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Oscillation Theory of h-fractional Difference
Equations∗

Fanfan Li1 and Zhenlai Han1,†

Abstract In this paper, we initiate the oscillation theory for h-fractional
difference equations of the form{

a∆α
hx(t) + r(t)x(t) = e(t) + f(t, x(t)), t ∈ Tah, 1 < α < 2,

x(a) = c0, ∆hx(a) = c1, c0, c1 ∈ R,

where a∆α
h is the Riemann-Liouville h-fractional difference of order α, Tah :=

{a + kh, k ∈ Z+ ∪ {0}}, and a > 0, h > 0. We study the oscillation of h-
fractional difference equations with Riemann-Liouville derivative, and obtain
some sufficient conditions for oscillation of every solution. Finally, we give an
example to illustrate our main results.
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1. Introduction

The fractional calculus (calculus with derivatives of arbitrary order) is an im-
portant research field in several different areas such as physics (including classical
and quantum mechanic as well as thermodynamics), chemistry, biology, economic,
and control theory [7, 10, 11, 13–15]. Fractional difference equations, which is the
discrete counterpart of the corresponding fractional differential equations, have re-
cently gained an intensive interest among researchers in the last years. The discrete
fractional calculus has been developed much after the appearance of time scale cal-
culus [6]. The researchers started to use delta and nabla analysis by employing the
jumping operators σ and ρ.

Computer simulations show that the time scale (hZ)a is particularly interest-
ing because when h tends to zero one recovers previous fractional continuous-time
results [5, 8]. However, the development of the qualitative features of these type
of equations is still considered to be at its first stage of progress. Therefore, it is
pertinent to develop the oscillation theory of fractional h-difference equations. The
last few years, there are new papers which have studied oscillation of fractional
difference equations, see the papers [1, 2, 4, 12].
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Marian et al. [12] studied the oscillation criteria for forced nonlinear fractional
difference equations of the form{

∆αx(t) + f1(t, x(t+ a)) = v(t) + f2(t, x(t+ a)), t ∈ N0, 0 < α 6 1,

∆α−1x(t)|t=0 = x0,

where ∆α denotes the Riemann-Liouville like discrete fractional difference operator
of order α.

Abdalla et al. [1] studied the oscillation of solutions of nonlinear forced fractional
difference equations of the form{

∇qa(q)−1x(t) + f1(t, x(t)) = r(t) + f2(t, x(t)), t ∈ Na(q),

∇−(m−q)
a(q)−1 x(t)|t=a(q) = x(a(q)) = c, c ∈ R,

where q > 0, m = [q] + 1, m ∈ N, [q] is the greatest integer less than or equal to
q , ∇−qa(q)−1 and ∇qa(q)−1 are the Riemann-Liouville sum and difference operators,

respectively.
Following this trend and there are no results available in the literature regarding

the oscillation of solutions of h-fractional difference equations, we are concerned
equations of the form{

a∆α
hx(t) + r(t)x(t) = e(t) + f(t, x(t)), t ∈ Tah, 1 < α < 2,

x(a) = c0, ∆hx(a) = c1, c0, c1 ∈ R,
(1.1)

where a∆α
h is the Riemann-Liouville h-fractional difference of order α, ∆h is the

forward h-difference operator, Tah := {a + kh, k ∈ Z+ ∪ {0}}, a > 0, h > 0 and
e(t) is a continuous function. The problems will be studied under the following
assumptions:

(H1) r(t) is a positive real-valued continuous function on R;
(H2) x(t)f(t, x(t)) > 0, x(t) 6= 0, t ∈ Tah;
(H3) |f(t, x(t))| 6 p(t)|x(t)|γ , x(t) 6= 0, t > a;
(H4) |f(t, x(t))| > p(t)|x(t)|γ , x(t) 6= 0, t > a,

where p(t) ∈ C(Tah,R+) and γ is a the quotient of two positive odd numbers.
We only consider these solutions of (1.1) which exist on Tah. If x(t) satisfies (1.1)

on Tah, then the function x(t) is called a solution of (1.1). A solution x(t) of (1.1)
is said to be oscillatory if it is neither eventually positive nor eventually negative,
otherwise it is called nonoscillatory. The equation itself is called oscillatory if all of
its solutions are oscillatory.

The paper is organized as follows. In Section 2, we present some basic definitions
and useful results from the theory of discrete fractional calculus which we rely in the
later section. In Section 3, we intend to use the inequalities to obtain some sufficient
conditions for oscillation for oscillation of every solution of (1.1). In Section 4, we
give an example to illustrate our results.

2. Preliminaries

Before stating and proving our results, we introduce some definitions and nota-
tions. Let Tah := {a+ kh, k ∈ Z+ ∪ {0}}, where a > 0, h > 0. Let us denote by FT
the set of real valued functions defined on Tah, σ(t) = t+ h and ρ(t) = t− h.
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Definition 2.1. [7] For a function ψ ∈ FT the forward h-difference operator is
defined as

(∆hψ)(t) =
ψ(σ(t))− ψ(t)

h
, t ∈ Tah,

while the h-difference sum is given by

(a∆−1
h ψ)(t) = h

n−1∑
k=0

ψ(a+ kh), t ∈ Tah.

Definition 2.2. [3] For arbitrary t, α ∈ R and h > 0, the delta h-factorial function
is defined by

t
(α)
h := hα

Γ( th + α)

Γ( th )
.

Considering t ∈ Tah, it follows immediately that σ(t + αh) = t + (α + 1)h /∈ Tah
for noninteger value α. On this account we introduce the “shifted” time scale

Ta,αh := {a+ (α+ k)h, k ∈ Z+ ∪ {0}},

where h > 0 and α ∈ R. Now we can state the following definition.

Definition 2.3. [5] (Delta h-fractional sum) Let ψ be defined on Tah. Then the
delta h-fractional sum of order α > 0 is defined by

(a∆−αh ψ)(t) =

t
h−α∑
k= a

h

(t− σ(kh))
(α−1)
h ψ(kh)

for t ∈ Ta,αh .

Definition 2.4. [3] (Delta h-RL fractional difference) Let ψ be defined on Tah.
Then the delta h-fractional difference of order α > 0 is defined by

(a∆α
hψ)(t) = (∆n

ha∆
−(n−α)
h ψ)(t), t ∈ Ta,−αh ,

where n = [α] + 1.

Lemma 2.1. [3] For α > 0, h > 0 and ψ defined on T ah we have for t ∈ Ta+nh
h ⊂ Tah

(a∆−αh a∆α
hψ)(t) = ψ(t)−

n−1∑
k=0

(t− a)
(k)
h

k!
∆k
hψ(a),

where n = [α] + 1.

Lemma 2.2. [9] (Young’s inequality)
(i) Let X,Y > 0, u > 1 and 1

u + 1
v = 1, then XY 6 1

uX
u + 1

vY
v,

(ii) Let X > 0, Y > 0, 0 < u < 1 and 1
u + 1

v = 1, then XY > 1
uX

u + 1
vY

v,
where equality hold if and only if Y = Xu−1.

Lemma 2.3. [16] (Stirling’s formula) For ε > 0, we have

lim
n→∞

Γ(n)nε

Γ(n+ ε)
= 1.
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3. Main Results

Now, we are in a position to state and prove some new results which guarantee
that every solution of (1.1) oscillates.

Theorem 3.1. Assume that f(t, x(t)) = 0 in (1.1) and (H1)hold. If

lim inf
t→∞

t−αh∑
s=T+1

e(s) = −∞ (3.1)

for sufficiently large T, then every solution of (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). We suppose that x(t) is an
eventually positive solution of (1.1). Then there exists a T > a such that x(t) > 0
for all t > T. Let F (t, x(t)) = e(t) − f(t, x(t)) − r(t)x(t). Then by Definition 2.3,
Lemma 2.1 and (H1), we have

x(t) =c0 + c1(t− a) +
1

Γ(α)

T∑
s=a

(t− σ(s))
(α−1)
h F (s, x(s))

+
1

Γ(α)

t−αh∑
s=T+1

(t− σ(s))
(α−1)
h (e(s)− r(s)x(s))

<c0 + c1(t− a) +
1

Γ(α)

T∑
s=a

(t− σ(s))
(α−1)
h F (s, x(s))

+
1

Γ(α)

t−αh∑
s=T+1

(t− σ(s))
(α−1)
h e(s),

multiplying both sides of the above inequality by Γ(α)(t− a)−1, we obtain

0 < Γ(α)(t− a)−1x(t) <Γ(α)c0(t− a)−1 + Γ(α)c1 +

T∑
s=a

(t− a)−1(t− σ(s))
(α−1)
h F (s, x(s))

+

t−αh∑
s=T+1

(t− a)−1(t− σ(s))
(α−1)
h e(s).

(3.2)
By Definition 2.2 and Lemma 2.3, we observe that

lim
t→∞

(t− a)−1(t− σ(s))
(α−1)
h = lim

t→∞
(t− a)−1hα−1

Γ
(
t−σ(s)
h + α− 1

)
Γ
(
t−σ(s)
h

)(
t−σ(s)
h

)α−1

(
t− σ(s)

h

)α−1

= lim
t→∞

(t− σ(s))α−1

t− a
= 0.

Hence, there exists a M > 0 such that

−M < (t− a)−1(t− σ(s))
(α−1)
h < M, t ∈ Tah.



Oscillation Theory of h-fractional Difference Equations 109

It follows from (3.2) that

0 < C0(t− a)−1 + C1 + C2(T ) +M

t−αh∑
s=T+1

e(s), t ∈ Tah,

where C0 = Γ(α)c0, C1 = Γ(α)c1 and C2(T ) = M
T∑
s=a

F (s, x(s)), i.e.

t−αh∑
s=T+1

e(s) > − 1

M
(C0(t− a)−1 + C1 + C2(T )), t ∈ Tah. (3.3)

Taking limit inferior in (3.3) as t→∞, we have

lim inf
t→∞

t−αh∑
s=T+1

e(s) > lim inf
t→∞

(− 1

M
(C0(t− a)−1 + C1 + C2(T )))

= −lim sup
t→∞

1

M
(C0(t− a)−1 + C1 + C2(T ))

> −∞,

i.e.

lim inf
t→∞

t−αh∑
s=T+1

e(s) > −∞,

which contradicts condition (3.1). In case x(t) eventually negative, one can proceed
in the same way and reach to a contradiction with (3.1). The proof is complete.

Theorem 3.2. Assume that (H1)-(H3) hold for 0 < γ < 1. If

lim inf
t→∞

t−αh∑
s=T+1

(e(s) +H(s)) = −∞ (3.4)

and

lim sup
t→∞

t−αh∑
s=T+1

(H(s)− e(s)) =∞, (3.5)

for sufficiently large T, where

H(s) =
1− γ
γ

r
γ
γ−1 (s) (γp(s))

1
1−γ , (3.6)

then every solution of (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1).
Case 1: Suppose that x(t) is an eventually positive solution of (1.1). Then there

exists a T > a such that x(t) > 0 for all t > T. For each fixed s, let X = xγ(s),

Y = γp(s)
r(s) , u = 1

γ and v = 1
1−γ , then from part (i) of Lemma 2.2 we get

p(s)xγ(s)− r(s)x(s) =
r(s)

γ

(
xγ(s)

γp(s)

r(s)
− γ(xγ(s))

1
γ

)
=
r(s)

γ
(XY − 1

u
Xu) 6

r(s)

γ

1

v
Y v = H(s),

(3.7)
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where H(s) is defined as in (3.6). In view of (H3), by following similar steps to the
proof of Theorem 3.1, we get

0 < C0(t− a)−1 + C1 + C2(T ) +

t−αh∑
s=T+1

(t− a)−1(t− σ(s))
(α−1)
h (e(s) + f(s, x(s))− r(s)x(s))

6 C0(t− a)−1 + C1 + C2(T ) +

t−αh∑
s=T+1

(t− a)−1(t− σ(s))
(α−1)
h (e(s) + p(s)xγ(s)− r(s)x(s))

6 C0(t− a)−1 + C1 + C2(T ) +

t−αh∑
s=T+1

(t− a)−1(t− σ(s))
(α−1)
h (e(s) +H(s))

< C0(t− a)−1 + C1 + C2(T ) +M

t−αh∑
s=T+1

(e(s) +H(s)), t ∈ Tah,

(3.8)
where C0, C1 , C2 and M are defined as in Theorem 3.1. Hence, we get

lim inf
t→∞

t−αh∑
s=T+1

(e(s) +H(s)) > −∞,

which contradicts condition (3.4).

Case 2: Suppose that x(t) is an eventually negative solution of (1.1). Then there
exists a T > a such that x(t) < 0 for all t > T. For each fixed s, let X = x(s)γ ,

Y = γp(s)
r(s) , u = 1

γ and v = 1
1−γ , then from part (i) of Lemma 2.2 we get

p(s)xγ(s)− r(s)x(s) =
r(s)

γ

(
xγ(s)

γp(s)

r(s)
− γ(xγ(s))

1
γ

)
=
r(s)

γ
(XY − 1

u
X
u
) > −r(s)

γ

1

v
Y v = −H(s),

where H(s) is defined as in (3.6). In view of (H3), by following similar steps to the
proof of Theorem 3.1, we get

0 > C0(t− a)−1 + C1 + C2(T ) +

t−αh∑
s=T+1

(t− a)−1(t− σ(s))
(α−1)
h (e(s) + f(s, x(s))− r(s)x(s))

> C0(t− a)−1 + C1 + C2(T ) +

t−αh∑
s=T+1

(t− a)−1(t− σ(s))
(α−1)
h (e(s) + p(s)xγ(s)− r(s)x(s))

> C0(t− a)−1 + C1 + C2(T ) +

t−αh∑
s=T+1

(t− a)−1(t− σ(s))
(α−1)
h (e(s)−H(s))

> C0(t− a)−1 + C1 + C2(T )−M
t−αh∑
s=T+1

(e(s)−H(s))

= C0(t− a)−1 + C1 + C2(T ) +M

t−αh∑
s=T+1

(H(s)− e(s)), t ∈ Tah,



Oscillation Theory of h-fractional Difference Equations 111

where C0, C1, C2 and M are defined as in Theorem 3.1. Hence, we get

lim sup
t→∞

t−αh∑
s=T+1

(H(s)− e(s)) <∞,

which contradicts condition (3.5). This proof is complete.

Theorem 3.3. Assume that (H1), (H2) and (H4) hold for γ > 1. If

lim inf
t→∞

t−αh∑
s=T+1

(e(s) +H(s)) = −∞ (3.9)

and

lim sup
t→∞

t−αh∑
s=T+1

(H(s)− e(s)) =∞, (3.10)

for sufficiently large T, where H(s) is defined as in (3.6), then every bounded solu-
tion of (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory bounded from above solution of (1.1). Then
there exists a constant N such that

|x(t)| 6 N, for t ∈ Tah. (3.11)

Suppose that x(t) is an eventually bounded positive solution of (1.1). Then there
exists a T > 0 such that x(t) > 0 for t > T. Using (ii) of Lemma 2.2 and similar to
the proof of (3.7), and by (H4) we get

f(s, x(s))− r(s)x(s) > p(s)xγ(s)− r(s)x(s) > H(s), s > T.

By Lemma 2.1 and similar to (3.8), we obtain

Γ(α)x(t)(t−a)−1 > C0(t−a)−1+C1+C2(T )+

t−αh∑
s=T+1

(t−a)−1(t−σ(s))
(α−1)
h (e(s)+H(s)), t ∈ Tah,

where C0, C1 and C2 are defined as in Theorem 3.1. In view of (3.11), we have

NΓ(α)(t− a)−1 > C0(t− a)−1 + C1 + C2(T ) +

t−αh∑
s=T+1

(t− a)−1(t− σ(s))
(α−1)
h (e(s) +H(s))

> C0(T )C0(t− a)−1 + C1 + C2(T )−M
t−αh∑
s=T+1

(e(s) +H(s)), t ∈ Tah,

where M is defined as in Theorem 3.1, i.e.

t−αh∑
s=T+1

(e(s) +H(s)) > − 1

M
(NΓ(α)(t− a)−1−C0(t− a)−1−C1−C2(T )), t ∈ Tah.

For t > T, and this implied that

lim inf
t→∞

t−αh∑
s=T+1

(e(s) +H(s)) > −∞,

which contradicts (3.9). In case x(t) eventually negative, the verifications are similar
to Case 2 of Theorem 3.2, so we omit it here. The proof is complete.
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4. Examples

. Consider the equation∆
3
2
2
3

x(t) + x(t) ln(t+ e) = −t ln(t+ e) + x
1
2 (t) ln(t+ e), t ∈ Tah,

x(a) = 0, ∆ 2
3
x(a) = 1

Γ(α) ,
(4.1)

where a = 0, α = 3
2 , h = 2

3 , r(t) = p(t) = ln(t+ e), γ = 1
2 , e(t) = −t ln(t+ e),

c0 = 0 and c1 = 1
Γ(α) . It is clear that conditions (H1)-(H3) are satisfied. Thus, the

function H(s) = 1−γ
γ r

γ
γ−1 (s) (γp(s))

1
1−γ = 1

4 ln(t+ e). Furthermore, we have

lim inf
t→∞

t−αh∑
s=T+1

(−s ln(s+ e) +
1

4
ln(s+ e)) = −∞,

and

lim sup
t→∞

t−αh∑
s=T+1

(
1

4
ln(s+ e) + s ln(s+ e)) =∞.

By Theorem 3.2 we see that (4.1) is oscillatory.
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