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Modelling the Wolbachia Strains for Dengue
Fever Virus Control in the Presence of Seasonal

Fluctuation∗
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Abstract Consider that infection with Wolbachiacan limit a mosquito’s a-
bility to transmit Dengue fever virus through its saliva, a mathematical model
describing the transmission of Dengue fever between vector mosquitoes and
human, incorporating Wolbachia-carrying mosquito population and seasonal
fluctuation, is proposed. Firstly, the stability and bifurcation of this model
are investigated exactly in the case where seasonality can be neglected. Fur-
ther, the basic reproductive number Rs

0 for this model with seasonal variation
is obtained, that is, if Rs

0 is less than unity the disease is extinct and Rs
0

is greater than unity the disease is uniformly persistent. Finally, numerical
simulations verify the theoretical results. Theoretical results suggest that,
compared with the mosquito reduction strategies (such as the elimination of
mosquito breeding sites, killing of adult mosquitoes by spraying), introducing
Wolbachia strains is as effectual to fight against the transmission of Dengue
virus.

Keywords Dengue fever, Wolbachia, Seasonal fluctuation, Stability and sen-
sitivity analysis, Extinction and persistence.
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1. Introduction

Dengue fever is a viral disease mainly prevalent in tropical and subtropical regions
of the world, which is transmitted by the bite of an Aedes mosquito infected with
Dengue virus. It is estimated that approximately 1.5 billion people are at risk,
and may be 50-100 million individuals are affected by Dengue fever virus each
year [23]. Currently, there are still no specific antiviral therapy or vaccines available
to combat Dengue fever [6], so the method of controlling the vector population is still
a main measure to prevent the transmission of Dengue fever virus. It is well-known
that traditional measures such as the use of insecticides to reduce the mosquito
population tend to be very expensive, unsustainable, environmentally undesirable,
which may indeed lead to insecticide resistance [6].

Experiments and field trials have demonstrated that the intracellular bacterium
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Wolbachia is a maternally transmitted endosymbiotic bacterium that is estimat-
ed to infect as much as 65% of insect species and have been surveyed that infect
about 28% of mosquito species [9, 22]. It lives in the testes and ovaries of hosts
and interferes with the reproductive mechanisms, inducting a variety of mosquito
phenotypes such as those with cytoplasmic incompatibility (CI), parthenogenesis,
feminization of genetic males and so on. The effects of CI causes embryos from fe-
males uninfected with Wolbachia to die when they are mated with infected males.
Whereas, infected females are not affected in this manner [11]. In mosquitoes vec-
tors, Wolbachia induced CI and matrilinear inheritance may have opposite effects,
such as population extinction, coexistence or all of the uninfected population may
be replaced by infected insects. Some Wolbachia cannot be only successfully spread
within mosquito populations through CI, but also prevent mosquito host to replicate
and spread Dengue fever virus [10,20].

Recently, McMeniman et al. [13] have proposed a Wolbachia infection in an
Aedes aegypti population through microinjecting bacteria into the mosquito em-
bryos and reducing the transmission of Dengue fever virus from mosquitoes to hu-
mans. New analysis of that data shows that there are usually two ways in which
Wolbachia-infected mosquitoes may be inferior Dengue vectors, one reduces adult
survival sufficiently may result in very few infected mosquitoes reaching the infec-
tious stage [18], another limits a mosquito’s ability to transmit Dengue fever virus
through its saliva [10]. Taking these means into account, there are many mathemat-
ical models (including discrete-time and continuous-time models) are investigated
for the effects of Wolbachia infection (see, e.g., [2,16,25] and the references therein).

On the other hand, for infectious diseases spreading by vectors, the seasonality is
apparent on the varying contact rate over the years [3]. It becomes natural to model
these diseases as periodically forced nonlinear systems [8]. The seasonality is often
seen as the main factor responsible for periodic epidemic cycles, and different kinds
of seasonality sources are analyzed. For example, varying transmission rates [4], the
volatility of birth rates [12], vaccination program [14] and so on. Particularly, the
increased intensity and frequency of El Nio in the past few years, which leads to
frequent outbreaks and quick spread of insect-borne infectious diseases around the
world. Therefore, how to control and eliminate vector-borne diseases should be one
of worldwide public health problems.

Based on the above discussion, we propose a mathematical model of the trans-
mission dynamics of Dengue fever in vector mosquitoes and human population in
this paper, where Wolbachia-carrying mosquito population and seasonal fluctua-
tion are introduced. The main purpose is to discuss the effects of Wolbachia and
seasonal change for the control and elimination of Dengue fever virus. The rest of
the paper is outlined as follows: a basic mathematical model with Wolbachia and
seasonal fluctuation for Dengue virus transmission dynamics and some preliminaries
are proposed in Section 2. We consider the existence and stability of equilibria in
Section 3. In Section 5, we investigate the extinction and uniform persistence of
Dengue fever in the presence of seasonal fluctuation. Section 6 contains numerical
simulations for theoretical results and biological conclusions.

2. Model formulation and preliminaries

We set up a mathematical model to study how introducing Wolbachia into a
mosquito population might affect the transmission of Dengue fever virus. In it,
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the model comprises human population, wild mosquito population and Wolbachia-
carrying mosquito population. The human population is namely divided into three
subpopulations including Susceptible Sh, Infectious Ih and Recovered Rh; the wild
mosquito population is divided into two subpopulations of susceptible Sm and In-
fectious Im; the Wolbachia-carrying mosquito population is also divided into Sus-
ceptible Sw and Infectious Iw. Table 1 provides glossaries of all of the variables
and parameters used. Therefore, the model is guided by the following system of
differential equations.

Table 1. Parameter definitions, possible value for model (2.1)

Param. Description Value Source

βhm(t) Infected rate from infectious humans unknown −
to wild mosquitoes

βmh(t) Infected rate from infectious wild unknown −
mosquitoes to humans

βhw(t) Infected rate from infectious humans to unknown −
Wolbachia-carrying mosquitoes

βwh(t) Infected rate from infectious Wolbachia-carrying unknown −
mosquitoes to humans

1/µh Average host life expectancy (year) 72 [19]

γh Dengue recovery rate in human (day−1) [0.0713, 0.3333] [19]

µm(t) Mosquito natural mortality rate (day−1) [0.05, 0.25] [19]

µw(t) Wolbachia-carrying mosquito natural [0.016, 0.425] [2]
mortality rate (day−1)

Λm(t) Birth rate of mosquitoes unknown −

Λw(t) Birth rate of Wolbachia-carrying mosquitoes unknown −



dSh(t)

dt
= µhNh(t)−

(
βmh(t)

Im(t)

Nh(t)
+ βwh(t)

Iw(t)

Nh(t)
+ µh

)
Sh(t),

dIh(t)

dt
= (βmh(t)Im(t) + βwh(t)Iw(t))

Sh(t)

Nh(t)
− (γh + µh)Ih(t),

dSm(t)

dt
= Λm(t)−

(
βhm(t)

Ih(t)

Nh(t)
+ µm(t)

)
Sm(t),

dIm(t)

dt
= βhm(t)

Ih(t)

Nh(t)
Sm(t)− µm(t)Im(t),

dSw(t)

dt
= Λw(t)−

(
βhw(t)

Ih(t)

Nh(t)
+ µw(t)

)
Sw(t),

dIw(t)

dt
= βhw(t)

Ih(t)

Nh(t)
Sw(t)− µw(t)Iw(t),

(2.1)

with the equation
dRh(t)

dt
= γhIh(t)− µhRh(t),

where Nh(t)=Sh(t)+Ih(t)+Rh(t), Nm(t)=Sm(t)+Im(t), Nw(t)=Sw(t)+Iw(t) and
βmh(t), βwh(t), βhm(t), βhw(t), µm(t), µw(t) are all positive T -periodic functions.

Let Rn+ := {(x1, x2, · · · , xn) : xi ≥ 0, i = 1, 2, · · · , n}. According to the biologi-
cal background of model (2.1), we only need to discuss the dynamical behaviors in
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R7
+. First of all, on the positivity of solution of model (2.1), we have the following

Lemma 2.1 and the proof is obvious.

Lemma 2.1. The solution of model (2.1) with nonnegative initial values is non-
negative and bounded for all t > 0.

By adding the first one to the third equation of model (2.1), it follows that
dNh(t)/dt = 0. Therefore, the total numbers of human population Nh(t) := Nh is
constant, respectively. Due the Rh(t) has no influence on other variables of model
(2.1). Thus, we only need to consider the dynamics of model (2.1) for full system
on region Ω, where

Ω :=
{

(Sh(t), Ih(t), Sm(t), Im(t), Sw(t), Iw(t)) ∈ R6
+ : Sh(t) + Ih(t) ≤ Nh,

Sm(t) + Im(t) ≤ Λum/µ
l
m, Sw(t) + Iw(t) ≤ Λuw/µ

l
w

}
and Λui = supt∈[0,∞) Λi(t), Λli = inft∈[0,∞) Λi(t), i = m, w.

Let (Rn,Rn+) be the standard ordered n-dimensional Euclidean space with a
norm ‖ · ‖. For u, v ∈ Rn, we write u ≥ v if u− v ∈ Rn+, u > v if u− v ∈ Rn+\{0},
and u � v if u − v ∈ Int(Rn+). Let A(t) be a continuous, cooperative, irreducible
and T -periodic n×n matrix function, ΦA(t) be the fundamental solution matrix of
the linear ordinary differential equation

dx

dt
= A(t)x (2.2)

and ρ(ΦA(T )) be the spectral radius of ΦA(T ). By the Perron-Frobenius theorem,
ρ(ΦA(T )) is the principal eigenvalue of ΦA(T ) in sense that it is simple and admits
an eigenvector v∗ � 0. The following result is useful for our theoretical results.

Lemma 2.2 (See [24], Lemma 2.1). Let p = ln ρ(ΦA(T ))/T , then there is a positive,
T -periodic function v(t) such that eptv(t) is a solution of equation (2.2).

3. Stability analysis in the absence of seasonality

In this section, we investigate a particular case of model (2.1). That is, the incidence
rates βmh(t) := βmh, βwh(t) := βwh, βhm(t) := βhm, βhw(t) := βhw, µm(t) := µm,
µw(t) := µw, Λm(t) := Λm and Λw(t) := Λw are constants, respectively. Now, we
define the basic reproduction number of model (2.1) without seasonal fluctuation
as follows:

R0 =
βmhβhmΛm

µ2
m(µh + γh)Nh

+
βwhβhwΛw

µ2
w(µh + γh)Nh

:= R01 +R02.

For model (2.1) without seasonal fluctuation, we get the disease-free equilibrium
E0(Nh, 0, Λm/µm, 0, Λw/µw) and endemic equilibrium E∗(S∗h, I

∗
h, S

∗
m, I

∗
m, S

∗
w, I

∗
w),

I∗m =
βhmΛmI

∗
h

µm(βhmI∗h + µmNh)
, I∗w =

βhwΛwI
∗
h

µw(βhwI∗h + µwNh)
,

S∗h =
a

b
, S∗m =

λm
µm
− I∗m, S∗w =

λw
µw
− I∗w,
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and

a =µhN
2
h(µhNh + βhmI

∗
h)(µwNh + βhwI

∗
h),

b =µhNh(µmNh + βhmI
∗
h)(µwNh + βhwI

∗
h) + βmhβhmΛmµ

−1
m I∗h(µwNh

+ βhwI
∗
h) + βwhβhwΛwµ

−1
w I∗h(µmNh + βhmI

∗
h),

and I∗h is received by the solutions Ih of following equation

AI2
h +BIh + C = 0, (3.1)

where

A =βhmβhw(µh + γh)(µhNh + βmhΛmµ
−1
m + βwhΛwµ

−1
w ),

B =Nh
{
µmβhwµhNh(1−R01) + µwβhmµhNh(1−R02) + µmβhwβwhΛwµ

−1
w

+ µwβhmβmhΛmµ
−1
m

}
C =µhµmµw(µh + γh)N3

h (1−R01 −R02) .

It is obvious that A > 0 for the meaningful values of model parameters. Noting
that C < 0 is equal to R0 > 1, which is a necessary condition to equation (3.1) has
a unique positive root. Obviously, if B > 0 and C > 0, that is, R0 < 1, there is no
positive root of equation (3.1); if B < 0 and B2 − 4AC > 0, there are two positive
roots of equation (3.1).

In summary, we have the following Theorem 3.1.

Theorem 3.1. The disease-free equilibrium of model (2.1) without seasonal fluc-
tuation always exists. Furthermore, the following statements are valid:

(i) if C < 0, then model (2.1) without seasonal fluctuation has a unique endemic
equilibrium;

(ii) if B < 0 and B2 − 4AC > 0, then model (2.1) without seasonal fluctuation has
two endemic equilibria;

(iii) if B > 0 and C ≥ 0, then model (2.1) without seasonal fluctuation has no
endemic equilibrium.

On the local asymptotical stability of the disease-free equilibrium E0 of model
(2.1) without seasonal fluctuation, we have Theorem 3.2.

Theorem 3.2. If R0 < 1 and H > 0, where

H =(µw + µm + µh + γh)[µw(µh + γh)(1−R02) + µm(µh + γh)(1−R01)]

− µwµm(µh + γh)(1−R0),

then E0 is locally asymptotically stable; if R0 > 1, then E0 is unstable.

Proof. To investigate the stability of E0, we linearise model (2.1) without seasonal
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fluctuation about E0 and the corresponding Jacobian matrix is given as follows:

J =



−µh 0 0 −βmh 0 −βwh
0 −(µh + γh) 0 βmh 0 βwh

0 −βhm Λm

µmNh
−µm 0 0 0

0 βhm
Λm

µmNh
0 −µm 0 0

0 −βhw Λw

µwNh
0 0 −µw 0

0 βhw
Λw

µwNh
0 0 0 −µw


.

From Jacobian matrix J above we get the characteristic equation about E0

(λ+ µh)(λ+ µm)(λ+ µw)
{
λ3 + (µw + µm + µh + γh)λ2 + [µw(µh + γh)(1

−R01) + µm(µh + γh)(1−R02)]λ+ µwµm(µh + γh)(1−R0)
}

= 0.
(3.2)

According to the Routh-Hurwize conditions, if H > 0 holds, then all eigenvalues of
equation (3.2) are non-positive. Accordingly, if R0 < 1 and H > 0, all eigenvalues
of equation (3.2) have negative real parts. In addition, if R0 > 1, at least one of
eigenvalues of equation (3.2) has positive real part. This completes the proof.

As for the endemic equilibria, it is difficult to determine the stability of endemic
equilibria. So we concentrate on the existence of backward bifurcation, which is
important in the control of Dengue virus just as it is in the control of epidemics
in general. Through the investigations above we know that, model (2.1) without
seasonal fluctuation have two positive roots when Rc0 < R0 < 1; and has no positive
root when R0 < Rc0, where

Rc0 := 1− B2

4AC
,

and can be obtained from B2 − 4AC = 0, which is the threshold condition for the
existences of positive roots. Then we have the following conclusion.

Theorem 3.3. Model (2.1) without seasonal fluctuation exhibits a backward bifur-
cation when Rc0 < R0 < 1 if B < 0.

4. The threshold condition of model (2.1) with sea-
sonal fluctuation

In this section, we show the existence of the disease-free periodic solution of model
(2.1). To find this solution of model (2.1), we consider the following subsystem

dSh(t)

dt
= µhNh − µhSh(t),

dSm(t)

dt
= Λm(t)− µm(t)Sm(t),

dSw(t)

dt
= Λw(t)− µw(t)Sw(t).

(4.1)

Obviously, (4.1) admits a unique positive periodic solution (S̃h(t), S̃m(t), S̃w(t)) =

(Nh, S̃m(t), S̃w(t)), which is globally attractive in R3
+. That is to say, model (2.1)

admits a unique disease-free periodic solution (Nh, 0, S̃m(t), 0, S̃w(t), 0).
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Now, we calculate the basic reproduction number of model (2.1) according to
the recent results from Reference [1, 21]. Let

F (t) =


0 βmh(t) βwh(t)

βhm(t) S̃m(t)
Nh

0 0

βhw(t) S̃w(t)
Nh

0 0

 , V (t) =


µh + γh 0 0

0 µm(t) 0

0 0 µw(t)

 ,

and assume that Y (t, s), t ≥ s, is the evolution operator of the linear periodic model
dy(t)/dt = −V (t)y(t). That is, for each s ∈ R, the 3× 3 matrix Y (t, s) satisfies

dY (t, s)

dt
= −V (t)Y (t, s), for all t ≥ s, Y (s, s) = I

where I is 3× 3 identity matrix.

Let CT be the ordered Banach space of all T -periodic functions from R to R3,
which is equipped with the maximum norm ‖ · ‖ and the positive cone C+

T :=
{φ ∈ CT : φ(t) ≥ 0, t ∈ R}. Suppose φ(s) ∈ CT is the initial distribution of
infectious individuals in this periodic environment, then F (s)φ(s) is the rate of new
infections produced by the infected individuals which is introduced at time s, and
Y (t, s)F (s)φ(s) represents the distribution of those infected individuals who were
newly infected at time s and remain in the infected compartments at time t for
t ≥ s. Hence,

Ψ(t) :=

∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da

is the distribution of accumulative new infections at time t produced by all those
infected individuals φ(s) introduced before t.

We define a linear operator L : CT → CT as follows

(Lφ)(t) =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da for all t ∈ R, φ ∈ CT .

Then, the basic reproduction number is defined as Rs0 := ρ(L), the spectral radius
of L.

Let W (t, s, λ) (t ≥ s, s ∈ R) be the evolution operator of the following linear
T -periodic model

dw

dt
=

[
−V (t) +

F (t)

λ

]
w, t ∈ R.

Clearly, ΦF−V (t) = W (t, 0, 1), for all t ≥ 0, and for each λ ∈ (0,∞), the matrix
−V (t) + F (t)/λ is cooperative. Then, it follows that the linear operator W (t, s, λ)
is positive in R3 for each t ≥ s, s ∈ R, and ρ(W (T, 0, λ)) is continuous and nonin-
creasing for λ ∈ (0,∞), limλ→∞ ρ(W (T, 0, λ)) < 1. It is easy to verify that model
(2.1) satisfies assumptions (A1)-(A7) in Reference [21].

Next, we show that Rs0 serves as a threshold value, when Rs0 < 1, there is
a unique globally asymptotically stable disease-free periodic solution, and when
Rs0 > 1, there is at least one positive periodic solution and the disease is persistent
in the population.
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Theorem 4.1. If Rs0 < 1, the disease-free periodic solution (Nh, 0, S̃m(t), 0, S̃w(t), 0)
of model (2.1) is globally asymptotically stable with respect to the interior of Ω. If
Rs0 > 1, it is unstable.

Proof. By Theorem 2.2 in Reference [21], and if Rs0 > 1; (Nh, 0, S̃m(t), 0, S̃w(t), 0)

is unstable and if Rs0 < 1. Then, (Nh, 0, S̃m(t), 0, S̃w(t), 0) is locally stable. Hence,
it is sufficient to prove that the solution is globally attractive for Rs0 < 1.

Suppose that (Sh(t), Ih(t), Sm(t), Im(t), Sw(t), Iw(t)) is a nonnegative solution
of model (2.1) in Ω, we have

dSh(t)

dt
≤ µhNh − µhSh(t),

dSm(t)

dt
≤ Λm(t)− µmSm(t),

dSw(t)

dt
≤ Λw(t)− µwSw(t).

The comparison theorem of differential equation implies that for any ε > 0, there
is a t1 > 0 such that

Sh(t) ≤ Nh + ε, Sm(t) ≤ S̃m(t) + ε, Sw(t) ≤ S̃m(t) + ε, for all t ≥ t1.

Consider an auxiliary system

dÎh(t)

dt
= (βmh(t)Îm(t) + βwh(t)Îw(t))

Nh + ε

Nh
− (γh + µh)Îh(t),

dÎm(t)

dt
= βhm(t)Îh(t)

S̃m(t) + ε

Nh
− µm(t)Îm(t),

dÎw(t)

dt
= βhw(t)Îh(t)

S̃m(t) + ε

Nh
− µw(t)Îw(t),

(4.2)

which is equivalent to
dÎh(t)

dt

dÎm(t)
dt

dÎw(t)
dt

 = (F (t)− V (t) + εM(t))


Îh(t)

Îm(t)

Îw(t)

 ,M(t) =


0 βmh(t)

Nh

βwh(t)
Nh

βhm(t)
Nh

0 0

βhw(t)
Nh

0 0

 .

It follows from Lemma 2.2 that there is a positive T -periodic function v1(t) such
that ep1tv1(t) is a solution of (4.2), where p1 = ln ρ(ΦF−V+εM (T ))/T . Choose
t2 > t1 and a real number α1 > 0 such that (Ih(t2), Im(t2), Iw(t2))T ≤ α1v1(0).
By the comparison theorem of differential equation we get (Ih(t), Im(t), Iw(t))T ≤
α1v1(t− t2)ep1(t−t2), for all t ≥ t2.

Applying Theorem 2.2 in Reference [21], Rs0 < 1 if and only if ρ(ΦF−V (T )) < 1.
By the continuity of the spectrum for matrices (more details can be found in Refer-
ence [7], Section II. 5.8), we choose ε > 0 small enough such that ρ(ΦF−V+εM (T )) <
1. Then, it follows the comparison theorem that (Ih(t), Im(t), Iw(t))T → (0, 0, 0) as
t → ∞. Moreover, by the theory of asymptotically periodic semiflows (see Refer-

ence [26], Section 3.2), we obtain limt→∞(Sh(t)−Nh) = limt→∞(Sm(t)− S̃m(t)) =

limt→∞(Sw(t)− S̃w(t)) = 0. Hence, (Nh, 0, S̃m(t), 0, S̃w(t), 0) is globally attractive.
The proof is completes.
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Theorem 4.2. If Rs0 > 1, the disease is uniform persistent. That is, there is an
η > 0 such that any solution (Sh(t), Ih(t), Sm(t), Im(t), Sw(t), Iw(t)) of model (2.1)
with positive initial value satisfies lim inft→∞ Ij(t) ≥ η, j = h,m,w. Further, model
(2.1) admits at least one positive periodic solution.

Proof. Let P : Ω → Ω be the Poincaré map associated with model (2.1), that
is P(X0) = φ(T,X0), X0 ∈ Ω, where φ(t,X0) is the solution of model (2.1) with
φ(0, X0) = X0. We define

Ω0 := {(Sh, Ih, Sm, Im, Sw, Iw) ∈ Ω : Ih > 0, Im > 0, Iw > 0}, ∂Ω0 := Ω\Ω0.

It is easy to see that Ω0 is positively invariant, and P is point dissipative from the
analysis for model (2.1) in Section 2. Set M∂ = {(S0

h, I
0
h, S

0
m, I

0
m, S

0
w, I

0
w) ∈ ∂Ω0 :

Pk(S0
h, I

0
h, S

0
m, I

0
m, S

0
w, I

0
w) ∈ ∂Ω0, k ≥ 0}. To use the theory of uniform persistence

developed in Reference [24], we now show that

M∂ = {(Sh, 0, Sm, 0, Sw, 0) : Sh, Sm, Sw ≥ 0} . (4.3)

Obviously, {(Sh, 0, Sm, 0, Sw, 0) : Si ≥ 0, i = h,m,w} ⊆ M∂ . For any (S0
h, I

0
h, S

0
m,

I0
m, S

0
w, I

0
w) ∈ ∂Ω0\{(Sh, 0, Sm, 0, Sw, 0) : Si ≥ 0, i = h,m,w}, there are following

six situations should we discuss

(i) I0
h = 0, I0

m > 0, I0
w > 0; (ii) I0

m = 0, I0
h > 0, I0

w > 0;

(iii) I0
w = 0, I0

h > 0, I0
m > 0; (iv) I0

h = I0
m = 0, I0

w > 0;

(v) I0
h = I0

w = 0, I0
m > 0; (vi) I0

m = I0
w = 0, I0

h > 0.

Here, we merely prove (i) and (iv), other situations are similar.

First, if (i) is valid, then Im(t) > 0, Iw(t) > 0 and Sh(t), Sm(t), Sw(t) > 0 for
any t > 0. From the second equation of model (2.1), we have

Ih(t) =

[
I0
h +

∫ t

0

(βmh(s)Im(s) + βwh(s)Iw(s))
Sh(s)

Nh
e(µh+γh)sds

]
e−(µh+γh)t > 0

for all t > 0. So, situation (i) is not in M∂ .

Next, if (iv) is valid, then Iw(t) > 0 and Sh(t) > 0, Sm(t) > 0, Sw(t) > 0 for any
t > 0. From the second and third equations of model (2.1), we have

Ih(t) ≥
(
I0
h +

∫ t

0

βwh(s)Iw(s)
Sh(s)

Nh
e(µh+γh)sds

)
e−(µh+γh)t > 0, for all t > 0;

and

Im(t) =

(
I0
m +

∫ t

0

βhm(s)Sm(s)
Ih(s)

Nh
e
∫ s
0
µm(τ)dτds

)
e−

∫ t
0
µm(s)ds > 0, for all t > 0.

Then, it follows that (Sh(t), Ih(t), Sm(t), Im(t), Sw(t), Iw(t)) /∈ ∂Ω0 for 0 < t � 1.
Thus, the positive invariance of Ω0 implies (4.3). Clearly, there are two fixed points
of P in M∂ , which are M0(0, 0, 0, 0, 0, 0) and M1(Nh, 0, N

∗
m, 0, 0, 0).

Now, we prove that P is uniformly persistent with respect to (Ω0, ∂Ω0). By
Theorem 2.2 in Reference [21], we have that Rs0 > 1 if and only if ρ(ΦF−V (T )) > 1.
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Then we choose ε > 0 small enough that ρ(ΦF−V−εM (T )) > 1. Note that a
perturbed system of model (4.1)

dSαh (t)

dt
= µhNh −

[
α

Nh
(βmh(t) + βwh(t)) + µh

]
Sαh (t),

dSαm(t)

dt
= Λm(t)−

(
βhm(t)

α

Nh
+ µm(t)

)
Sαm(t),

dSαw(t)

dt
= Λw(t)−

(
βhw(t)

α

Nh
+ µw(t)

)
Sαw(t),

(4.4)

has globally uniformly attractive positive T -periodic solution (Sαh (t), Sαm(t), Sαw(t)).
By the continuity of solutions of ordinary differential equation with to parameter
α, for above ε, there exists a α0 ∈ (0, α) such that

Sαh (t) > Nh − ε, Sαm(t) > S̃m(t)− ε, Sαw(t) > S̃w(t)− ε, for all t ∈ [0, T ].

By the continuity of solutions with respect to the initial values, for above give
constant ε, there is a δ > 0 such that for any X0 = (S0

h, I
0
h, S

0
m, I

0
m, S

0
w, I

0
w) ∈ Ω0

with ‖X0 −Mi‖ ≤ δ, we have ‖φ(t,X0)− φ(t,Mi)‖ < ε, for all t ∈ [0, T ], i = 0, 1.
We now claim that

lim sup
m→∞

‖Pk(X0)−Mi‖ ≥ ε, for all X0 ∈ Ω0. (4.5)

Suppose, by contradiction, that

lim sup
k→∞

∥∥Pk(X0)−Mi

∥∥ < ε, for all X0 ∈ Ω0.

Without loss of generality, we can assume that ‖Pk(X0) −Mi‖ < ε, for all k ≥ 0.
Then, we have ‖φ(t,Pk(X0)) − φ(t,Mi)‖ < α, for all k ≥ 0 and for all t ∈ [0, T ].
For any t ≥ 0, let t = mT + t1, where t1 ∈ [0, T ) and m = [t/T ] is the greatest
integer less than or equal to t/T . Then, we get, for all t ≥ 0∥∥φ(t,Pk(X0))− φ(t,Mi)

∥∥ =
∥∥φ(t1,Pk(X0))− φ(t1,Mi)

∥∥ < ε.

Let (Sh(t), Ih(t), Sm(t), Im(t), Sw(t), Iw(t)) = φ(t, (S0
h, I

0
h, S

0
m, I

0
m, S

0
w, I

0
w)). Then,

it follows that 0 ≤ Sh(t), Ih(t), Sm(t), Im(t), Sw(t), Iw(t) ≤ ε, for all t ≥ 0. Then,
for t ≥ 0, we have

dSh(t)

dt
≥ µhNh −

[
ε

Nh
(βmh(t) + βwh(t)) + µh

]
Sh(t),

dSm(t)

dt
≥ Λm(t)−

(
βhm(t)

ε

Nh
+ µm(t)

)
Sm(t),

dSw(t)

dt
≥ Λw(t)−

(
βhw(t)

ε

Nh
+ µw(t)

)
Sw(t).

From the comparison theorem of ordinary differential equation, one get Sh(t) >
Sεh(t), Sm(t) > Sεm(t) and Sw(t) > Sεw(t) for all t ≥ 0, where Sεh(t), Sεm(t) and
Sεw(t) is the solution of model (4.4) with respect to parameter ε satisfying the
initial condition Sεh(0) = Sh(0), Sεm(0) = Sm(0) and Sεw(0) = Sw(0) respectively.
Therefore, there is t̂ > 0 such that

Sh(t) > Nh − ε, Sm(t) > S̃m(t)− ε, Sw(t) > S̃w(t)− ε, for all t ≥ t̂.
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As a consequence, for t ≥ t̂, it yields that

dIh(t)

dt
≥ (βmh(t)Im(t) + βwh(t)Iw(t))

Nh − ε
Nh

− (γh + µh)Ih(t),

dIm(t)

dt
≥ βhm(t)Ih(t)

S̃m(t)− ε
Nh

− µm(t)Im(t),

dIw(t)

dt
≥ βhw(t)Ih(t)

S̃w(t)− ε
Nh

− µw(t)Iw(t).

Consider the following auxiliary system

dĨh(t)

dt
= (βmh(t)Ĩm(t) + βwh(t)Ĩw(t))

Nh − ε
Nh

− (γh + µh)Ĩh(t),

dĨm(t)

dt
= βhm(t)Ĩh(t)

S̃m(t)− ε
Nh

− µm(t)Ĩm(t),

dĨw(t)

dt
= βhw(t)Ĩh(t)

S̃w(t)− ε
Nh

− µw(t)Ĩw(t).

(4.6)

It follows from Lemma 2.2 that there is a positive T -periodic function v2(t) such
that ep2tv2(t) is a solution of (4.6), where p2 = ln ρ(ΦF−V−εM (T ))/T . There is
t̄ ≥ t̂ and a small number α2 > 0 such that (Ih(t̄), Im(t̄), Iw(t̄))T ≥ α2v2(0). By the
comparison theorem of differential equation we get (Ih(t), Im(t), Iw(t))T ≥ α2v2(t−
t̄)ep2(t−t̄), for all t ≥ t̄. Now we have that ρ(ΦF−V−εM (T )) > 1 and thus p2 > 0,
which implies that Ii(t)→∞ as t→∞, i = h,m,w. This leads to a contradiction.
Then, the above claim (4.5) show that M0 and M1 are isolated invariant sets in Ω.

Let
W s(Mi) :=

{
M0
i : Pk(M0

i )→Mi,m→∞
}
,

then W s(Mi) ∩ Ω0 = ∅, i = 0, 1. Every orbit in M∂ converges to M0 or M1, and
M0 and M1 are acyclic in M∂ . By the acyclicity theorem on uniform persistence
for maps (see Reference [26], Theorem 1.3.1 and Remark 1.3.1), it follows that P
is uniformly persistent with respect to (Ω0, ∂Ω0). Thus, Reference [26] (see Ref-
erence Theorem 1.3.1) implies the uniform persistence of the solutions of model
(2.1) with respect to (Ω0, ∂Ω0). That is, there is a ε > 0 such that any solution
(Sh(t), Ih(t), Sm(t), Im(t), Sw(t), Iw(t)) of model (2.1) with initial values (S0

h, I
0
h, S

0
m,

I0
m, S

0
w, I

0
w) ∈ Ω0 satisfies lim inft→∞ Ii(t) ≥ ε, i = h,m,w. Moreover, by Theo-

rem 1.3.6 in Reference [26], P has a fixed point (S∗h(0), I∗h(0), S∗m(0), I∗m(0), S∗w(0),
I∗w(0))∈ Ω0. Consequently, (S∗h(t), I∗h(t), S∗m(t), I∗m(t), S∗w(t), I∗w(t)) is a positive T -
periodic solution of model (2.1). This is complete the proof.

5. Numerical simulation and discussion

In this paper, we proposed a model which controlling Dengue fever transmission
by Wolbachia with seasonal fluctuation, incorporating the interaction of individual
population, wild mosquito population and Wolbachia-carrying mosquito popula-
tion. To verify these theoretical conclusions, in this section, we perform some nu-
merical simulations to illustrate the main theoretical results using the Runge-Kutta
method in the software MATLAB. For verifying the theoretical results without sea-
sonal fluctuation, we fix basic model parameters as Nh = 2.0×105, Λm = 1.50×104,
Λw = 1.2× 104, γh = 1/7, µh = 1/(72× 365), µm = 1/20 and µw = 1/20.
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Firstly, we choose βmh = βhm = 3.475 × 10−2 and βwh = βhw = 1.215 × 10−3,
which is easy to calculate that R0 ≈ 0.2538 < 1. Therefore, from the conclusion of
Theorem 3.2, it follows that the disease-free equilibrium is asymptotically stable.
Namely, all the infectious classes are decreasing to zero eventually for any initial
value. The plots in Figure 1(a) and 1(b) verified this conclusion.
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Figure 1. The stability of the disease-free equilibrium of model (2.1) without seasonal fluctuation,
where R0 ≈ 0.2538 < 1.

However, we choose βmh = βhm = 8.475 × 10−2, and other parameters are
fixed as above. For these parameter values we get, R0 ≈ 1.5082 > 1. That is,
the disease-free equilibrium loses its stability and the disease is an outbreak, which
is shown in Figure 2(a). In addition, numerical simulations are also carried out
with a variety of initial conditions to check the influence of the initial infectious
population sizes on the infectious population IH(t). To do so, we choose the initial
values of infectious humans and infectious wild mosquitoes are (I0

h, I
0
m) = (50, 1000),

(100, 1000), (50, 2000) and (100, 2000) respectively. The plots in Figure 2(b) show
that the infectious humans have obvious explosion in early phase if the initial value
of infectious mosquitoes is relatively large. The numerical simulations also show that
the size of infectious human is more sensitive to the size of infectious mosquitoes
than the size of infectious humans. Therefore, reducing the population size of
infectious mosquitoes (that is, the size of mosquitoes) is a useful method to control
the transmission of the disease in the early days.
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Figure 2. The dynamics behaviors of model (2.1) without seasonal fluctuation, where R0 ≈ 1.5082 >
1: (a) the instability of disease-free equilibrium; (b) the sensitive of the initial values of infectious
populations.

Next, we consider the sensitivity of threshold value R0. To better visualize the
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sensitivity of R0, we choose βmh = βhm = 3.475×10−2, 5.475×10−2, 7.475×10−2,
8.475×10−2, 9.475×10−2 and βwh = βhw = 0.1×βmh respectively. The plots in Fig-
ure 3(a) show that there will be a sharp outbreak of the number of infected human
population with the increase of βmh and βhm. Therefore, reducing the infected rate
from infectious humans to wild mosquitoes or wild mosquitoes to infectious humans
(by using window screens, long-sleeved clothes and insecticide treated materials) is
important and effective for controlling the disease and preventing large local out-
breaks. Further, if we fixed βmh = βhm = 7.475 × 10−2 and choose βwh = βhw
are 0.1, 0.3, 0.5, 0.7 and 0.9 times to βmh respectively. The plots in Figure 3(b)
show that, as the values βwh and βhw increases, the number of infected human
population significant increases and decremented. Therefore, the effectiveness of
Wolbachia strains is of more importance to control the spread of Dengue virus.
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Figure 3. The sensitivity of threshold value R0: (a) the sensitivity of infected rate from infectious
humans to wild mosquitoes; (b) the sensitivity of infected rate from infectious humans to Wolbachia-
carrying mosquitoes.

Finally, for verifying the theoretical results of model (2.1) with seasonal fluc-
tuation, we choose β = 9.475 × 10−2, βmh(t) = βhm(t) = β + kβ sin(2πft + φ)
and βwh(t) = βhw(t) = 0.1β + kβ sin(2πft + φ), where f = 1/30, k = 0.5 and
φ = 1. The number of infectious humans has a frequency instability which are
observed via numerical simulation as the seasonal fluctuation. Definitely, the in-
tensity oscillation directly depends on the intensity of seasonal fluctuation, which
is also consistent with the actual situation. This is shown in Figure 4(a). Further,
if the background of model (2.1) is not considered, we choose βmh(t) = βhm(t) =
(0.375 + α1sin(2πft + φ)), βwh(t) = βhw(t) = (0.1875 + α2sin(2πft + φ)), where
f = 1/30, α1 = 0.075, α2 = 0.01875, φ = 0, and µm = µw = 1/15, γh = 1/100.
The plots in Figure 4(b) shown that model (2.1) admits different positive periodic
solutions for different initial values. Numerical simulations imply that vector-born
epidemic models with seasonal fluctuation have complex dynamical behaviors, which
will be the problems we need to study further.
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