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On a Special Generalized Mixture Class of
Probabilistic Models
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Abstract In this paper, we develop a new mathematical strategy to create
flexible lifetime distributions. This strategy is based on a special general-
ized mixture derived to the one involved in the so-called weighted exponential
distribution. Thus, we introduce a new class of lifetime distributions called
“special generalized mixture” class and discussed its qualities. In particular,
a short list of new lifetime distributions is presented in details, with a focus
on the one based on the Lomax distribution. Different mathematical proper-
ties are described, including distributional results, diverse moments measures,
incomplete moments, characteristic function and bivariate extensions. Then,
the applicability of the new class is investigated through the model parameters
based on the Lomax distribution and the analysis of a practical data set.
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1. Introduction

Despite certain qualities, the exponential distribution suffers from a lack of flexibility
to model a large panel of lifetime phenomena. In order to improve it on this aspect,
several extensions adding a shape parameter have been proposed, beginning with
the notorious Weibull distribution. In particular, an alternative was proposed by
the weighted exponential (WE) distribution introduced by [11]. It is based on the
idea of [2], defining the related probability density function (PDF) by

f(x;α, λ) =
1

P (αX1 > X2)
f∗(x;λ)F∗(αx;λ), x > 0,

(and zero otherwise), where α > 0, and X1 and X2 are two independent and
identically distributed random variables defined on a certain probability space, say
(Ω,A, P ), with the PDF specified by f∗(x;λ) = λe−λx, λ, x > 0 and the cumulative
distribution function (CDF) given by F∗(x;λ) = 1 − e−λx. In expanded form,
f(x;α, λ) is expressed as

f(x;α, λ) =
1 + α

α
λe−λx(1− e−αλx), x > 0.
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1Université de Caen Normandie, LMNO, Campus II, Science 3, 14032, Caen,
France

2Department of Statistics, Mathematics and Insurance, Benha University, E-
gypt

http://dx.doi.org/10.12150/jnma.2021.71


72 C. Chesneau & C. H. M. Yousof

The corresponding CDF is obtained as

F (x;α, λ) =
1 + α

α

[
1− e−λx − 1

1 + α
(1− e−λx(1+α))

]
, x > 0. (1.1)

Then, it is shown in [11] that the WE distribution corresponds to a hidden trunca-
tion distribution, as well as the distribution of a sum of two independent random
variables following exponential distributions with parameters λ and λ(1 + α), re-
spectively. Also, the importance of the new shape parameter α on the possible
shapes of f(x;α, λ) is discussed, increasing the limited possibilities of the former
exponential PDF. As important feature, the exponential distribution is a limiting
distribution of the WE distribution; it is obtained by taking α → +∞. For data
analysis purposes, the WE model reveals to be an interesting alternative to various
weighted exponential models, as the gamma, Weibull or generalized exponential
models. Further details on the WE distribution can be found in [1], [19], [18], [8]
and [6].

The following new remark is at the basis of this study. One can express the
CDF given by (1.1) as the following generalized two-component mixture:

F (x;α, λ) = w1F∗(x;λ) + w2F∗(x(1 + α);λ), (1.2)

with w1 = (1 + α)/α > 0 and w2 = −1/α < 0 satisfying w1 + w2 = 1, and F∗(x;λ)
and F∗(x(1 + α);λ) are two valid CDFs, the second one being a scale version of
the first one. For more details on the concept of generalized mixture distribution-
s, we refer the reader to [21] and [12]. Motivated by the overall simplicity and
great applicability of the WE distribution, our idea is to use the particular mixture
structure of (1.2) to construct a general class of lifetime distributions, called the
special generalized mixture-generated (SGM-G) class. As prime result, we consid-
er a generic parent lifetime distribution with CDF denoted by G(x; ξ) instead of
F∗(x;λ), and put the necessary conditions on it such that (1.2) remains a valid
CDF. Note that only one extra parameter is introduced in comparison to the par-
ent distribution, with the perspective of a significant gain in terms of statistical
modelling. Then, we investigate the essential functions of the new class, and list
new lifetime distributions of interest based on the half-Cauchy, half-logistic, half-
normal and Lomax distributions, called SGMHC, SGMHL, SGMHN and SGMLx
distributions, respectively. The general properties of the class are investigated in
terms of those of the parent distribution, discussing distributional results, diverse
moments measures including crude moments, variance, index of dispersion, skew-
ness and kurtosis, also incomplete moments, characteristic function and bivariate
extensions based on various copulas. As concrete application, these properties are
applied to the SGMLx distribution. Then, the inferential issue of the SGMLx mod-
el is discussed through the maximum likelihood method. A complete analysis of
practical data is performed for illustrative purposes, showing that the fit power of
the SGMLx model is competitive in comparison to some existing lifetime models of
the literature.

The sections making up the paper are as follows. Section 2 precises the SGM-G
class, with description of its main functions and a short list of special distributions.
Several properties of the SGM-G class are discussed in Section 3. Section 4 is
devoted a data analysis, revealing the applicable potential of the SGMLx model.
Some concluding notes are formulated in Section 5.
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2. The SGM-G class

The essential elements for understanding the SGM-G class are described in this
section.

2.1. Definition and elementary properties

The idea of the SGM-G class is based on the following new result.

Proposition 2.1. Let α > 0, G(x; ξ) be a CDF of a continuous distribution with
parameter(s) represented by ξ and g(x; ξ) be the corresponding PDF. Let us suppose
that g(x; ξ) is decreasing with respect to x and with support (0,+∞). Then, the
following function has the properties of a CDF:

F (x;α, ξ) =
1 + α

α

[
G(x; ξ)− 1

1 + α
G(x(1 + α); ξ)

]
, x > 0,

(and zero otherwise).

Proof. Firstly, F (x;α, ξ) is a continuous function since it is defined as a differ-
ence of two continuous functions. Then, since g(x; ξ) is decreasing and x(1+α) ≥ x,
we have g(x; ξ) ≥ g(x(1 + α); ξ). Therefore, for any x > 0, almost everywhere, we
have

d

dx
F (x;α, ξ) =

1 + α

α
[g(x; ξ)− g(x(1 + α); ξ)] ≥ 0.

On the other side, we have limx→0 F (x;α, ξ) = 0 and limx→+∞ F (x;α, ξ) = [(1 +
α)/α](1−1/(1+α)×1) = 1. The required properties to be a valid CDF are satisfied
for F (x;α, ξ), ending the proof of Proposition 2.1. �

In the light of Proposition 2.1, we define the SGM-G class by the CDF given as

F (x;α, ξ) =
1 + α

α

[
G(x; ξ)− 1

1 + α
G(x(1 + α); ξ)

]
, x > 0, (2.1)

where G(x; ξ) is a CDF of a parent continuous distribution with parameter(s)
represented by ξ, having a decreasing PDF with respect to x and with support
on (0,+∞), denoted by g(x; ξ). As already mentioned previously, one can write
F (x;α, ξ) as F (x;α, ξ) = w1G(x; ξ) + w2G(x(1 + α); ξ), with w1 = (1 + α)/α and
w2 = −1/α such that w1 + w2 = 1, where G(x; ξ) and G(x(1 + α); ξ) are two
CDFs, revealing the generalized mixture structure of the SGM-G class. With the
choice of the exponential distribution as parent, i.e., with CDF and PDF specified
by G(x;λ) = 1 − e−λx, λ, x > 0 and g(x;λ) = λe−λx, respectively, g(x;λ) being
decreasing with respect to x, F (x;α, λ) becomes the CDF of the WE distribution
proposed by [11], as described in (1.1). Also, the following limiting properties hold:

• limα→+∞ F (x;α, ξ) = G(x; ξ), meaning that the parent distribution is a lim-
iting distribution of the SGM-G class,

• limα→0 F (x;α, ξ) = G(x; ξ) − xg(x; ξ), and this limiting function is a valid
CDF provided that limx→0 xg(x; ξ) = 0 and limx→+∞ xg(x; ξ) = 0, with PDF
given as p(x; ξ) = −xdg(x; ξ)/dx (which is positive since g(x; ξ) is decreasing
by assumption).

Other interesting properties of the new class are discussed along the study.
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2.2. Functions of interest

Based on (2.1), the survival function of the SGM-G class is given as

S(x;α, ξ) = 1− 1 + α

α

[
G(x; ξ)− 1

1 + α
G(x(1 + α); ξ)

]
, x > 0.

The corresponding PDF can be expressed as

f(x;α, ξ) =
1 + α

α
[g(x; ξ)− g(x(1 + α); ξ)] , x > 0.

Also, the associated hazard rate function (HRF) is given as

h(x;α, ξ) =
(1 + α) [g(x; ξ)− g(x(1 + α); ξ)]

α− [(1 + α)G(x; ξ)−G(x(1 + α); ξ)]
, x > 0.

As functions related to the HRF, the reversed HRF is given as

r(x;α, ξ) =
g(x; ξ)− g(x(1 + α); ξ)

G(x; ξ)−G(x(1 + α); ξ)/(1 + α)
, x > 0

and the cumulative HRF is defined by

H(x;α, ξ) = log(α)− log {α− [(1 + α)G(x; ξ)−G(x(1 + α); ξ)]} , x > 0.

The quantile function can be obtained by inverting F (x;α, ξ). Hence, by denoting
it as Q(u; ξ), it satisfies F (Q(u; ξ); ξ) = u for u ∈ (0, 1), i.e.,

(1 + α)G(Q(u; ξ); ξ) = αu+G(Q(u; ξ)(1 + α); ξ).

In full generality, the analytical expression of Q(u; ξ) is not possible, but a numerical
evaluation is always possible if all the quantities involved are explicit.

2.3. Special distributions

In addition to the WE distribution, the SGM-G class contains a lot of lifetime dis-
tributions of potential interest for statistical purposes. Some of them are described
below.

SGMHC distribution. The SGMHC distribution corresponds to the member
of the SGM-G class defined with the half-Cauchy distribution as parent.
One can define the half-Cauchy distribution by the CDF given as G(x; b) =
(2/π) arctan(x/b), b, x > 0 and with the PDF expressed as g(x; b) = [2/(πb)][1+
(x/b)2]−2. Further details about the half-Cauchy distribution can be found
in [20] and [4]. Then, since g(x; b) is obviously decreasing with respect to x,
Proposition 2.1 can be applied. Hence, the SGMHC distribution is defined by
the CDF given as

F (x;α, b) =
2(1 + α)

απ

[
arctan

(x
b

)
− 1

1 + α
arctan

(
(1 + α)x

b

)]
, x > 0.

Also, the corresponding PDF is given by

f(x;α, b) =
2(1 + α)(α+ 2)bx2

π(b2 + x2)[(1 + α)2x2 + b2]
, x > 0.
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SGMHL distribution. The SGMHL distribution corresponds to the member of
the SGM-G class defined with the half-Logistic distribution as parent. Rigor-
ously, the half-Logistic distribution is defined by the CDF given by G(x; b) =
(1 − e−bx)/(1 + e−bx), b, x > 0 and with the PDF specified by g(x; b) =
2bebx/(1 + ebx)2 (see [17]). Then, since ebx > 1 for x > 0, we have

d

dx
g(x; b) = −2b2ebx(ebx − 1)

(ebx + 1)3
< 0,

implying that g(x; b) is decreasing with respect to x. Thus, Proposition 2.1
can be applied; the CDF of the SGMHL distribution is given by

F (x;α, b) =
1 + α

α

[
1− e−bx

1 + e−bx
− 1

1 + α

(
1− e−b(1+α)x

1 + e−b(1+α)x

)]
, x > 0.

After some developments, we show that the corresponding PDF is obtained
as

f(x;α, b) =
2(1 + α)(e(1+α)bx − ebx)(eb(α+2)x − 1)

α(ebx + 1)2(e(1+α)bx + 1)2
, x > 0.

SGMHN distribution. The SGMHN distribution corresponds to the member
of the SGM-G class based on the half-normal distribution. We may re-
fer the reader to [13] for more details on this parent distribution, which
is defined by the CDF given by G(x;σ) = erf(x/(σ

√
2)), σ, x > 0, where

erf(x) = (2/
√
π)
∫ x
0
e−t

2

dt is the error function, and with the PDF specified

by g(x;σ) = [
√

2/(σ
√
π)]e−x

2/(2σ2). It is clear that g(x; b) is decreasing with
respect to x. Hence, Proposition 2.1 can be applied; the SGMHN distribution
has the following CDF:

F (x;α, σ) =
1 + α

α

[
erf

(
x

σ
√

2

)
− 1

1 + α
erf

(
x(1 + α)

σ
√

2

)]
, x > 0.

Also, the corresponding PDF is obtained as

f(x;α, σ) =

√
2(1 + α)

ασ
√
π

e−x
2/(2σ2)

[
1− e−x

2α(2+α)/(2σ2)
]
, x > 0.

SGMLx distribution. The SGMLx distribution corresponds to the member of
the SGM-G class defined with the Lomax distribution. Here, we define the
Lomax distribution by the CDF given as G(x;β, λ) = 1−(1+x/λ)−β , β, λ, x >
0 and the PDF given by g(x;β, λ) = (β/λ)(1 + x/λ)−β−1 (see [14]). Then,
it is immediate that g(x;β, λ) is decreasing with respect to x. By applying
the Proposition 2.1, we legitimately define the SGMLx distribution by the
following CDF:

F (x;α, β, λ) =
1 + α

α

{
1−

(
1 +

x

λ

)−β
− 1

1 + α

[
1−

(
1 +

x(1 + α)

λ

)−β]}
,

x > 0. (2.2)

Also, the corresponding PDF is given by

f(x;α, β, λ) =
(1 + α)β

αλ

[(
1 +

x

λ

)−β−1
−
(

1 +
x(1 + α)

λ

)−β−1]
, x > 0.

(2.3)
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2.4. On the SGMLx distribution

Thanks to preliminaries investigations on the shape properties, we now put a fo-
cus on the SGMLx distribution with CDF and PDF specified by (2.2) and (2.3),
respectively. First of all, the corresponding HRF is given as

h(x;α, β, λ) =
(1 + α)β

[
(1 + x/λ)

−β−1 − (1 + x(1 + α)/λ)
−β−1

]
αλ− λ

[
α− (1 + α) (1 + x/λ)

−β
+ (1 + x(1 + α)/λ)

−β
] , x > 0.

(2.4)

Let us now investigate some asymptotic properties of F (x;α, β, λ), f(x;α, β, λ) and
h(x;α, β, λ). When x→ 0, we have

F (x;α, β, λ) ∼ (1 + α)β(β + 1)

2λ2
x2, f(x;α, β, λ) ∼ h(x;α, β, λ) ∼ (1 + α)β(β + 1)

λ2
x.

Also, when x→ +∞, we have

F (x;α, β, λ) ∼ 1− 1 + α

α
λβ
[
1− (1 + α)−β−1

]
x−β ,

f(x;α, β, λ) ∼ 1 + α

α
λβ
[
1− (1 + α)−β−1

]
βx−β−1, h(x;α, β, λ) ∼ βx−1.

We observe that the parameter α mainly governs the main constant. The critical
point(s) of f(x;α, β, λ) is(are) given as the solution(s) of the following differential
equation: df(x;α, β, λ)/dx = 0, which is equivalent to

− (1 + α)β(β + 1)

αλ2

[(
1 +

x

λ

)−β−2
− (1 + α)

(
1 +

x(1 + α)

λ

)−β−2]
= 0.

After some algebraic manipulations, we find only one solution given as

x0 =
λ
[
1− (1 + α)−1/(β+2)

]
(1 + α)−1/(β+2)+1 − 1

> 0.

Since df(x;α, β, λ)/dx > 0 for x < x0 and df(x;α, β, λ)/dx < 0 for x > x0, the
point x0 is a maximum. We thus prove that the SGMLx distribution is unimodal,
with mode given by x0. We see that the parameters α and β have notable influences
on the possible values of x0.

The critical point(s) of h(x;α, β, λ) is(are) hard to obtain due to the complex-
ity of the function. However, they can be determined numerically by using any
mathematical software. We end this part by investigating the possible shapes of
f(x;α, β, λ) and h(x;α, β, λ) through a graphical analysis.

Figures 1 and 2 plot several curves for f(x;α, β, λ) and h(x;α, β, λ), respectively,
for selected values of α, β and λ.
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Figure 1. Plots of PDFs of the SGMLx distribution.

Based on Figure 1, we see that the new PDF is highly right-skewed, with possible
spike shapes and a heavy-tail.
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Figure 2. Plots of HRFs of the SGMLx distribution.

Figure 2 indicates that the new HRF can be ”upside-down”, ”constant” and
”increasing-constant”. All these observations give us a precious indicator on the
modelling ability of the SGMLx model; it is adequate for right skewed lifetime data
with heavy tail, particularly adapted if one or more extreme values are present.
Further properties of the SGMLx distribution will be discussed in the next.
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3. Mathematical properties

In what follows, let Y be a random variable having g(x; ξ) as PDF (PDF of the
parent distribution) and X be a random variable having f(x;α, ξ) as PDF (PDF of
the SGM-G class).

3.1. Distributional results

The following result presents some PDFs of sums of random variables involving the
SGM-G class.

Proposition 3.1.

• Assume that X and Y are independent. Then, the PDF of X + Y is given as

fX+Y (x;α, ξ) =
1 + α

α

[
(g ? g)(x; ξ)− 1

1 + α
(gα ? g)(x; ξ)

]
, x > 0,

where gα(x; ξ) is the scale PDF version of g(x; ξ) given as gα(x; ξ) = (1 +

α)g(x(1 + α); ξ), and (h ? k)(x; ξ) =
∫ +∞
−∞ h(t; ξ)k(x − t; ξ)dt is the standard

convolution product of general functions h(x; ξ) and k(x; ξ) (provided that the
convolution production exists).

• Let X1 and X2 be two independent and identically distributed random variables
from X. Then, the PDF of X1 +X2 is given as

fX1+X2(x;α, ξ) =

(1 + α)2

α2

[
(g ? g)(x; ξ)− 2

1 + α
(gα ? g)(x; ξ) +

1

(1 + α)2
(g ? g)α(x; ξ)

]
,

x > 0,

where (g ? g)α(x; ξ) is the scale PDF version of (g ? g)(x; ξ) given as (g ?
g)α(x; ξ) = (1 + α)(g ? g)(x(1 + α); ξ).

Proof.

• Since X and Y are independent, with the use of their respective PDFs, the
PDF of X + Y is given as

fX+Y (x;α, ξ) =

∫ x

0

f(t;α, ξ)g(x− t; ξ)dt

=
1 + α

α

[∫ x

0

g(t; ξ)g(x− t; ξ)dt−
∫ x

0

g(t(1 + α); ξ)g(x− t; ξ)dt
]

=
1 + α

α

[
(g ? g)(x; ξ)− 1

1 + α
(gα ? g)(x; ξ)

]
,

proving the first point.

• Since X1 and X2 are independent and identically distributed, with the use of
their respective PDFs, the PDF of X1 +X2 is obtained as

fX1+X2
(x;α, ξ) =

∫ x

0

f(t;α, ξ)f(x− t;α, ξ)dt
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=
(1 + α)2

α2

[ ∫ x

0

g(t; ξ)g(x− t; ξ)dt−
∫ x

0

g(t; ξ)g((x− t)(1 + α); ξ)dt

−
∫ x

0

g(t(1 + α); ξ)g(x− t; ξ)dt+

∫ x

0

g(t(1 + α); ξ)g((x− t)(1 + α); ξ)dt

]
.

With the use of the change of variable y = x − t for the third integral and
y = t(1 + α) for last integral, we get

fX1+X2(x;α, ξ) =

(1 + α)2

α2

[
(g ? g)(x; ξ)− 2

1 + α
(gα ? g)(x; ξ) +

1

(1 + α)2
(g ? g)α(x; ξ)

]
,

proving the second point.

This ends the proof of Proposition 3.1. �

One can note that (g ? g)(x; ξ) corresponds to the PDF of the sum of two inde-
pendent and identically distributed random variables from Y . Also, (gα ? g)(x; ξ)
corresponds to the PDF of the sum of two independent random variables, one is
from Y and the other is from Y/(1 + α). Also, the obtained PDFs in Proposition
3.1 are defined as generalized mixtures of PDFs, which are new in the literature as
far as we know.

In the setting of the SGMLx distribution, the PDFs (g?g)(x; ξ) and (gα?g)(x; ξ)
can be expressed as infinite series, as developed in [7].

3.2. Crude moments

Crude moments are of importance to study some precise characteristics of a distri-
bution. Here, we express them for the proposed SGM-G class.

Proposition 3.2. Let r be a positive integer. The rth crude moment of X, say
µ′r,X = E(Xr), and the rth crude moment of Y , say µ′r,Y = E(Y r), satisfy the
following relation:

µ′r,X =
1 + α

α

[
1− 1

(1 + α)r+1

]
µ′r,Y .

(It is worth mentioning that µ′r,Y don’t always exist).

Proof. After development and the use of the change of variable y = x(1 + α),
we get

µ′r,X =

∫ +∞

0

xrf(x;α, ξ)dx

=
1 + α

α

[∫ +∞

0

xrg(x; ξ)dx−
∫ +∞

0

xrg(x(1 + α); ξ)dx

]
=

1 + α

α

[
1− 1

(1 + α)r+1

] ∫ +∞

0

yrg(y; ξ)dy =
1 + α

α

[
1− 1

(1 + α)r+1

]
µ′r,Y .

This ends the proof of Proposition 3.2. �
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Thanks to Proposition 3.2, the four first crude moments of X are given below:

µ′1,X =
α+ 2

1 + α
µ′1,Y , µ′2,X =

α2 + 3α+ 3

(1 + α)2
µ′2,Y , µ′3,X =

(α+ 2)(α2 + 2α+ 2)

(1 + α)3
µ′3,Y

and

µ′4,X =
α4 + 5α3 + 10α2 + 10α+ 5

(1 + α)4
µ′4,Y .

They are useful to derive various measures of X, as the mean, variance, standard
deviation, index of dispersion, skewness and kurtosis coefficients, and so on. For
instance, in the context of the SGMLx distribution, for β > r, we have µr,Y =
λrr!/

∏r
u=1(β − u), implying that

µ′r,X =
1 + α

α

[
1− 1

(1 + α)r+1

]
λrr!∏r

u=1(β − u)
.

In particular, for β > 2, the mean, second crude moment and variance of X are
given by, respectively,

µ = E(X) = µ′1,X =
(α+ 2)λ

(1 + α)(β − 1)
, µ′2,X =

2(α2 + 3α+ 3)λ2

(1 + α)2(β − 2)(β − 1)
,

and

Var(X) = µ′2,X − µ2 =
λ2(α2β + 2αβ + 2α+ 2β + 2)

(1 + α)2(β − 2)(β − 1)2
,

respectively. The index of dispersion of X is given as

IxDis(X) =
Var(X)

E(X)
=
λ(α2β + 2αβ + 2α+ 2β + 2)

(1 + α)(α+ 2)(β − 2)(β − 1)
.

When α → +∞, we rediscover the corresponding measures of the parent Lomax
distribution. Also, if β > r, the rth central moment of X can be determined via
the following relation:

µ∗r,X = E((X − µ)r)

=
(−1)rr!λr

α(1 + α)r

r∑
k=0

1

(r − k)!
(−1)k

(α+ 2)r−k

(β − 1)r−k
[
(1 + α)k+1 − 1

] 1∏k
u=1(β − u)

.

From this formula, if β > 4, we can express the skewness and kurtosis of X coeffi-
cients as

Skew(X) =
µ∗3,X

Var(X)3/2
, Kur(X) =

µ∗4,X
Var(X)2

,

respectively. These measures are collected in Table 1 for selected values of α, β and
λ.
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Table 1. E(X), Var(X), IxDis(X), Skew(X) and Kur(X) of the SGMLx distribution.

α β λ E(X) Var(X) IxDis(X) Skew(X) Kur(X)
0.0001 100 1000 20.20101 210.2865 10.4097 1.47922 6.378828
0.001 20.19193 210.0976 10.40503 1.479221 6.378831
0.1 19.28375 192.0491 9.959119 1.483942 6.406767
1 15.15152 131.1819 8.658009 1.67259 7.495892
5 11.78451 107.3517 9.10956 1.98955 9.170701
10 11.01928 105.1623 9.543478 2.038319 9.40061
50 10.29907 104.1927 10.11671 2.060445 9.499061
100 10.20094 104.1451 10.20936 2.061205 9.502409
200 10.15150 104.1208 10.25669 2.061612 9.504135
500 10.12121 104.1164 10.28695 2.061556 9.503903
1000 10.11111 104.1146 10.29705 2.061547 9.503866
2000 10.10606 104.1137 10.30210 2.061545 9.503856
10000 10.10202 104.1129 10.30614 2.061544 9.503853
50000 10.10121 104.1127 10.30695 2.061544 9.503853

500 5 1000 250.4996 104248.4 416.1618 4.64057 69.34955
10 71.57142 5888.52 82.27474 2.482542 13.63037
25 41.75000 1887.372 45.20652 2.267132 11.36265
50 20.44898 433.8800 21.21769 2.126377 10.06007
100 10.12121 104.1164 10.28695 2.061556 9.503903
150 6.724832 45.65274 6.788681 2.040692 9.33049

1.5 7.5 50 10.76923 102.2055 9.490509 2.922870 21.51898
100 21.53846 408.8219 18.98102 2.922870 21.51898
200 43.07692 1635.288 37.96204 2.922870 21.51898
500 107.6923 10220.55 94.90509 2.922870 21.51896
1000 215.3846 40882.19 189.8102 2.922869 21.51878
2000 430.7692 163528.8 379.6204 2.922863 21.51689
5000 1076.923 1022052 949.0484 2.922556 21.47721
10000 2153.843 4087870 1897.942 2.918038 21.18396

150 5.5 150 33.55385 1750.328 52.16474 4.147928 49.97932
300 10 500 55.74067 3860.570 69.25948 2.811081 17.82874
500 50 1000 20.44898 433.8800 21.21769 2.126377 10.06007

Based on Table 1, for the considered values of the parameters, we see that
Skew(X) is positive. Further, the spread for Kur(X) is alway greater than 3. Also,
IxDis(X) is superior to 1, so the SGMLx model may be used as an ”over-dispersed”
model.



82 C. Chesneau & C. H. M. Yousof

3.3. Incomplete moments

The incomplete moments allow to define various mean deviations and functions of
importance. Here, we express the incomplete moments in the setting of the SGM-G
class.

Proposition 3.3. Let r be a positive integer. The rth incomplete moment of X at
t ≥ 0, say µ′r,X(t) = E(Xr1X≤t), and the rth incomplete moment of Y at t ≥ 0,
say µ′r,Y (t) = E(Y r1Y≤t), satisfy the following relation:

µ′r,X(t) =
1 + α

α

[
µ′r,Y (t)− 1

(1 + α)r+1
µ′r,Y (t(1 + α))

]
.

Proof. Following the lines of the proof of Proposition 3.2, we arrive at

µ′r,X(t) =

∫ t

0

xrf(x;α, ξ)dx =
1 + α

α

[∫ t

0

xrg(x; ξ)dx−
∫ t

0

xrg(x(1 + α); ξ)dx

]
=

1 + α

α

[∫ t

0

xrg(x; ξ)dx− 1

(1 + α)r+1

∫ t(1+α)

0

yrg(y; ξ)dy

]

=
1 + α

α

[
µ′r,Y (t)− 1

(1 + α)r+1
µ′r,Y (t(1 + α))

]
.

This completes the proof of Proposition 3.3. �

For most of the parent distributions, µ′r,Y (t) exists and is well known, allowing
to express µ′r,X(t) in a simple way. That is, we can derive the mean deviation,
mean residual life function, Lorenz curve, and so on. For instance, in the context
of the SGMLx distribution, we have µ′r,Y (t) = λrβBλt/(1+λt)(r + 1, β − r), where

Bx(a, b) =
∫ x
0
ta−1(1 − t)b−1dt, x ≥ 0 and a, b > 0 is the so-called incomplete beta

function, implying that

µ′r,X(t) =
1 + α

α
λrβ×[

Bλt/(1+λt)(r + 1, β − r)− 1

(1 + α)r+1
Bλt(1+α)/[1+λt(1+α)](r + 1, β − r)

]
.

As examples of application, one can express the mean deviation of X about µ via
µ′1,X(t) as

δ = E(|X − µ|) = 2µF (µ;α, β, λ)− 2µ′1,X(µ)

=
2(α+ 2)λ

α(β − 1)

{
1−

(
1 +

(α+ 2)

(1 + α)(β − 1)

)−β
− 1

1 + α

[
1−

(
1 +

α+ 2

β − 1

)−β]}

− 2
1 + α

α
λβ×[

B(α+2)λ2/[(1+α)(β−1)+(α+2)λ2](2, β − 1)− 1

(1 + α)2
B(α+2)λ2/[β−1+(α+2)λ2](2, β − 1)

]
and the mean waiting time as

M(t) = E(t−X | X ≤ t)
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= t−
λβ
[
Bλt/(1+λt)(2, β − 1)−Bλt(1+α)/[1+λt(1+α)](2, β − 1)/(1 + α)2

]
1− (1 + t/λ)

−β −
[
1− (1 + t(1 + α)/λ)

−β
]
/(1 + α)

.

Further details and applications on these probabilistic objects, also defined with
µ′r,X(t) with r > 1, can be found in [5].

3.4. Characteristic function

The characteristic function is useful to determine several distributional properties
involving the SGM-G class.

Proposition 3.4. The characteristic function of X at t ∈ R, say ϕX(t) = E(eitX)
with i2 = −1, and the characteristic function of Y at t ∈ R, say ϕY (t) = E(eitY ),
satisfy the following relation:

ϕX(t) =
1 + α

α

[
ϕY (t)− 1

1 + α
ϕY

(
t

1 + α

)]
.

Proof. By following the lines of the proof of Proposition 3.2, we get

ϕX(t) =

∫ +∞

0

eitxf(x;α, ξ)dx =
1 + α

α

[∫ +∞

0

eitxg(x; ξ)dx−
∫ +∞

0

eitxg(x(1 + α); ξ)dx

]
=

1 + α

α

[∫ +∞

0

eitxg(x; ξ)dx− 1

1 + α

∫ +∞

0

eity/(1+α)g(y; ξ)dy

]
=

1 + α

α

[
ϕY (t)− 1

1 + α
ϕY

(
t

1 + α

)]
.

This completes the proof of Proposition 3.4. �

As an application of Proposition 3.4, the crude moment X can be obtained via
the following formula: µ′r,X = i−rϕX(t)(r) |t=0. Also, the PDF of the sum of n
independent and identically random variables X1, . . . , Xn from X can be derived
by the inversion formula:

fX1+...+Xn
(x) =

1

2π

∫ +∞

−∞
e−itx[ϕX(t)]ndt

=
(1 + α)n

2παn

n∑
k=0

(
n

k

)
(−1)k

1

(1 + α)k

∫ +∞

−∞
e−itx

[
ϕY

(
t

1 + α

)]k
[ϕY (t)]n−kdt.

This function can be expressed for some simple distributions on Y , the integral term
corresponding to the Fourier transform of the function [ϕY (t/(1 + α))]

k
[ϕY (t)]n−k.

3.5. Bivariate extensions

Some bivariate extensions of the new class is now discussed, with the objective to
applied it for the analysis of bivariate data in future studies. In this regard, diverse
directions can be explored. For instance, one can consider the bivariate extension
of the SGM-G class defined by the bivariate CDF specified by

F (x, y;α1, α2, ξ) =
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(1 + α1)(1 + α2)

α1 + α2 + α1α2

[
G(x, y; ξ)− 1

(1 + α1)(1 + α2)
G(x(1 + α1), y(1 + α2); ξ)

]
,

(x, y) ∈ (0,+∞)2,

(and zero otherwise), where α1, α2 > 0, G(x, y; ξ) is a bivariate CDF of a parent
distribution, with parameter(s) represented by ξ, and with decreasing PDF with
respect to both x and y. A more clear structure of dependence between the two
subjacent marginal random variables can be imposed by the use of the copulas
(see [16]). Two examples are described below.

• By applying the Clayton copula, a bivariate extension of the SGM-G class is
proposed by the following bivariate CDF:

F (x, y;ω, α1, α2, ξ1, ξ2) =
[
max

(
[F (x;α1, ξ1)]−ω + [F (y;α2, ξ2)]−ω − 1, 0

)]−1/ω
,

(x, y) ∈ (0,+∞)2,

where and ω 6= 0 and ω ≥ −1, F (x;α1, ξ1) and F (y;α2, ξ2) are the CDFs
defined as (2.1).

• By applying the so-called Farlie-Gumbel-Morgenstern copula (see [15] and [9]),
a bivariate extension of the SGM-G class is proposed by the following bivariate
CDF:

F (x, y;ω, α1, α2, ξ1, ξ2) = F (x;α1, ξ1)F (y;α2, ξ2)×
{1 + ω [1− F (x;α1, ξ1)] [1− F (y;α2, ξ2)]} , (x, y) ∈ (0,+∞)2,

where ω ∈ [−1, 1]. Then, the parameter ω governs the independence of the
subjacent marginal random variables; they are independent if ω = 0.

Other interesting bivariate extensions can be derived from other various copulas.

4. Data analysis

In this section, we illustrate the importance and flexibility of the SGMLx model in
a concrete data analysis.

4.1. Relief times data

We consider the data of [10] given as {1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7,
4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2}. This data set represents the lifetime’s data
relating to relief times (in minutes) of 20 patients receiving an analgesic. Figures 3
and 4 show the Box plot and the total time test (TTT) of the data, respectively.
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Figure 3. Box plot of the relief times data.
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Figure 4. TTT plot of the relief times data.

Based on Figure 3, it is noted that the relief times data has an extreme value.
Also, based on Figure 4, we see that the relief times data has an increasing HRF.
As already mentioned before, these features can be captured by the SGMLx model.



86 C. Chesneau & C. H. M. Yousof

4.2. Statistical methodology

The maximum likelihood methodology is adopted. In the setting of the SGMLx
distribution, by denoting x1, . . . , xn some generic data, it consists in determining
the maximum likelihood estimates given as

(α̂, β̂, λ̂) = argmax(α,β,λ)∈(0,+∞)3 `(α,β,λ),

where `(α,β,λ) denotes the log-likelihood function given as

`(α,β,λ) =

n∑
i=1

log[f(xi;α, β, λ)] = n log(1 + α) + n log β − n logα− n log λ

+

n∑
i=1

log

[(
1 +

xi
λ

)−β−1
−
(

1 +
xi(1 + α)

λ

)−β−1]
.

Then, we can plug-in the estimates α̂, β̂ and λ̂ into the functions of the SGMLx
distribution to obtained estimates of them. For instance, the estimated CDF and
PDF of the SGMLx distribution are given as F̂ (x) = F (x; α̂, β̂, λ̂) and f̂(x) =

f(x; α̂, β̂, λ̂), respectively. This methodology can be transposed to any other models,
this is what we will do in the next study

Here, we compare the fits of the SGMLx model with those of the standard t-
wo parameters Lx (2PLx) model (see [14]), one-parameter Lx (1PLx) model (see
[14]), exponential (Exp) model, one-parameter Weibull (W) model (see [22]), one-
parameter Log-logistic (1PLL) model (see [3]), three-parameter Burr-Hatke Lx
(3PBHLx) model (new based on [23]), two-parameter Burr-Hatke Lx (2PBHLx)
model (new based on [23]), two-parameter Burr-Hatke Exp (2PBHExp) model
(see [23]) and one-parameter Burr-Hatke Exp (1PBHExp) model (see [23]).

In order to compare these models, the following goodness of-fit statistics are
considered:

1. Akaike Information Criteria (AIC)

AIC = −2ˆ̀+ 2n[p],

2. Consistent AIC (CAIC):

CAIC = −2ˆ̀+
2nn[p]

n− n[p] − 1
,

3. Bayesian IC (BIC):

BIC = −2ˆ̀+ n[p] log n,

4. Hannan-Quinn IC (HQIC):

HQIC = −2ˆ̀+
2n[p]

log (log n)
,

where n[p] is the number of the model parameters, n is the number of data (here,

n = 20), and ˆ̀ is the log-likelihood function determined at the estimated maximum
likelihood parameter(s). The better model is the one having the smaller value of

−ˆ̀, AIC, CAIC, BIC and HQIC.
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4.3. Numerical and graphical studies

With the above methodology, we now present complete numerical and graphical
studies based on the relief times data. Table 2 provides the maximum likelihood
estimates (MLEs), with standard errors (SEs) in parentheses.

Table 2. MLEs and SEs for the relief times data.

Model Estimates

SGMLx(α, β, λ) 0.5017448 1.22929×107 1.50076×107

3PBHLx(α, β, λ) 1.3126×10 1.42083×105 5.35617×105

2PBHLx(α, β) 20332130 72914938 -

2PBHExp(α, β) 0.007196 72.11277 -

2PLx(α, β) 25119398 4772482 -

1PBHExp(α) 0.279000 - -

Exp(α) 0.526172 - -

W(α) 9.995036 - -

Lx(α) 0.960352 - -

1PLL(α) 2.491406 - -

Among others, from Table 2, for the SGMLx model, we see that the MLEs of
α, β and λ, are given as α̂ = 0.5017448, β̂ = 1.22929× 107 and λ̂ = 1.50076× 107,
respectively. Table 3 completes Table 2 by giving the corresponding goodness-of-fits
statistics.
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Table 3. −ˆ̀, AIC, CAIC, BIC and HQIC for the relief times data.

Model −ˆ̀ AIC CAIC BIC HQIC

SGMLx 26.42983 58.85966 60.35966 61.84686 59.44279

3PBHLx 34.09499 74.18999 75.68999 77.17719 74.77312

2PBHLx 34.35456 72.70911 73.41500 74.70058 73.09787

2PBHExp 32.83867 69.67735 70.38323 71.66881 70.06610

2PLx 32.83708 69.67416 70.38004 71.66562 70.06291

1PBHExp 34.35456 70.70911 70.93133 71.70484 70.90349

Exp 32.83708 67.67416 67.89638 68.66989 67.86853

W 31.78509 65.57018 65.7924 66.56591 65.76456

1PLx 41.63307 85.26614 85.48837 86.26188 85.46052

1PLL 32.80248 67.60496 67.82719 68.60070 67.79934

Based on Table 3, the SGMLx model provides an adequate fit, more than the
standard two-parameter Lomax model, one-parameter Lomax model, exponential
model, one-parameter Weibull model, one-parameter Log-logistic model, three pa-
rameter Burr-Hatke Lomax model, two-parameter Burr-Hatke Lomax model, two-
parameter Burr-Hatke exponential model and one-parameter Burr-Hatke exponen-
tial model.

Based on the results for the SGMLx model, Figures 5, 6, 7 and 8 give the
estimated PDF (EPDF), estimated CDF (ECDF), probability-probability (P-P)
plot and estimated HRF (EHRF), respectively.
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Figure 5. Plot of the EPDF of the SGMLx model over the histogram for the relief times data.
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Figure 6. Plot of the ECDF of the SGMLx model over the empirical CDF for the relief times data.
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Figure 7. P-P plot of the SGMLx model for the relief times data.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

 
x

E
H

R
F

Figure 8. Plot of the EHRF of the SGMLx model for the relief times data.

The fits of the SGMLx model displayed in Figures 5, 6 and 7 are quite satisfying,
showing that the main part of the data has been captured, as well as the extreme
value. The EHRF depicts in Figure 8 has the expected form, in view of the related
TTT plot.
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5. Conclusion

The foundation of this study was the generalized two-component mixture involved in
the construction of the famous weighted exponential distribution introduced by [11].
We have developed a new strategy to extend this special generalized mixtures,
relaxing the choice of the exponential distribution as parent, and thus proposing a
new class of distributions. We have shown several of its mathematical and practical
properties, with a focus on the special distribution using the Lomax distribution
as parent. Then, the analysis of a medical data sets shows that the proposed
methodology can be applied quite efficiency for data fitting objectives.

As perspectives of work, one can think to apply the proposed bivariate extensions
to appropriate real data sets, which can find nice issues in the frameworks of the
simple regression or clustering. Also, in view of the recent works on the former
weighted exponential distribution, possible interesting extensions of the new class
can be its power version defined by a CDF of the form: F (x;α, γ, ξ) = F (xγ ;α, ξ),
exponentiated version defined by a CDF of the form: F (x;α, υ, ξ) = F (x;α, ξ)υ and
Pareto-like distributions with CDF of the form: F (x;α, x0, ξ) = F (x − x0;α, γ, ξ)
for x > x0. These extensions deserve further treatments that we leave for future
works.
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