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Bifurcations and New Traveling Wave Solutions
for the Nonlinear Dispersion Drinfel’d-Sokolov

(D(m,n)) System∗

Ronghua Cheng1,2, Zhaofu Luo2 and Xiaochun Hong2,†

Abstract In this paper, we employ the theory of the planar dynamical sys-
tem to investigate the dynamical behavior and bifurcations of solutions of the
traveling systems of the D(m,n) equation. On the basis of the previous work
of the reference [17], we obtain the solitary cusp waves solutions (peakons and
valleyons), breaking wave solutions (compactons) and other periodic cusp wave
solutions. Morever, we make a summary of exact traveling wave solutions to
the D(m,n) system including all the solutions which have been found from
the references [4, 14,17].
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Compacton, Peakon.
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1. Introduction

In this paper, we consider the following nonlinear dispersion Drinfel’d-Sokolov sys-
tem (D(m,n) system)

qt + k(rm)x = 0, (1.1a)

rt + a(rn)xxx + bqxr + cqrx = 0, (1.1b)

where m, n are positive integer, a, b, c, k are real valued constants. The physical
application of this model can be seen in references [6,7] and the references therein.

For the coupled system, Biswas et al. [1] and Chen et al. [3] obtained the three
kinds of solutions when (m,n)=(1,1) by using the method of exponential function
and dynamical systems method respectively. In 2011, Ebadi et al. [5] obtained
one-soliton solution of the D(m,n) equation by the ansatz method. Xie et al. [14]
have obtained the compact and solitary patterns solutions of the D(m,n) equation
by using the sine-cosine method and the sinh-cosh method. Deng et al. [4] have
studied some particular travelling wave solutions of the D(m,n) equation by using
the Weierstrass elliptic function expansion method. Zhang et al. [17] have obtained
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some travelling wave solutions by using the bifurcation theory of planar dynamical
systems.

Though many authors have studied the D(m,n) system, they only obtained
relatively partial exact solutions. The paper will be further to study the issue on the
basis of the previous work. We make some complement, expansion and summary to
the solutions of the coupled system (1.1). Moreover, by using the bifurcation method
of planar systems and simulation method of differential equations ( [8–13, 15, 16]),
we shall study the exact explicit bounded travelling wave solutions of (1.1) under
different parameter condition.

2. Transformed equations

Using the traveling wave assumption that

q(x, t) = φ(ξ), (2.1a)

r(x, t) = ψ(ξ), (2.1b)

where ξ = x− λt is the real parameter and λ is the wave speed, substituting (2.1)
into Equations.(1.1), we can reduce Equations (1.1) to the following ODEs:

−λφ′ + k(ψm)′ = 0, (2.2a)

−λψ′ + a(ψn)′′′ + bφ′ψ + cφψ′ = 0. (2.2b)

Integrating (2.2a) once and letting integral constant to be zero, we have

φ =
k

λ
ψm. (2.3)

Inserting (2.3) to Equation (2.2b) yields

− λψ′ + a(ψn)′′′ +
k

λ
(bm+ c)ψmψ′ = 0. (2.4)

Integrating (2.4) once, we obtain

λ

a
ψ − n(n− 1)(ψn−2)ψ′2 − nψn−1ψ′′ − k(bm+ c)

aλ(m+ 1)
ψm+1 +A = 0, (2.5)

which is equivalent to 2-dimensional Hamiltonian system

dψ

dξ
= y,

dy

dξ
=
−n(n− 1)ψn−2y2 + αψ − β(bm+c)

m+1 ψm+1 +A

nψn−1
, (2.6)

where A is a integrating constant and α = λ
a , β = k

aλ with the first integral

H(ψ, y) =
n

2
ψ2(n−1)y2 − A

n
ψn − α

n+ 1
ψn+1 +

β(bm+ c)

(m+ 1)(m+ n+ 1)
ψm+n+1 = h.

(2.7)
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3. Bifurcations of phase portraits of the traveling
system

Letting dη = anψn−1dξ, the system (2.6) becomes the following regular system

dψ

dη
= nψn−1y,

dy

dη
= −n(n− 1)ψn−2y2 + αψ − β(bm+ c)

m+ 1
ψm+1 +A, (3.1)

which has the same invariant curves as system (2.6) except for the straight line
ψ = 0. Take that

f(ψ) = A+ αψ − β(bm+ c)

m+ 1
ψm+1.

Let M(ψi, yj) be the coefficient matrix of the linearized system of (3.1) at an
equilibrium point (ψi, yj), we have

J(ψi, yj) = −n3(n− 1)ψ
2(n−2)
i y2j − nψn−1f ′(ψi). (3.2)

3.1. The case of A = 0

When A = 0, write that f0(ψ) = αψ − β(bm+c)
m+1 ψm+1. On the (ψ, y)-phase plane,

the abscissas of equilibrium points of the system (3.1) on the ψ-axis are the zeros
of f0(ψ). Clearly, when m is an even integer and αβ(bm + c) < 0, it means that
system (3.1) has only one equilibrium point at O(0, 0); when m is an even integer
and αβ(bm + c) > 0, the system (3.1) has three equilibrium points at O(0, 0),

E1(ψ1, 0) and E2(ψ2, 0), where ψ1,2 = ± m

√
α(m+1)
β(bm+c) . When m is an odd integer, the

system (3.1) has two equilibrium points at O(0, 0) and E1(ψ1, 0).

Thus, we know system (3.1) has at most three equilibrium points in the ψ-axis.
Writing that

J0(ψi, 0) = −nψn−1i [α− β(bm+ c)ψmi ] .

By the qualitative theory of dynamical systems, we can determine that an equilib-
rium point is a center or saddle point. Write that

h0 = H(0, 0) = 0, h1 = h2 = H(ψ1,2, 0) =
−αm

(n+ 1)(m+ n+ 1)

[
α(m+ 1)

β(bm+ c)

]n+1
m

,

where H is defined by (2.7).

By using the above information, under different parameter conditions, we obtain
the following phase portraits for system (3.1) shown in Figures 1–5.
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(a) m = 2K − 1, α > 0, β(mb+ c) > 0 (b) m = 2K, α > 0, β(mb+ c) > 0

(c) m = 2K, α < 0, β(mb+ c) > 0 (d) m = 2K, α < 0, β(mb+ c) < 0

Figure 1. The bifurcation phase portraits of the system (3.1) for n = 1, A = 0, K = 1, 2, · · ·

(a) m = 2K − 1, α > 0, β(mb+ c) > 0 (b) m = 2K − 1, α < 0, β(mb+ c) < 0

(c) m = 2K,α > 0, β(mb+ c) > 0 (d) m = 2K,α > 0, β(mb+ c) < 0

Figure 2. The bifurcation phase portraits of the system (3.1) for n = 2, A = 0, K = 1, 2, · · ·
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(a) m = 2K − 1, α > 0, β(mb+ c) > 0 (b) m = 2K − 1, α < 0, β(mb+ c) < 0

(c) m = 2K,α > 0, β(mb+ c) > 0 (d) m = 2K,α < 0, β(mb+ c) < 0

Figure 3. The bifurcation phase portraits of the system (3.1) for n = 3, A = 0, K = 1, 2, · · ·

(a) m = 2K − 1, α > 0, β(mb+ c) > 0 (b) m = 2K − 1, α < 0, β(mb+ c) < 0

(c) m = 2K,α > 0, β(mb+ c) > 0 (d) m = 2K,α > 0, β(mb+ c) < 0

Figure 4. The bifurcation phase portraits of the system (3.1) for n = 2L,L = 2, 3, · · · , A = 0,
K = 1, 2, · · ·
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(a) m = 2K − 1, α > 0, β(mb+ c) > 0 (b) m = 2K − 1, α < 0, β(mb+ c) < 0

(c) m = 2K,α > 0, β(mb+ c) > 0 (d) m = 2K,α < 0, β(mb+ c) < 0

Figure 5. The bifurcation phase portraits of the system (3.1) for n = 2L + 1, L = 2, 3, · · · , A = 0,
K = 1, 2, · · ·

3.2. The case of A 6= 0

In this case, we consider that there exist equilibrium points on y-axis. When n = 2,

A > 0, there are two equilibrium points of (3.1) at F1(0,−
√

A
2 ) and F2(0,

√
A
2 ) on

y-axis . Whereas when n > 2, system (3.1) has no equilibrium point on y-axis if
A 6= 0.

Notice that f ′(ψ) = α − β(bm + c)ψm, f ′′(ψ) = −βm(bm + c)ψm−1 and
f(0) = A(> 0). Obviously, when m is an odd integer, f ′(ψ) has one zero point

ψ̃ = m

√
α

β(bm+c) , f(ψ) has two zeros ψi for i = 1, 2. Thus, system (3.1) has two

equilibrium points on the ψ-axis. When m is an even integer, f ′(ψ) has two zeros

points ψ± = ± m

√
α

β(bm+c) if αβ(bm + c) > 0, f(ψ) has at most three zeros ψi for

i = 1, 2, 3. Thus, system (3.1) has at most three equilibrium points on the ψ-axis.

It is clear that two equilibrium points on y-axis are saddle points for n = 2.
As to the equilibrium points on the ψ-axis, it is a center or a saddle point if

−nψn−1f ′(ψ) > 0 or −nψn−1f ′(ψ) < 0. Write that hF = H(0,±
√

A
2 ) = 0. By

using the above information, we obtain some phase portraits in case of n = 1, 2 for
system (3.1) shown in Figures 6–8.
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(a) m = 2K,α > 0, β(mb+ c) > 0 (b) m = 2K,α < 0, β(mb+ c) < 0

(c) m = 2K,α < 0, β(mb+ c) > 0 (d) m = 2K − 1, α > 0, β(mb+ c) > 0

Figure 6. The bifurcation phase portraits of the system (3.1) for n = 1, A 6= 0, K = 1, 2, · · ·

(a) ψ1 < 0 < ψ2 (b) 0 < ψ1 < ψ2, h2 < hF

(c) 0 < ψ1 < ψ2, h2 = hF (d) 0 < ψ1 < ψ2, h2 > hF

Figure 7. The bifurcation phase portraits of the system (3.1) for m = 1, n = 2, A > 0.
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(a) f(ψ−) > 0. (b) f(ψ−) = 0

(c) f(ψ−) < 0.

Figure 8. The bifurcation phase portraits of the system (3.1) for m = 2, n = 2, A > 0, α > 0, β(mb +
c) > 0.

4. Exact traveling wave solutions of the system (3.1)
without the singular straight line ψ = 0

For n = 1, system (3.1) reduces a non-singular system

dψ

dξ
= y,

dy

dξ
= A+ αψ − β(bm+ c)

m+ 1
ψm+1. (4.1)

The orbits of system (4.1) can be shown in Figure 1 if A = 0.

4.1. Infinitely many smooth periodic wave solutions

When m = 1, α > 0, β(b+ c) > 0, see Fig. 1(a), system (4.1) has a periodic solution
corresponds to a family of periodic orbits if h ∈ (h1, h0).

r(x, t) = ψ(x− ct) = z3 − (z3 − z2)sn2 (ω1(x− ct), k1) , (4.2a)

q(x, t) = φ(x− ct) = aβ
[
z3 − (z3 − z2)sn2 (ω1(x− ct), k1)

]
, (4.2b)

where z1, z2 and z3 satisfy z1 < z2 < z3, ω1 =
√

β(b+c)(z3−z1)
12 , k1 =

√
z3−z2
z3−z1 .

Similarly, system (4.1) has a periodic solutions corresponding to a family of periodic
orbits in Figure 6(d), which has the same parametric representations as (4.2).

When m = 2,
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(i) α > 0, β(b+ c) > 0, see Figure 1(b), when h ∈ (h1, h0), system (4.1) has two
periodic solutions corresponds to two family of periodic orbits ( [3, 4]).

r(x, t) = ψ(x− ct) = ±z5dn

(√
β(2b+ c)

6
z5(x− ct),

√
z25 − z24
z25

)
, (4.3a)

q(x, t) = φ(x− ct) = aβz25dn2

(√
β(2b+ c)

6
z5(x− ct),

√
z25 − z24
z25

)
, (4.3b)

where z4 and z5 satisfy z24 < z25 .
When h ∈ (h0,∞), system (4.1) has a periodic solutions corresponding to a

family of periodic orbits ( [4, 17]).

r(x, t) = ψ(x− ct) = z7cn

(√
β(2b+ c)(z26 + z27)

6
(x− ct),

√
z27

z26 + z27

)
, (4.4a)

q(x, t) = φ(x− ct) = aβz27cn2

(√
β(2b+ c)(z26 + z27)

6
(x− ct),

√
z27

z26 + z27

)
, (4.4b)

where z6 and z7 satisfy z26 < z27 .
(ii) α < 0, β(b + c) > 0, see Figure 1(c), when h ∈ (h0,∞), system (4.1) has a

periodic solutions corresponding to a family of periodic orbits, which has the same
parametric representations as (4.4).

(iii) α < 0, β(b + c) < 0, see Figure 1(d), when h ∈ (h0, h1) (h1 = h2), system
(4.1) has a periodic solutions corresponds to a family of periodic orbits ( [3,4,17]).

r(x, t) = ψ(x− ct) = z8sn

(√
λα

2(c− 1)
z9(x− ct), z8

z9

)
, (4.5a)

q(x, t) = φ(x− ct) = aβz8sn

(√
λα

2(c− 1)
z9(x− ct), z8

z9

)
, (4.5b)

where z8 and z9 satisfy z28 < z29 .
Morever, there exist periodic solutions in Figures 6(a), 6(b), 6(c).

4.2. Infinitely many solitary wave solutions

When m = 1, α > 0, β(b+ c) > 0, see Figure 1(a), system (4.1) has a solitary wave
solution corresponding to a homoclinic orbit defined by h = h0 ( [3, 4]).

r(x, t) = ψ(x− ct) =
3α

β(b+ c)
sech2

(
1

2

√
α(x− ct)

)
, (4.6a)

q(x, t) = φ(x− ct) =
3aα

b+ c
sech2

(
1

2

√
α(x− ct)

)
. (4.6b)

When m = 2,
(i) α > 0, β(b + c) > 0, see Figure 1(b), system (4.1) has two solitary wave

solutions corresponding to two homoclinic orbit defined by h = h0 ( [3, 4]).

r(x, t) = ψ(x− ct) = ±

√
6α

β(2b+ c)
sech

(√
α(x− ct)

)
, (4.7a)
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q(x, t) = φ(x− ct) =
6aα

2b+ c
sech2

(√
α(x− ct)

)
. (4.7b)

(ii) α < 0, β(b + c) < 0, see Figure 1(d), system (4.1) has kink and anti-kink
wave solutions corresponding to two heteroclinic orbits defined by h = h1 ( [3,4]).

r(x, t) = ψ(x− ct) = ±

√
3α

β(2b+ c)
tanh

(√
−α

2
(x− ct)

)
, (4.8a)

q(x, t) = φ(x− ct) =
3aα

b+ c
tanh2

(√
−α

2
(x− ct)

)
. (4.8b)

Morever, there exist solitary wave solutions in Figures 6(a), 6(b), 6(d).

5. Exact explicit parametric representations of trav-
eling wave solutions for the singular system (3.1)

From (2.7), we obtain

y2 =
2

nψn−3

[
A

nψ
+

α

n+ 1
− β(bm+ c)

(m+ 1)(m+ n+ 1)
ψm
]
. (5.1)

5.1. Smooth periodic solutions

When n > 1, A = 0, the families of periodic orbits of system (3.1) defined by
H(ψ, y) = 0 can be shown in Figures 2(a), 2(c).

When m = 1 (or m = 2), n = 2, α > 0, β(b+ c) > 0 , we have a periodic solution
which corresponds to a compact oval orbit defined by H(ψ, y) = 0 ( [4, 14,17]).

D(1, 2) : r(x, t) = ψ(x− ct) =
8α

3β(b+ c)
cos2

(
1

4

√
β(b+ c)

2
(x− ct)

)
, (5.2a)

D(1, 2) : q(x, t) = φ(x− ct) =
8aα

3(b+ c)
cos2

(
1

4

√
β(b+ c)

2
(x− ct)

)
. (5.2b)

The above solutions (5.2) are called ”compacton solutions” by F. Xie and Z. Yan
( [14]).

D(2, 2) : r(x, t) = ψ(x− ct) =
v1sn2

(√
u1v1
2 (x− ct),

√
2
2

)
2− sn2

(√
u1v1
2 (x− ct),

√
2
2

) , (5.3a)

D(2, 2) : q(x, t) = φ(x− ct) = aβ

 v1sn2
(√

u1v1
2 (x− ct),

√
2
2

)
2− sn2

(√
u1v1
2 (x− ct),

√
2
2

)
2

, (5.3b)

where u1 = β(2b+c)
15 , v1 =

√
5α

β(2b+c) .
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5.2. Periodic cusp wave solutions

When m = 1 (or m = 3), n = 3, A = 0, α > 0, β(2b + c) > 0, see Figure 3(a),
the boundary curves of the periodic annulus corresponds to the periodic cusp wave
solution defined by H(ψ, y) = 0.

D(1, 3) : r(x, t) = ψ(x− ct) =
5α

2β(b+ c)
− β(b+ c)

60
(x− ct)2, (5.4a)

D(1, 3) : q(x, t) = φ(x− ct) =
5aα

2(b+ c)
− aβ2(b+ c)

60
(x− ct)2, (5.4b)

where (x− ct) ∈
[
− 5
√
6α

β(b+c) ,
5
√
6α

β(b+c)

]
.

D(3, 3) : r(x, t) = ψ(x− ct) = u2
(
√

3 + 1)cn(ω2(x− ct), k2)− (
√

3− 1)

cn (ω2(x− ct), k2) + 1
, (5.5a)

D(3, 3) : q(x, t) = φ(x− ct) = aβψ3(x− ct), (5.5b)

where u2 = 3

√
7α

β(3b+c) , ω2 = α
1
6 [β(3b+c)]

1
3

7
1
3 12

1
4

, k2 =
√
3+1

2
√
2

.

When m = 2, n = 3, A = 0, α > 0, β(2b + c) > 0, see Figure 3(c), the bound-
ary curves of two periodic annulus corresponds to two periodic cusp wave solution
defined by H(ψ, y) = 0 ( [14,17]).

r(x, t) = ψ(x− ct) = ±3

2

√
2α

β(2b+ c)
cos

(
1

6

√
β(2b+ c)

3
(x− ct)

)
, (5.6a)

q(x, t) = φ(x− ct) =
9aα

2(2b+ c)
cos2

(
1

6

√
β(2b+ c)

3
(x− ct)

)
. (5.6b)

The above solutions (5.6a) are called ”compacton solutions” by F. Xie and Z. Yan
( [14]).

When m = 1, n = 2, A > 0, α > 0, β(b + c) > 0, see Figure 7(a), the bound-
ary curves of two periodic annulus corresponds to two periodic cusp wave solution
defined by H(ψ, y) = 0.

r(x, t) = ψ(x− ct) = ± 4α

3β(b+ c)

[
1 +

√
4
2

sin

(√
β(b+ c)

8
(x− ct)

)]
, (5.7a)

q(x, t) = φ(x− ct) = ± 4aα

3(b+ c)

[
1 +

√
4
2

sin

(√
β(b+ c)

8
(x− ct)

)]
, (5.7b)

where 4 = 4α2 + 9Aβ(b+ c).

Moreover, there exist periodic cusp wave solutions in Figures 7(a), 8(a), 8(b).

5.3. Breaking wave solutions (compactons)

When m = n − 1, n > 3, α > 0, β(bm + c) > 0, see Figures 4(a) and 5(c), we have
breaking wave solutions (compactons) defined by H(ψ, y) = 0.
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(A) For m = 2K − 1,

r(x, t) = ψ(x− ct) =

[
2α(m+ 1)2

β(bm+ c)(m+ 2)
cos2

(
1

2

√
β(bm+ c)

(m+ 1)3
(x− ct)

)] 1
m

,

(5.8a)

q(x, t) = φ(x− ct) =
2aα(m+ 1)2

(bm+ c)(m+ 2)
cos2

(
1

2

√
β(bm+ c)

(m+ 1)3
(x− ct)

)
, (5.8b)

where (x− ct) ∈
[
−
√

(m+1)3

β(bm+c)π,
√

(m+1)3

β(bm+c)π
)

, which corresponds to one open orbit.

(B) m = 2K,

r(x, t) = ψ(x− ct) = ±

[
2α(m+ 1)2

β(bm+ c)(m+ 2)
cos2

(
1

2

√
β(bm+ c)

(m+ 1)3
(x− ct)

)] 1
m

,

(5.9a)

q(x, t) = φ(x− ct) =
2aα(m+ 1)2

(bm+ c)(m+ 2)
cos2

(
1

2

√
β(bm+ c)

(m+ 1)3
(x− ct)

)
, (5.9b)

where (x−ct) ∈
[
−
√

(m+1)3

β(bm+c)π,
√

(m+1)3

β(bm+c)π
)

, which corresponds to two open orbits.

Moreover, there exist breaking wave solutions (compactons) in Figures 4(c),
4(d), 5(a).

5.4. Solitary cusp waves solutions (peakons and valleyons)

For m = 1, n = 2, α < 0, β(bm + c) < 0, the curve triangle in Figure 7(c) defined

H(ψ, y) = hs are y = ∓
√
|β|(b+c)

8

(
4α

3β(b+c) − ψ
)

, which give rise to a solitary cusp

(valleyon) wave solution

r(x, t) = ψ(x− ct) =
4α

3β(b+ c)
− exp

(
−
√
|β|(b+ c)

8
|x− ct|

)
, (5.10a)

q(x, t) = φ(x− ct) =
4aα

3(b+ c)
− aβexp

(
−
√
|β|(b+ c)

8
|x− ct|

)
. (5.10b)

For m = 1, n = 2, α > 0, β(bm+ c) < 0, we obtain a solitary cusp (peakon) wave
solution again

r(x, t) = ψ(x− ct) =
4α

3β(b+ c)
+ exp

(
−
√
|β|(b+ c)

8
|x− ct|

)
, (5.11a)

q(x, t) = φ(x− ct) =
4aα

3(b+ c)
+ aβexp

(
−
√
|β|(b+ c)

8
|x− ct|

)
. (5.11b)

Figure 9 below shows solitary cusp of two types.
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(a) α < 0, β(mb+ c) < 0 (b) α > 0, β(mb+ c) < 0

Figure 9. The solitary cusp waves r(x, t) of two types (valleyons and peakons) for the system (3.1)
when m = 1, n = 2, A > 0.

5.5. Other type of the traveling waves solutions

When m = n− 1, n = 2K, α < 0, β(bm+ c) < 0, we have two unbounded traveling
wave solutions defined by H(ψ, y) = 0 corresponding to two open orbits passsing
through (0, 0) and (ψ1, 0) in Figures 2(b) and 4(b).

r(x, t) = ψ(x− ct) =

[
2α(m+ 1)2

β(bm+ c)(m+ 2)
cosh2

(
1

2

√
|β(bm+ c)|
(m+ 1)3

(x− ct)

)] 1
m

,

(5.12a)

q(x, t) = φ(x− ct) =
2a|α|(m+ 1)2

(bm+ c)(m+ 2)
cosh2

(
1

2

√
|β(bm+ c)|
(m+ 1)3

(x− ct)

)
. (5.12b)

When m = n − 1, n = 2K + 1, α < 0, β(bm + c) < 0, we have an unbounded
traveling wave solutions defined by H(ψ, y) = 0 corresponding to the open orbit
passsing through (ψ1, 0) and (ψ2, 0) in Figures 3(d) and 5(d).

r(x, t) = ψ(x− ct) =

[
2α(m+ 1)2

β(bm+ c)(m+ 2)
cosh2

(
1

2

√
|β(bm+ c)|
(m+ 1)3

(x− ct)

)] 1
m

,

(5.13a)

q(x, t) = φ(x− ct) =
2aα(m+ 1)2

(bm+ c)(m+ 2)
cosh2

(
1

2

√
|β(bm+ c)|
(m+ 1)3

(x− ct)

)
. (5.13b)

The above solutions (5.12a, 5.13a) are called ”solitary pattern solutions” by F. Xie
and Z. Yan ( [14]).
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6. Conclusion

In summary, based on the previous exact solutions (see 4.3-5.2, 5.6, 5.12, 5.13) which
have been given by other authors ( [1–5,14,17]), we have obtained the exact traveling
wave solutions (see 4.2, 5.3-5.5, 5.7-5.11) of the D(m,n) system in different regions
of the parametric space by applying the method of dynamical systems. Especially,
we have finded the solitary cusp wave solutions (peakons or valleyons) (see 5.7-5.8).
The paper is a summary of exact traveling wave solutions to the D(m,n) system,
that is, it classified by types of solutions. The traveling wave solutions include other
authors’ results (see 4.3-5.2, 5.6, 5.12, 5.13) and our own new results (see 4.2, 5.3-
5.5, 5.7-5.11). Our results are given in different regions of the parametric space by
applying the dynamical system method. Especially, we obtained the solitary cusp
wave solutions (peakons or valleyons) (see 5.7 and 5.8).
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