ku1 + ωku2 − γku1

> (ku1 + σ1ku2)β(
ω

α
− u1)− (α− ω)ku1 + ωku2 − γku1

= kf1 (u1, u2) .

Using the same argument, we find that f2 (ku1, ku2) > kf2 (u1, u2), so f is strictly
sublinear on ∆.

A straightforward calculation of Df(0) gives

Df(0) =


βω

α
− α+ ω − γ σ1βω

α
+ ω

βσ2(α− ω)

α
+ α− ω βσ1σ2(α− ω)

α
− γθ − ω

 .

It is easy to show that when α1 = α2 = α and ω1 = ω2 = ω, the Df(0) = M1, so
s(Df(0)) := max{Reλ : Φ3(λ)}, where Φ3(λ) denotes the characteristic equation
of Df(0).

By Corollary 3.2 in [28], and Theorem 4.2 in this paper, we obtain the
following results.

If Ra1 > 1, and Rd2 < 1, then

s(Df(0)) := max{Reλ : Φ3(λ)} < 0,

so the equilibrium (0, 0) of system (4.1) is globally asymptotically stable. Since
Sa(t) → α−ω

α , In(t) → 0 and Ia(t) → 0 as t → ∞, while E2
0 = (α−ωα , 0, 0). Thus,

based on the theory of asymptotic autonomous systems [30], E2
0 is globally asymp-

totically stable.
If Ra1 > 1, and Rd2 > 1, then

s(Df(0)) := max{Reλ : Φ3(λ)} > 0,

so the equilibrium (I∗n, I
∗
a) of system (4.1) is globally asymptotically stable. Since

Sa(t)→ S∗∗
a , In(t)→ I∗∗n and Ia(t)→ I∗∗a as t→∞, while E2 = (S∗∗

a , I
∗∗
n , I∗∗a ). By

carrying out similar argument to the above, E2 is globally asymptotically stable.

5. Numerical simulation

5.1. Effect of awareness on system dynamics

If Ra1 = α1

ω1
< 1, Rd1 = β

γ < 1, then the system approaches the equilibrium E1
0 ;

If Ra1 = α1

ω1
< 1, Rd1 = β

γ > 1, then the system approaches the equilibrium E1;
In the above two cases, the awareness parameters have no effect on the epidemic

threshold. The Rd1 increases with the increase of β and decreases with the increase
of γ.

If
Ra1 =

α1

ω1
> 1,

Rd2 = Rd1
σ1σ2α2 (α1 − ω1)

2
+m (α1 − ω1) + α1ω1 (γθ + ω2)

α1α2θ (α1 − ω1) + α2
1 (γθ + ω2)

< 1,

where m = (α1σ2γθ + α1σ2ω2 + σ1ω1α2), then the system approaches the equilib-
rium E2

0 ;
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If
Ra1 =

α1

ω1
> 1,

Rd2 = Rd1
σ1σ2α2 (α1 − ω1)

2
+m (α1 − ω1) + α1ω1 (γθ + ω2)

α1α2θ (α1 − ω1) + α2
1 (γθ + ω2)

> 1,

where m = (α1σ2γθ + α1σ2ω2 + σ1ω1α2), then the system approaches the equilib-
rium E2;

Hence, when Ra1 = α1

ω1
> 1, then the awareness spreading affects the epidemic

threshold. Next, we learn about the effects of awareness spreading on epidemic.
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Figure 2. Relationship between awareness parameters and disease parameters.
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Figure 3. Relationship between awareness parameters and epidemic thresholds.

Figure 2(a) illustrates that when Ra1 > 1 and Rd2 = 1, β increases with rise in the
value of α and decreases with increase in the value of ω. Figure 2(b) illustrates
that when Ra1 > 1 and Rd2 = 1, γ decreases with increase in the value of α and
increases with increase in the value of ω. Therefore, Figure 2 illustrates that the
higher the awareness, the smaller recovery rate and the more infected individuals are
allowed before the outbreak of the epidemic. In other words, raising awareness can
effectively reduce the outbreak of epidemic. Here, the parameters are (a)γ = 0.6,
(b)β = 1.8. Others are θ = 2, σ1 = 0.5, σ2 = 0.4.

Figure 3(a) illustrates that Rd2 decreases with increase in the value of α when
Ra1 > 1 holds. This shows that the stronger the α is, the fewer people are infected
per unit time. Figure 3(b) illustrates the linear relationship between Rd2 and Rd1
is Rd2 = kRd1, where k ∈ (0, 1). This shows that raising awareness can reduce the
basic reproduction number of disease so as to reduce the spread of epidemic. Here,
(b)ω1 = 0.5, ω2 = 0.4. Other parameters are β = 1.8, γ = 0.6, θ = 2, σ1 = 0.5,
σ2 = 0.4.

Next, we analyze the effects of awareness parameters σ1, σ2, and θ on epidemic
threshold.
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Figure 4. Effects of σ1, σ2 and θ on stable region of different equilibria.

When awareness has no effect on epidemic, that is σ1 = σ2 = θ = 1, the epidemic
threshold is given by

Rd2 = Rd1.

Figure 4(a) illustrates when one considers reduced infectivity, where 0 < σ1 < 1,
σ2 = θ = 1, the epidemic threshold is given by

Rd2 = Rd1
ωσ1R

a
1 + ω + γ − ωσ1
ωRa1 + γ

.

If Rd2 > 1, then Rd1 >
ωRa1 + γ

ωσ1Ra1 + ω + γ − ωσ1
= 1+

ω (Ra1 − 1) (1− σ1)

ωσ1Ra1 + ω + γ − ωσ1
. When

the rate of awareness spreading is much higher than the rate of awareness losing,
that is Ra1 → ∞, then the inequality Rd1 >

1
σ1

holds. The parameters are γ = 0.6,
ω1 = 0.5, ω2 = 0.4, α2 = 0.6.

Figure 4(b) illustrates when one considers reduced susceptibility, where 0 < σ2 <
1, σ1 = θ = 1, the epidemic threshold is given by

Rd2 = Rd1
σ2 (Ra1 − 1) + 1

Ra1
.

If Rd2 > 1, then Rd1 >
Ra1

σ2 (Ra1 − 1) + 1
= 1 +

(1− σ2) (Ra1 − 1)

σ2 (Ra1 − 1) + 1
. Similar to the

previous case, if Ra1 →∞, then the inequality Rd1 >
1
σ2

holds. The parameters are
γ = 0.6, ω2 = 0.4, ω1 = 0.5, α2 = 0.6.

Figure 4(c) illustrates when one considers faster recovery, where θ > 1, σ1 =
σ2 = 1, the epidemic threshold is given by

Rd2 = Rd1
ωRa1 + γθ

ωRa1θ − ωθ + γθ + ω
.
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If Rd2 > 1, then Rd1 >
ωRa1θ − ωθ + γθ + ω

ωRa1 + γθ
= 1 +

ω (Ra1 − 1) (θ − 1)

ωRa1 + γθ
. If Ra1 →

∞, then the inequality Rd1 > θ holds. The parameters are γ = 0.6, ω1 = 0.5,
ω2 = 0.4, α2 = 0.6.

Figure 4(d) illustrates that when Ra1 > 1, the protective measures taken by
the aware susceptible individuals can reduce the spread of the epidemic more than
those taken by the aware infected individuals. The parameters are γ = 0.6, θ = 1,
α2 = 0.6, ω1 = 0.5, ω2 = 0.4.

(a) (b)

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

R
2
d

2.3

2.4

2.5

2.6

2.7

2.8

(c) (d)

Figure 5. Effects of various parameters on the epidemic threshold Rd
2 when Ra

1 > 1.

Figure 5(a,b) illustrates that when Ra1 > 1(α = 0.6, ω = 0.5, β = 1.8, γ = 0.6,
θ = 2), the effects of σ1 and σ2 on epidemic threshold Rd2. It can be noted that Rd2
decreases with the decrease of σ1 and σ2, while the effect of the change of σ2 on Rd2
is more obvious. Therefore, we should increase awareness education for individuals,
especially those unaware susceptible individuals so as to reduce the spread of disease
to a greater extent. Figure 5(c,d) illustrates that when Ra1 > 1(ω = 0.6, β = 1.8,
γ = 0.6, σ1 = 0.6, σ2 = 0.5), the effects of α and θ on epidemic threshold Rd2. It
can be seen that Rd2 decreases with the increase of α and θ. When α is relatively
small, the change of θ has fewer effects on the epidemic threshold.

5.2. Dynamic behavior of equilibria

In this subsection, we analyze the time series dynamics of different classes, we take
the initial values of each variable as: Sn(0) = 0.1, Sa(0) = 0.1, In(0) = 0.4, Ia(0) =
0.4. For the rest of the parameter values, we refer to reference [8, 23]. Figure 6(a)
shows that when Ra1 < 1 and Rd1 < 1(β = 0.5, γ = 0.6, α1 = 0.3, ω1 = 0.5,
α2 = 0.4), the system (2.2) has only one disease-free awareness-free equilibrium
E1

0 , and E1
0 is globally asymptotically stable; Figure 6(b) shows that when Ra1 > 1

and Rd2 < 1(β = 0.5, γ = 0.6, α1 = 0.6, ω1 = 0.5, α2 = 0.7), the system (2.2)
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has only one disease-free awareness-endemic equilibrium E2
0 , and E2

0 is globally
asymptotically stable; Figure 6(c) shows that when Ra1 < 1 and Rd1 > 1(β = 1.8,
γ = 0.6, α1 = 0.3, ω1 = 0.5, α2 = 0.4), the system (2.2) has only one disease-
endemic awareness-free equilibrium E1, and E1 is globally asymptotically stable;
Figure 6(d) shows that when Ra1 > 1 and Rd2 > 1(β = 1.8,γ = 0.6, α1 = 0.6,
ω1 = 0.5, α2 = 0.7), the system (2.2) has only one disease-endemic awareness-
endemic equilibrium E2, and E2 is globally asymptotically stable. Other parameter
values are ω2 = 0.4, σ1 = 0.6, σ2 = 0.5, θ = 2.
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Figure 6. The stability of different equilibria.

6. Discussion

In this paper, we study an SIS model for the effects of awareness spreading on
epidemic based on previous studies. The main feature of our model is that it is more
comprehensive and more in line with the practical life. The dynamic process of the
model is fully analyzed in details, and the effects of various aspects of awareness on
epidemic are considered. Based on the analysis, we find that raising awareness can
effectively reduce the basic regeneration number of disease. In addition, awareness
can not only reduce the infection rate of epidemic, but also raise the recovery rate
of individuals and shorten the period of epidemic.

The way of awareness spreading studied in this paper only consider the com-
munication between individuals, while the way of awareness losing only take the
loss of individual autonomy into account. However, in fact, people can also obtain
awareness through Internet searching and lose awareness through contacting others.
Moreover, although awareness may improve epidemic prevention in some cases, it
may cause public panic in other cases, leading to further spread of epidemic. These
factors will be taken into account in the subsequent researches. Though we only
studied the one way of awareness spreading and losing, our research results also play
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a crucial role in preventing and controlling the spread of some infectious diseases.
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