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Finite-time Stability of Nonlinear Fractional Order
Systems with a Constant Delay∗
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Abstract In this paper, based on the generalized Gronwall inequality and
the method of steps, an approach to the finite-time stability of nonlinear frac-
tional order systems with a constant delay is proposed. A sufficient condition
for finite-time stability of considered systems is presented. Compared with
the finite-time stability criteria in the existing literature, our results are less
conservative. Two examples are given to illustrate the effectiveness of the
proposed theorem.
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1. Introduction

Fractional calculus is playing an increasingly key role in science and engineering
fields [19]. Some eminent results have been obtained in fractional differential sys-
tems recently [7, 12, 25–27]. One of most important tasks in fractional differential
systems is stability analysis. Many researchers focus on the asymptotic stable. How-
ever, in practical engineering applications, many systems state trajectories must not
exceed a certain bound over a given finite-time interval. The systems of short-time
working, for example, missile systems, satellite systems, flight control systems [5],
robotic manipulation systems [13], are main examples of such applications.

Finite-time stability of fractional delay differential systems is initially investi-
gated by Lazarevic [8, 9], after that time, many authors [6, 16, 21, 23] adopted the
similar approach in [9] to study the fractional delay differential systems. How-
ever, the proof of the main theorems in these papers contains a flaw, that is,
f(t) = sup−τ≤θ≤0 ‖x(t + θ)‖ is not always monotone increasing with respect to

t, which leads to that F1(t) =
∫ t

0
(t−s)α−1

Γ(α) f(s)ds is not always monotone increas-

ing with respect to t. As a result, the Gronwall inequality can’t be used in this
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case. Recently, some different techniques are developed without the help of f(t) =
sup−τ≤θ≤0 ‖x(t + θ)‖. In 2018, the authors [22] tried to overcome this difficulty
by transforming the delayed term ‖x(t − τ)‖ to non-delayed term ‖x(t)‖. Unfor-
tunately, the obtained result is also incorrect, since the proof [22] is based on that

F2(t) =
∫ t

0
(t−s)α−1

Γ(α) ‖u(s)‖ds is monotone increasing with respect to t, which is not

always correct (see [4]). Similar problem exists in [28, Lemma 2.4].

The main difficulty in using Gronwall inequality to investigate the finite-time
stability of nonlinear fractional order systems with time delays is in estimating the
delayed term. In [17], Phat et al. overcame this difficulty successfully by construct-
ing a new auxiliary function u(t) = supθ∈[−h,t] ‖x(θ)‖. Some different approaches,
without using Gronwall inequality to investigate the stability of fractional with time
delays, were presented in [10, 11] based on delayed Mittag-Leffler type matrix. In
addition, Thanh et al. [20] proposed an approach based on the Laplace transform
and a independent-delay Lyapunov functional V (x(t)) to study finite-time stability
of nonlinear fractional-order systems with interval time-varying delay. In [1–3], the
Holder inequality was introduced to guarantee that fractional order delayed system
is finite-time stable. The above discussions inspire us for the present investigation.

In this paper, we adopt the method of steps and the generalized Gronwall in-
equality to give a sufficient condition for the finite-time stability of nonlinear frac-
tional order delay systemC

0 D
α
t x(t) = A0x(t) +A1x(t− τ) + f(t, x(t), x(t− τ)), t ∈ [0, T ],

x(t) = ϕ(t), t ∈ [−τ, 0].
(1.1)

The rest of the paper is organized as follows. In Section 2, some definitions and
properties of the fractional delay differential equations are introduced. In Section
3, a proof of uniqueness theorem of nonlinear fractional-order time varying delay
system as an extension to [21, Theorem 3.2] is given. In Section 4, a gap existing
in the proof of [21, Theorem 3.3] is pointed out. Moreover, a new estimate value of
the solution of the systems (1.1) is given and a sufficient condition for finite-time
stability of the systems (1.1) is presented. In Section 5, two examples are given to
illustrate our results.

2. Preliminaries

In this section, we give some basic definitions and notations. Let ‖x(t)‖1 be the
1-norm of a vector x(t) ∈ Rn, where ‖x(t)‖1 =

∑n
i=1 |xi(t)|. The induced norm

‖A‖1 of the matrix A is defined as ‖A‖1 = max1≤j≤n
∑n
i=1 |ai,j |. Throughout this

paper, all the notation ‖ · ‖ means ‖ · ‖1 .

Definition 2.1. [18] For x(t) ∈ L1([0,+∞), R), the Riemann-Liouville integral of
order α for x is defined by

0I
α
t x(t) =

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds,

where Γ(·) is the gamma function.
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Definition 2.2. [18] For x(t) ∈ C1([0,+∞), R), the Caputo derivative of order α
for x is defined by

C
0 D

α
t x(t) =

∫ t

0

(t− s)−α

Γ(1− α)
x′(s)ds, α ∈ (0, 1].

Consider nonlinear fractional order delay systemC
0 D

α
t x(t) = A0x(t) +A1x(t− τ) + f(t, x(t), x(t− τ)), t ∈ [0, T ],

x(t) = ϕ(t), t ∈ [−τ, 0],
(2.1)

where C
0 D

α
t denotes the Caputo fractional derivative of order α ∈ (0, 1), x(t) ∈ Rn

is the state vector of the system, A0, A1 ∈ Rn×n are constant matrices, τ is a
constant delay, f(t, x(t), x(t− τ)) ∈ C([0, T ]×Rn×Rn, Rn) is a nonlinear function,
ϕ ∈ C([−τ, 0], Rn) is the initial function with the norm ‖ϕ‖c = supt∈[−τ,0] ‖ϕ(t)‖.
We make the following assumptions.

(H1) For f(t, x(t), x(t−τ)) ∈ C([0, T ]×Rn×Rn, Rn), there exists a nonnegative
nondecreasing continuous function L(t) such that

‖f(t, x1(t), x1(t− τ))− f(t, x2(t), x2(t− τ))‖ ≤L(t)(‖x1(t)− x2(t)‖
+ ‖x1(t− τ)− x2(t− τ)‖)

for any t ∈ [0, T ].
(H2) f(t, 0, 0) = [0, 0, · · · , 0︸ ︷︷ ︸

n

]T .

Definition 2.3. The system (2.1) is finite-time stable w.r.t.{δ, ε, T} with δ < ε if
and only if ‖ϕ‖c ≤ δ implies ‖x(t)‖ ≤ ε, ∀t ∈ [0, T ].

Lemma 2.1 ( [24]). (Generalized Gronwall Inequality) Suppose α > 0, f(t) is a
nonnegative, nondecreasing function locally integrable on [0, T ) (some T ≤ +∞) and
g(t) is a nonnegative, nondecreasing continuous function defined on [0, T ), g(t) ≤
M(constant), and suppose x(t) is nonnegative and locally integrable on [0, T ) with

x(t) ≤ f(t) + g(t)0I
α
t x(t)

on this interval. Then

x(t) ≤ f(t)Eα(g(t)tα), t ∈ [0, T ),

where Eα is the Mittag-Leffler function defined by Eα(z) =
∑∞
k=0

zk

Γ(kα+1) .

Lemma 2.2. Assume 0 < g ≤ f , α ∈ (0, 1]. Then

fα − gα ≤ (f − g)α. (2.2)

Proof. The proof is easy, so it is omitted here.

3. Uniqueness Theorem of Nonlinear Fractional-Order
Time Varying Delay System

Consider the systemC
0 D

α
t x(t) = A0x(t) +A1x(t− τ(t)) + f(t, x(t), x(t− τ(t))), t ∈ [0, T ],

x(t) = ϕ(t), t ∈ [−τ, 0],
(3.1)
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where τ(t) is a continuous function satisfying 0 ≤ τ(t) ≤ τ, t ≥ 0, other notations
have the same meaning with ones in the system (2.1). We make the following
assumption.

(H3) For f(t, x(t), x(t− τ(t))) ∈ C([0, T ]×Rn×Rn, Rn), there exists a positive
constant L > 0 such that

‖f(t, x1(t), x1(t− τ(t)))− f(t, x2(t), x2(t− τ(t)))‖
≤L(‖x1(t)− x2(t)‖+ ‖x1(t− τ(t))− x2(t− τ(t))‖)

for any t ∈ [0, T ].

The research of the existence and uniqueness of the solution to the system is the
basis of its stability investigation. Motivated by [17], we give the proof of uniqueness
theorem for the system (3.1) using the generalized Gronwall inequality .

Theorem 3.1. Assume that (H3) holds. Then the system (3.1) has a unique con-
tinuous solution.

Proof. Let x(t) and x̃(t) be any two different solutions to the system (3.1). We
define z(t) = x̃(t)−x(t). If t ∈ [−τ, 0], then z(t) = 0, for t ∈ [−τ, 0]. That is to say,
the system (3.1) has a unique solution for t ∈ [−τ, 0].

If t ∈ [0, T ], applying the Riemann-Liouville fractional integral 0I
α
t on both sides

of the system (3.1), then

z(t) =0I
α
t [A0z(t) + f(t, x(t), x(t− τ(t)))− f(t, x̃(t), x̄(t− τ(t))))] (3.2)

+ 0I
α
t [A1z(t− τ(t))].

Applying the norm on both sides of (3.2), it follows that

‖z(t)‖ ≤0I
α
t [‖A0‖‖z(t)‖+ ‖f(t, x(t), x(t− τ(t))− f(t, x̃(t), x̄(t− τ(t))‖] (3.3)

+ 0I
α
t [‖A1‖‖z(t− τ(t))‖]

≤(‖A0‖+ L)0I
α
t ‖z(t)‖+ (‖A1‖+ L)0I

α
t ‖z(t− τ(t))‖.

Let z∗(t) = supθ∈[−τ,t] ‖z(θ)‖ for t ∈ [0, T ], it is obvious that z∗(t) is increasing
with respect to t and we have

‖z(t− τ(t))‖ ≤ z∗(t)

and
‖z(t)‖ ≤ z∗(t).

It follows from (3.3) that

‖z(t)‖ ≤ (‖A0‖+ L)0I
α
t z
∗(t) + (‖A1‖+ L)0I

α
t z
∗(t)

= (‖A0‖+ ‖A1‖+ 2L)0I
α
t z
∗(t)

Note that for all θ ∈ [0, t], we have

‖z(θ)‖ ≤ (‖A0‖+ ‖A1‖+ 2L)0I
α
θ z
∗(θ).

Let Z(t) = 0I
α
t z
∗(t), then

Z(t) =

∫ t

0

(t− s)α−1

Γ(α)
z∗(s)ds
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=

∫ t

0

sα−1

Γ(α)
z∗(t− s)ds.

Since

Z ′(t) =

∫ t

0

sα−1

Γ(α)

dz∗(t− s)
dt

ds+
tα−1

Γ(α)
z∗(0)

=

∫ t

0

sα−1

Γ(α)

dz∗(t− s)
dt

ds

≥ 0.

We have the function Z(t) = 0I
α
t z
∗(t) is increasing respect to t, and hence

‖z(θ)‖ ≤ (‖A0‖+ ‖A1‖+ 2L)0I
α
t z
∗(t), θ ∈ [0, t].

Therefore, we have

z∗(t) = sup
θ∈[−τ,t]

‖z(θ)‖ (3.4)

≤ max
{

sup
θ∈[−τ,0]

‖z(θ)‖, sup
θ∈[0,t]

‖z(θ)‖
}

= max{0, (‖A0‖+ ‖A1‖+ 2L)0I
α
t z
∗(t)}

= (‖A0‖+ ‖A1‖+ 2L)0I
α
t z
∗(t)

Applying Lemma 2.1 on (3.4), it follows that

‖z(t)‖ ≤ z∗(t) ≤ 0 · Eα[(‖A0‖+ ‖A1‖+ 2L)tα].

Hence we obtain x(t) = x̃(t) for t ∈ [0, T ]. This completes the proof.

Remark 3.1. If τ(t) = τ is a constant, it follows from Theorem 3.1 that the
solution of system (2.1) is unique.

Remark 3.2. In [17], new criteria for finite-time stability of nonlinear fractional
order time varying delay system was given. This criteria is based on correspond-
ing existence and uniqueness theorem ( [21, Theorem 3.2]). However, there is a flaw
in [21, Theorem 3.2]. A rigorous proof of the uniqueness theorem can be seen in [4].

Remark 3.3. We have to point out that [21, Theorem 3.2] was proved for system
(2.1) which is nonlinear fractional order system with a constant delay. Since
t ∈ [0, τ ] can’t imply t− τ(t) ∈ [−τ, 0], in other words, x(t− τ(t)) 6= 0 for t ∈ [0, τ ],
the method in [4] is not valid for the proof of the uniqueness theorem of the system
(3.1). Therefore, our uniqueness result in this paper is more general than one in [4].

Remark 3.4. The assumption (2) in [17] can’t imply the assumption (H3) in this
paper, in other words, uniqueness theorem of the system (3.1) can’t hold under the
assumption (2) in [17].

4. Finite-Time Stability of the System (2.1)

In [21, Theorem 3.3], the authors obtained the estimate value of the solution by
using the generalized Gronwall inequality. In this section, we will show that the
result is not always correct and give a new estimate value of the solution.
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By setting u(t) = ‖ϕ‖c + M+‖ϕ‖c(‖A0‖+‖A1‖)
Γ(α+1) tα, the authors [21] applied the

Lemma 2.1 for the following inequality:

‖x(t)‖ ≤ ‖ϕ‖c +
M + ‖ϕ‖c(‖A0‖+ ‖A1‖)

Γ(α+ 1)
tα + (‖A0‖+ ‖A1‖)0I

α
t sup
θ∈[−τ,0]

‖x(t+ θ)‖

and had the statement

‖x‖ ≤ sup
θ∈[−τ,0]

‖x(t+ θ)‖ ≤ u(t)Eα[(‖A0‖+ ‖A1‖)tα], see [21, (22)]. (4.1)

However, we have to point out the statement (4.1) is not always correct since

0I
α
t x(t) =

∫ t
0

(t−s)α−1

Γ(α) x(s)ds is not always monotone increasing with respect to t

for any x(t) ≥ 0. A counter example was given in [4]. Furthermore, the authors [4]

have proved that 0I
0.5
t

1
t+1 =

∫ t
0

(t−s)−0.5

Γ(0.5)
1
s+1ds is monotone decreasing for large t.

Now a question naturally arises, how to give a correct estimate value of the
solution of the system (2.1)? Based on the generalized Gronwall inequality and the
method of steps [14], we give the estimate of the solution and further obtain the
finite-time stability of the system.

Let T > τ , [0, T ] =
⋃n
i=0[iτ, (i+1)τ ]

⋃
[(n+1)τ, T ], with (n+1)τ < T ≤ (n+2)τ.

sups∈[0,t](‖A0‖+ L(s)) = β0(t), sups∈[0,t](‖A1‖+ L(s)) = β1(t).

Theorem 4.1. Assume that the following conditions (H1), (H2) hold. Then the
solution of the system (2.1) is finite-time stable w.r.t {δ, ε, T}, if the following con-
ditions is satisfied:

wT (τ)Eα(β0(T )Tα) ≤ ε, (4.2)

where

wT (τ) =

(
1 + β1(T )

τα

Γ(α+ 1)

)
δ

+ β1(T )
τα

Γ(α+ 1)

[ n∑
j=1

wj(τ)Eα(β0(jτ)(jτ)α)

]
+ β1(T )

(T − (n+ 1)τ)α

Γ(α+ 1)
wn+1(τ)Eα(β0((n+ 1)τ)((n+ 1)τ)α),

wi+1(τ) =

(
1 + β1((i+ 1)τ)

τα

Γ(α+ 1)

)
δ

+ β1((i+ 1)τ)
τα

Γ(α+ 1)

[ i∑
j=1

wj(τ)Eα(β0(jτ)(jτ)α)

]
, 1 ≤ i ≤ n,

w1(τ) =δ + β1(τ)δ
τα

Γ(α+ 1)
.

Proof. From [21, Theorem 3.1], we know for t ∈ [0, T ], we have

x(t) = ϕ(0)+
1

Γ(α)

∫ t

0

(t−s)α−1[A0x(s)+A1x(s−τ)+f(s, x(s), x(s−τ))]ds. (4.3)

Applying the norm on both sides of (4.3), for t ∈ [0, τ ], we have

‖x(t)‖ ≤‖ϕ(0)‖+ 0I
α
t ‖A0x(t) +A1x(t− τ) + f(t, x(t), x(t− τ))‖
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≤‖ϕ‖c + ‖A0‖0Iαt ‖x(t)‖+ ‖A1‖0Iαt ‖x(t− τ)‖
+ 0I

α
t ‖f(t, x(t), x(t− τ))‖

≤‖ϕ‖c + ‖A0‖0Iαt ‖x(t)‖+ ‖A1‖0Iαt ‖x(t− τ)‖
+ 0I

α
t [L(t)(‖x(t)‖+ ‖x(t− τ)‖)]

=‖ϕ‖c + β0(t)0I
α
t ‖x(t)‖+ β1(t)0I

α
t ‖x(t− τ)‖

=‖ϕ‖c + β0(t)0I
α
t ‖x(t)‖+ β1(t)‖ϕ‖c

tα

Γ(α+ 1)

≤
[
‖ϕ‖c + β1(t)‖ϕ‖c

tα

Γ(α+ 1)

]
+ β0(t)0I

α
t ‖x(t)‖.

Using the Lemma 2.1 for t ∈ [0, τ ], we have

‖x(t)‖ ≤
[
‖ϕ‖c + β1(t)‖ϕ‖c

tα

Γ(α+ 1)

]
Eα(β0(t)tα)

≤
[
‖ϕ‖c + β1(τ)‖ϕ‖c

τα

Γ(α+ 1)

]
Eα(β0(τ)τα)

≤w1(τ)Eα(β0(τ)τα).

For t ∈ (iτ, (i+ 1)τ ], 1 ≤ i ≤ n, we have

‖x(t)‖ ≤‖ϕ‖c + β0(t)0I
α
t ‖x(t)‖+

β1(t)

Γ(α)

∫ t

0

(t− s)α−1‖x(s− τ)‖ds

=‖ϕ‖c + β0(t)0I
α
t ‖x(t)‖+ β1(t)

[ ∫ τ

0

(t− s)α−1

Γ(α)
‖x(s− τ)‖ds

+

∫ 2τ

τ

(t− s)α−1

Γ(α)
‖x(s− τ)‖ds

+ · · ·

+

∫ t

iτ

(t− s)α−1

Γ(α)
‖x(s− τ)‖ds

]
≤‖ϕ‖c + β0(t)0I

α
t ‖x(t)‖+ β1(t)

[
‖ϕ‖c

tα − (t− τ)α

Γ(α+ 1)

+ w1(τ)Eα(β0(τ)τα)
(t− τ)α − (t− 2τ)α

Γ(α+ 1)

+ · · ·

+ wi(τ)Eα(β0(iτ)(iτ)α)
(t− iτ)α

Γ(α+ 1)

]
(2.2)

≤ ‖ϕ‖c + β0(t)0I
α
t ‖x(t)‖+ β1(t)

[
‖ϕ‖c

τα

Γ(α+ 1)

+ w1(τ)Eα(β0(τ)τα)
τα

Γ(α+ 1)

+ · · ·

+ wi(τ)Eα(β0(iτ)(iτ)α)
τα

Γ(α+ 1)

]
≤
(

1 + β1((i+ 1)τ)
τα

Γ(α+ 1)

)
‖ϕ‖c
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+ β1((i+ 1)τ)
τα

Γ(α+ 1)

[ i∑
j=1

wj(τ)Eα(β0(jτ)(jτ)α)

]
+ β0((i+ 1)τ)0I

α
t ‖x(t)‖.

Using Lemma 2.1 for t ∈ (iτ, (i+ 1)τ ], we have

‖x(t)‖ ≤ wi+1(τ)Eα(β0((i+ 1)τ)tα)

≤ wi+1(τ)Eα(β0((i+ 1)τ)((i+ 1)τ))α)

Finally, for t ∈ ((n+ 1)τ, T ], we have

‖x(t)‖ ≤‖ϕ‖c + β0(t)0I
α
t ‖x(t)‖+

β1(t)

Γ(α)

∫ t

0

(t− s)α−1‖x(s− τ)‖ds

=‖ϕ‖c + β0(t)0I
α
t ‖x(t)‖+ β1(t)

[ ∫ τ

0

(t− s)α−1

Γ(α)
‖x(s− τ)‖ds

+

∫ 2τ

τ

(t− s)α−1

Γ(α)
‖x(s− τ)‖ds

+ · · ·

+

∫ (n+1)τ

nτ

(t− s)α−1

Γ(α)
‖x(s− τ)‖ds

+

∫ t

(n+1)τ

(t− s)α−1

Γ(α)
‖x(s− τ)‖ds

]
≤‖ϕ‖c + β0(t)0I

α
t ‖x(t)‖+ β1(t)

[
‖ϕ‖c

tα − (t− τ)α

Γ(α+ 1)

+ w1(τ)Eα(β0(τ)τα)
(t− τ)α − (t− 2τ)α

Γ(α+ 1)

+ · · ·

+ wn(τ)Eα(β0(nτ)(nτ)α)
(t− nτ)α − (t− (n+ 1)τ)α

Γ(α+ 1)

+ wn+1(τ)Eα(β0((n+ 1)τ)((n+ 1)τ)α)
(t− (n+ 1)τ)α

Γ(α+ 1)

]
≤‖ϕ‖c + β0(t)0I

α
t ‖x(t)‖+ β1(t)

[
‖ϕ‖c

τα

Γ(α+ 1)

+ w1(τ)Eα(β0(τ)τα)
τα

Γ(α+ 1)

+ · · ·

+ wn(τ)Eα(β0(nτ)(nτ)α)
τα

Γ(α+ 1)

+ wn+1(τ)Eα(β0((n+ 1)τ)((n+ 1)τ)α)
(t− (n+ 1)τ)α

Γ(α+ 1)

]
≤
(

1 + β1(T )
τα

Γ(α+ 1)

)
‖ϕ‖c

+ β1(T )
τα

Γ(α+ 1)

[ n∑
j=1

wj(τ)Eα(β0(jτ)(jτ)α)

]
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+ β1(T )
(T − (n+ 1)τ)α

Γ(α+ 1)
wn+1(τ)Eα(β0((n+ 1)τ)((n+ 1)τ)α)

+ β0(T )0I
α
t ‖x(t)‖.

Using Lemma 2.1 for t ∈ ((n+ 1)τ, T ], we have

‖x(t)‖ ≤ wT (τ)Eα(β0(T )Tα).

Remark 4.1. If T ∈ (0, τ ], then the system (2.1) is finite-time stable under the
following condition:

wT (τ)Eα(β0(T )Tα) ≤ ε,

where

wT (τ) = δ + β1(T )
δTα

Γ(α+ 1)
.

Remark 4.2. A similar approach is used to study the finite-time stability of linear
fractional order time delay system in [15]. However, we have to point out flaws
in [15]. For t ∈ [0, 2τ ], The authors [15] estimated the term

v1

Γ(α)

∫ t

0

(t− s)α−1‖x(s− τ)‖ds [15, (9)] (4.4)

using the estimate value of x(t) for t ∈ [0, τ ], but s−τ ∈ [−τ, τ ], so the authors can’t
estimate the term (4.4) by use of the estimate value of x(t) for t ∈ [0, τ ] directly,
namely, we have to split this term into two terms:

v1

Γ(α)

∫ τ

0

(t− s)α−1‖x(s− τ)‖ds (4.5)

and
v1

Γ(α)

∫ t

τ

(t− s)α−1‖x(s− τ)‖ds. (4.6)

In this way, for s ∈ [τ, t], (4.6) can be estimated by the estimate value of x(t) for
t ∈ [0, τ ]. For s ∈ [0, τ ], (4.5) can be estimated by ‖x(s− τ)‖ ≤ ‖ϕ‖c. Furthermore,
(4.4) can be estimated. Similar problems exist in the estimate of x(t) for t ∈ [0, T ]
[15].

Corollary 4.2. The solution of the following linear fractional order system with a
constant delay C

0 D
α
t x(t) = A0x(t) +A1x(t− τ), t ∈ [0, T ],

x(t) = ϕ(t), t ∈ [−τ, 0]
(4.7)

is finite-time stable w.r.t {δ, ε, T}, if the following conditions is satisfied:

wT (τ)Eα(‖A0‖Tα) ≤ ε, (4.8)

where

wT (τ) =

(
1 + ‖A1‖

τα

Γ(α+ 1)

)
δ



10 F. Du & B. Jia

+ ‖A1‖
τα

Γ(α+ 1)

[ n∑
j=1

wj(τ)Eα(‖A0‖(jτ)α)

]
+ ‖A1‖

(T − (n+ 1)τ)α

Γ(α+ 1)
wn+1(τ)Eα(‖A0‖((n+ 1)τ)α),

wi+1(τ) =

(
1 + ‖A1‖

τα

Γ(α+ 1)

)
δ

+ ‖A1‖
τα

Γ(α+ 1)

[ i∑
j=1

wj(τ)Eα(‖A0‖(jτ)α)

]
, 1 ≤ i ≤ n,

w1(τ) =δ + ‖A1‖δ
τα

Γ(α+ 1)
.

Remark 4.3. If T ∈ (0, τ ], then the system (4.7) is finite-time stable under the
following condition:

wT (τ)Eα(‖A0‖Tα) ≤ ε,
where

wT = δ + δ
‖A1‖Tα

Γ(α+ 1)
.

Remark 4.4. The criterion for finite-time stability of system (4.7) from [17, The-
orem 1] is given as follows:

δEα[(‖A0‖+ ‖A1‖)Tα] ≤ ε.

Remark 4.5. The criterion for finite-time stability of system (2.1) from [17, The-
orem 1] is given as follows:

δEα[(‖A0‖+ ‖A1‖+ 2L)Tα] ≤ ε.

5. Numerical examples

In this section, we will use two modified examples which appeared originally in [9]
and [17], respectively, to show the effectiveness of Theorem 4.1 and Corollary 4.2
and to illustrate our results are less conservative than the existing results.

Example 5.1. Consider the linear fractional delay system

C
0 D

1/2
t x(t) =

 0 1

−2 0

x1(t)

x2(t)

+

0 0

3 4

x1(t− 0.1)

x2(t− 0.1)

 (5.1)

with initial condition

x(t) = ϕ(t) = (0.01, 0.01)T , t ∈ [−0.1, 0].

We have ‖A0‖ = 2, ‖A1‖ = 4, ‖ϕ‖c = 0.02 < δ = 0.03, τ = 0.1. According to
Corollary 4.2, we have the following Table 1.

Table 1. ε for δ = 0.03 and T varies in Example 5.1.

T 0.1 0.15 0.2 0.25 0.3
Remark 4.4 2.1879 13.2776 80.3599 486.1797 2.9412e+03

Corollary 4.2 0.1770 0.7910 1.2992 8.1978 13.5959
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Table 1 illustrates our results (Corollary 4.2) are less conservative than ones in
Remark 4.4 when T varies within a certain interval.

Example 5.2. Consider the nonlinear fractional delay system

C
0 D

1/2
t x(t) =

 0 1

−2 0

x1(t)

x2(t)

+

0 0

3 4

x1(t− 0.1)

x2(t− 0.1)

+ f(t, x(t), x(t− τ)) (5.2)

with initial condition

ϕ(t) = (0.07, 0.07)T , t ∈ [−0.1, 0],

where f(t, x(t), x(t− τ)) = 0.01

sinx1(t)

sinx2(t)

 .
We have

‖f(t, x(t), x(t− τ))− f(t, y(t), y(t− τ))‖
=0.01| sinx1(t)− sin y1(t)|+ 0.01| sinx2(t)− sin y2(t)|
≤0.01|x1(t)− y1(t)|+ 0.01|x2(t)− y2(t)|
=0.01(‖x(t)− y(t)‖+ ‖x(t− 0.1)− y(t− 0.1)‖).

It is easy to see L(t) = 0.01, ‖A0‖ = 2, ‖A1‖ = 4, τ = 0.1, ‖ϕ‖c = 0.14 < δ = 0.15,
β0(t) = 2.01, β1(t) = 4.01. According to Theorem 4.1 , we have the following Table
2.

Table 2. ε for δ = 0.15 and T varies in Example 5.2.

T 0.3 0.6 0.9 1
Remark 4.5 1.5806e+04 8.3277e+08 4.3876e+13 1.6449e+15
Theorem 4.1 70.0989 8.1581e+05 3.2595e+11 5.3382e+13

Table 2 illustrates our results (Theorem 4.1) are less conservative than ones in
Remark 4.5 when T varies within a certain interval.

6. Conclusions

In this paper, the finite-time stability of fractional differential systems with a con-
stant delay have been investigated. By use of the generalized Gronwall inequality
and the method of steps, a sufficient condition for finite-time stability of fractional
differential system with a constant delay has been proposed. Two examples are
given to show that our results are less conservative than the existing ones. It is
worth noting that though the authors of [17, 20] investigated the finite-time sta-
bility of fractional differential system with interval time-varying delay, two delay
functions both are bounded. To the best of our knowledge, finite-time stability of
fractional differential system with unbounded delay is still an open problem.
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