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Bi-center Problem in a Class of Zs-equivariant
Quintic Vector Fields*

Hongwei Li', Feng Li"" and Pei Yu?

Abstract In this paper, we study the center problem for Z3-equivariant quin-
tic vector fields. First of all, for convenience in analysis, the system is simplified
by using some transformations. When the system has two nilpotent points at
(0, +1) with multiplicity three, the first seven Lyapunov constants at the sin-
gular points are calculated by applying the inverse integrating factor method.
Then, fifteen center conditions are obtained for the two nilpotent singular
points of the system to be centers, and the sufficiency of the first seven center
conditions are proved. Finally, the first five Lyapunov constants are calculated
at the two nilpotent points (0,+1) with multiplicity five by using the method
of normal forms, and the center problem of this system is partially solved.

Keywords Nilpotent singular point, Center—focus problem, Bi-center, Lya-
punov constant.
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1. Introduction

Consider the following planar differential system,

=Py, P =Q) (1.1)
where P and () are polynomials. The second part of Hilbert’s 16th problem is to
find the upper bound of the limit cycles that system (1.1) can have. One important
problem related to the bifurcation of limit cycles is to determine whether a singu-
lar point of system (1.1) is a center or not, which is called center problem. The
distinction between a center case and a non-center case has great difference on the
determination of limit cycles.

As a special class of system (1.1), the Z,-equivariant vector fields have attrac-
tive properties because of their symmetry. It is well known that better results on
the number of limit cycles are often obtained from Z,-equivariant vector fields. In
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recent years, more and more attention has been paid to the center problem of Z,,-
equivariant vector fields. For example, Liu and Li [1] gave a complete study on the
bi-center problem of a class of Zs-equivariant cubic vector fields. Romanovski et
al. [2] studied the bi-center problem of some Zs-equivariant quintic systems. Giné [3]
investigated the coexistence of centres in two families of planar Z,-equivariant sys-
tems. Theory of rotated equations was discussed by Han et al. [4] and applied to
study a population model. The Poincaré return map and generalized focal values
of analytic planar systems with a nilpotent focus or center were considered in [5]
where the classical Hopf bifurcation theory was generalized. Global phase portraits
of symmetrical cubic Hamiltonian systems with a nilpotent singular point were dis-
cussed in [6]. Recently, Yu el al. [7] applied the method of normal forms to improve
the results on the number of limit cycles bifurcating from a non-degenerate center
of various homogeneous polynomial differential systems. A special type of bifurca-
tion of limit cycles from a nilpotent critical point was studied in [8]. However, for
degenerate singular points, because of difficulty, there are very few results obtained
even for Zs-equivalent systems with two nilpotent singular points. In [9], the au-
thors proved that the origin of any Zs-symmetric system is a nilpotent center if and
only if there exists a local analytic first integral. Recently, we studied bifurcation
of limit cycles in a class of Z-equivalent cubic planar differential systems with two
nilpotent singular points, described by

dzx
i A1oz + Aoty + Azor® + An2®y + Apay® + Apsy® = X(2,v),
(1.2)
d
di: = Biox + Bo1y + Bsoz® + Bo12%y + Biaay® + Bosy® = Y(z,y).

In [10], sufficient and necessary conditions for the critical points of the system (1.2)
to be centers were obtained. In addition, the existence of 12 small-amplitude limit
cycles bifurcating from the critical points was proved.

In this paper, a class of Zs-equivariant quintic planar differential systems with
two nilpotent singular points, given by

dx
T =A107 + A1y + Asox® + Agaty + Agexdy? + Agza?y?

+ Anzy* + Aosy® = X (2,y), (1.3)
J )
diz{ =Byox + Bo1y + Bsor® + Byaty + Baax®y? + Boza?y®

+ Bl4my4 + B05y'5 = Y('ra y)7

are studied. Necessary conditions for the singular points of system (1.3) to be
centers are derived.

The rest of the paper is organized as follows. In the next section, we simplify
system (1.3) for convenience in analysis. In Section 3, the first seven Lyapunov
constants at an order-3 nilpotent singular point are computed by using the inverse
integrating factor method or the method of normal forms. Bi-center conditions
in Zs-equivariant vector fields are discussed, and fifteen bi-center conditions are
obtained for system (1.3). Further, the first five Lyapunov constants at an order-5
nilpotent singular point are computed by using the method of normal forms, yielding
one more bi-center condition.
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2. Simplification of system (1.3)
Suppose (0,+1) are isolated singular points of system (1.3). Then,
Ap1 = —Aos, Bo1 = —Bos, (2.1)

and the Jacobin matrix of system (1.3) evaluated at (0, £1) is given by

B % %%f [ Ao+ Ag 4Aos
Jo=1 ) = . (2.2)
oy ot Bio + Bisa 4Bos

Oz Jy / (0, +1)
We have the following result.

Lemma 2.1. Suppose (0,=£1) are isolated nilpotent singular points of (1.3). Then
Ags # 0.
Proof. Suppose Ag; = 0. Then Jj is a triangular matrix with two eigenvalues,
A =A10+ A1, A2 =4DBgs.
Since (0,=41) are isolated nilpotent singular points, we have
A1 =X =0,

under which together with (2.1), system (1.3) is reduced to

dx
i z(Aro + Asor® + An2Py + Asoa®y® + Aszzy® + A1ay?),
(2.3)
@—m(B + Bsoz? + Byx3y + Bsox®y® 4 Baszy® + Buy?)
at 10 50L 1Ty 32L°Y 23TY 14Y "),

which has a common factor « in the two equations, implying that (0,=£1) are not
isolated, and so Lemma 2.1 is proved. O
Lemma 2.2. Suppose (0,£1) are isolated nilpotent singular points of system (1.3).
Then without loss of generality, it can be assumed that
Apg=-A4A Ags = L
10 = 1, Aos = 7 (2.4)
Big = —Bia, Bos =0.

Proof. Suppose (0,+1) are isolated nilpotent singular points of system (1.3). So
Aps # 0 by Lemma 2.1. Consider the following non-degenerate transformation,

v =4A058, y=4Bos&+, (2.5)

which has fixed points (0,0) and (0,£1). By applying the transformation (2.5), it
is easy to obtain the Jacobin matrix evaluated at (0,41), given by

5= TG 1) (2.6)
—Det(J())O
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Since (0, £1) are nilpotent singular points of system (1.3), we have
Tr(Jy) = Det(Jy) = 0,
and then (2.6) becomes

01
Ji =
00
Namely, we can always suppose
01
Jo =
00

Otherwise, Jy can be transformed into J; by the transformation (2.5), so Lemma 2.2
is proved. O
By Lemma 2.2, we have that

Lemma 2.3. If (0,41) are isolated nilpotent singular points of system (1.3), then
the system can be simplified as

dx 1 1

7 + 1y5 — Az + Asoz® + Apaty + Azex®y? + Agsa?®y® + Apgxy?,
d

(% = —B147 + Bsox® + Bua'y + Bsax®y? + Bosa®y® + Buay®.

(2.7)

Now we discuss the multiplicity of nilpotent singular points (0,+1) of system
(2.7). System (2.7) can be transformed to

% = in(l +0) (240 (0> + 20+ 2) + As€® + A& (1+1)
+ Az&n(1+ 1) + A23&n(1 + n)® + A1aén(2 4+ n)(n* + 20 + 2)
= ®(&,n),
" (2.8)

= = Bso€” + Bug! (1 +n) + Byg®n(1 +1)°
+ Bas€®n(1+n)* + Bra€n(2 +n)(2 + n(2 + n))
= V(¢ ),
by
==+, n=+y—-1.
Suppose the only solution of the implicit function equation ®(¢,7) = 0 near (0,0)
is

n=1E=>Y o
k=2
Denote
\Ij(ga f(g)) = Zakgkv
k=2

+ =D B
o€ 3’7L,f<5> 2
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By using the intersection number of algebraic curves, the definition of multiplic-
ity of a singular point of system (1.1) is given in [11].

Definition 2.1. [11] Suppose that the origin is an isolated singular point of system
(2.8) and the conditions given in (2.9) holds. If ay = a3 =+ = a1 =0, ap #0,
the origin is called a k-multiple singular point of system (2.8), and the k is called
the multiplicity of the origin.

It is not difficult to obtain the coefficients oy, and §; in (2.9), as given below:

Qg = Bags,

a3 = Bgy — 4A23B14,

0y = 16A14A23B14 — 4A32B14 — 3A23B23 + By,

a5 = —64A3, As3 Bia + 8A33B1s + 16 A14A3o Bra — 4As1 B1a + 12414 A23 Bas
— 3A32Ba3 — 2A23B32 + Bso,

o = %(512/11;4/123314 064,442, By — 12842, AgoBiy + 24423 Asa B1s
+ 32414 A41 B1y — 8A50B14 — 96A3, As3 Bog + 9A33 Bos + 24A14A30Bos
— 6A41 B3 + 16A14Az3 B30 — 4A32032 — 2A23Byy),

B1 = 2(Ags + 2b14),

fo = —4A14A23 + 3A32 + 3823,

Bs = —2(—8A7, Aoz + 3435 + 2414430 — 2441 + 6A23B14 — b32),

By = —64A% Aoy + 32414 A35 + 1647, Agp — 12493450 — 4414 A1 + 5As0

+ 48A14A23B14 — 12A35B14 — 6A23Bos + By
(2.10)

According to Theorems 7.2 and 7.3 in [12], the types of the origin of system
(2.7) can be classified as follows.
For k = 2m, ay #0,

Br = 0, degenerate point,

n > m, degenerate point,
Brn #0

n < m, saddle-node point.
For k=2m+1, A= 2 +4(m + Dagmy1,

Qom+1 > 0, saddle,

Brn = 0, center or focus,

n>m,
center or focus,
Q2m41 <0, orn=m, A <0,
Pn #0
n <m, neven, node,

or n =m, A >0, |nodd, degenerate point.
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Proposition 2.1. The nilpotent singular points (0,£1) of (2.7) are degenerate
singular points when ag = Bag # 0.

Phase portraits of some systems were given in [13] with the help of Maple pro-
gramme P4. We also use the Maple programme P4 to show some simulations.

Example 2.1. When A50 = A41 = A32 = A23 = A14 = B50 = B41 = ng = B23 =
Byy = 1, obviously we have as = Boz = 1 # 0. So according to the classification,
(0, £1) are degenerate singular points, as shown in Figure 1.

Figure 1. Phase portrait showing (0,+1) to be degenerate singular points for Asg = A41 = Azz =
A2z = A14 = Bso = B41 = B3z = Baz = B1a = 1.

Proposition 2.2. The nilpotent singular points (0,+1) of (2.7) are saddles for
Bss = 0,3 > 0; but are centers or foci when the following conditions hold:

B3 =0, a3 <0, 51750, )\1:512+8043<0.

Proposition 2.3. The nilpotent singular points (0,£1) of (2.7) are saddle-node
points when Bas = 0,a3 = 0,481 # 0; and are degenerate singular points when
B3 =0, a3 =51 =0, as #0.

Example 2.2. Taklng A50 = A41 = A32 = A14 = B50 = B41 = 332 = Bl4 =

1, By = 0, Aoz = —2,B3y; = —10, we have ag = B3 =0, a3 =1 > 0, so (O,ﬂzl)
are saddle-node points, see Figure 2.

When Asg = Ag1 = Aza = A1y = Bso = By = Bia =1, Baz3 =0, Aoz = =2, B3y =
—20, we have g = Bag =0, a3 = —1 >0, A =1 > 0, hence (0, £1) are degenerate
singular points, as depicted in Figure 3.

When Bs3 = 0, a3 = ay = 0, we have the following result.

Proposition 2.4. The nilpotent singular points (0,41) of (2.7) can be classified
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Figure 2. Phase portrait showing (0,£1) to be saddle-node points for Asg = A41 = Azs = A1q =
Bso = B41 = B32 = By =1, Bag = A23 = 0.

Figure 3. Phase portrait showing (0,+1) to be degenerate singular points for Asg = As1 = Azz =
A3z = A1a = Bsg = Ba1 = Bsz = B1a =1, B2z = 0.

as follows:

as > 0, saddle,
B1 # 0, degenerate point,

Bs = 0, center or focus,
as < 0,

Ar=0 A < 0 center or focus,

B2 # 0,
? A > 0 node.

Proposition 2.5. The nilpotent singular points (0,£1) of (2.7) are saddle-node
points when the following conditions hold:

By3 =0, az=0, as=a5=p1 =0, asb #0;
and degenerate singular points when

Bys =0, a3 =0, ay=a5=01=02=0, as#0.
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Example 2.3. When A50 = A41 = A32 = A23 = A14 = B50 = B41 = B32 = Bl4 =
1, Bog = 0, we have as = Bys =0, ag = —1 > 0, A = —1 < 0, which implies that
(0,£1) are foci, see Figure 4.

When Asg = Ay1 = Azs = A1y = Bso = Byy = B3z = Biy = 1, Bag = Agz = 0,
we obtain g = Bag =0, a3 = —1 > 0, A = —1 < 0, and so (0,%1) are centers, as
shown in Figure 5.

Figure 4. Phase portrait showing (0, £1) to be foci for Asg = A41 = Azz = A14 = Bsg = Ba1 = Bia =
1, Baz = 0, A2z = —2, B3z = —20.

D AR

Figure 5. Phase portrait showing (0,+1) to be centers for Asg = A41 = Agz = A1a = Bsg = B4 =
B3z = B1a =1, Bag = 0, Aaz = —2, B3z = —10.

Proposition 2.6. The multiplicity of the nilpotent singular points (0,+1) of (2.7)
15 at most siz.

Proof. Using (2.10) and setting as = a3 = oy = a5 = 0, we obtain
Ba3 =0, Bz =4A23B4,

By = —4(4A14A23 — azz)Bua,
Bso = 4(16A7, Aos By — 4414 A3 By + Ay Biy),
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and Qg — 4(6414‘%41423 - 1614%41432 + 4A14A41 - A50)Bl4. For Qg = 0, there are two
cases.

If By4 =0, ¥(&,n) =0, indicating that (0,+1) are not isolated.

If Asq = 4(16A43,Ass — 443, Azs + A14A41), system (2.8) becomes

df? = Bl4£f(£a 77)7

where
f(&n) = 4458 + 443283 (1 — 4A14€ + 1)

+4 42382 [16 42,62 — 4A14€(1 + )
+@ 402 +n2+n)[2+n2+n)].

Hence there exists a common factor f(£,n) in ®(£,n) and ¥(&,n), implying that
(0,£1) are not isolated. O

Since the multiplicity of a nilpotent focus or center is an odd positive integer
greater than 1, Proposition 2.6 implies that the multiplicity of (0,%+1) is 3 or 5
if (0,41) are nilpotent foci or centers of system (2.7). In particular, (0,+1) are
nilpotent foci or centers of system (2.7) with multiplicity 3 if and only if

as =0, a3 <0, A=p?+8a3<0,
namely,
323 = 07 B32 — 2A23314 < O7 4(A23 — 2314)2 + 8B32 < 0.

By a simple scaling, we can assume that a3 = —2, yielding B3s = —2+4A493B14.
Now, combining the above results, we get our first main theorem.

Theorem 2.1. Suppose (0,+1) are the nilpotent foci or centers of system (1.3) with
multiplicity 3. By proper linear transformation and time rescaling, system (1.3)
can be changed to

dx 1 L5 5 4 3,2 2,3
— = —Aur — —y+ -y’ + Asor” + Ana’y + Asex”y” + AgzaTy’,

C‘l” 44 (2.11)
dit/ = —Bax + Bsox® + Byaty + (=2 + 4 A3 Bry)2®y? + Bryay®,

where the following condition is satisfied:
A = 4(Ag3 +2B14)? — 16 < 0.
Furthermore, we can obtain that if
a=a3=0a4=0a5 <0, A=p2+12a;5<0,
namely

B3 =0, Bsy=2A93B14, Ba = —4(4A14A23B14 — A32B14),
Az = —2Byy, B3+ 12a5 <0,
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the singular points (0, £1) are isolated nilpotent foci or centers of system (2.7) with
multiplicity 5.
Similarly, with a simple scaling, we can assume that az = —%, yielding

3
Bso = i (16A14 A3 B4 — 4A4 By + 12842, B%)). (2.12)

Now, combining the above results, we have our second main theorem.

Theorem 2.2. Suppose (0,£1) are isolated nilpotent foci or centers of system (1.3)
with multiplicity 5. By proper linear transformation and time rescaling, system
(1.3) can be rewritten as

d 1
d—f = Z(_4A14I + 4A50I5 ) + 4A41174y + 4A32I3y2

+ 4 A9 7%y + 4 Ayt + ), (2.13)
p )
dii = —2(B14 — Bsox® + 16414493 B147’y — 4A30 B1az®y

— 4A93B142°y* — Buy?),

where Bsg is given in (2.12) and A = (3A32 + 8414B14)? — 9 < 0.

3. Center problem of (0, £1) with multiplicity 3

Consider the following system,

dx 2 - k,j
E =Y + axpx +k+22 3akj:v yj,
=
N g (3.1)
3 k,j
. = bllxy + b30(E + Z bkjl' y‘].

k+2j=4

The origin of system (3.1) is a nilpotent singular point with multiplicity 3 if and
only if bgg — agpb11 # 0. Especially, when bsg —azpb11 < 0, the origin of system (3.1)
is a nilpotent focus or center if (2as9 — b11)? + 8bzp < 0, or a degenerate singular
point if (2&20 — b11)2 + 8b3p > 0.

For system (3.1) with a nilpotent focus or center, an inverse integrating factor
method developed by Liu and Li in [14] for computing the Lyapunov constants of
the system, as stated in the following theorem. However, note that this method is
restricted to the case when the nilpotent focus or center has multiplicity 3.

Theorem 3.1. For system (3.1), there exists a power series of the form
) 2 0 11 5 30 4 kj ,
k+2j=5
such that

o0 ( X o ( Y R —
% (M‘9+1> +37y <Ms+1> = Motz Zl/m(2m—4s—3)x )

=1

for an integer s.
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The recursive formulas for computing ci; and vy, can be found in Theorem 4.5
of [14], vy, is the mth Lyapunov constant of system (3.1) at the origin.

Now we compute the first seven Lyapunov constants at (0, £1) of system (2.11).
For simplicity, we denote

A23 = 2M — 2B14.

According to Theorem 2.1, we detect that (0, £1) of system (2.11) are foci or centers
if 2 < 1 and degenerate singular points if 42 > 1. But it is very difficult to compute
the Lyapunov constants when p # 0. In this paper we only consider the case when
© =0, namely Ass = —2By4.

3.1. Lyapunov constants for the case =0
Using the formulas in Theorem 3.1, we obtain the Lyapunov constants as follows.

Proposition 3.1. The first seven Lyapunov constants at (0,+1) of system (2.11)
are

vy = 3A39 + 8414814,

L
2 9 )
ST
Hy
V4 = ZSomrns
2835000
Hj
Vg = o
30618000000
Ve = Hs
6= 848730960000000’
Hy
vy

= 185362841664000000000°
where
Hy = 45A50 + 4A14{ —3A441(3+32B%))

+2(3+8B%)[ — 3+ 8B4 (442, + 3B1)]}
—9By1 + 6[3A41 — 4B14(4A3, + 3B14)| Ba,

and Hs, Hy, Hs, Hg and H; are polynomials in Bsg, A14, B14, A41, Ba1 and pu,
which contain 47, 174, 481, 1070, and 2133 terms, respectively.

3.2. Bi-center conditions of system (2.11) for y =0

In this subsection, we apply the inverse integrating factor method to study the
bi-center problem of system (2.11). We have the following result.

Theorem 3.2. The first seven Lyapunov constants at the two singular points (0, £1)
of system (2.11) are all zero if and only if one of the following fifteen conditions
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holds:

Il : A32:0, A14:0’ A50:O, B41:O;
1
In: A3 =0, A4 =0, A50 = —53417 Ay = 1+4B3;

1
Is: A3 =0, A1y =0, A5 = —5341(—1 +2A41), B14a =0,Bs50 = 0;

1
Iy: Asx =0, Aso =2A14, Bso =4(8A14+ Bu)Aws, An = 5,314 =0;

Is: Aszx =0, Aso =4A14A41, Bsog =0, By = —8A14, B1y = 0;
I(; : Agg = —8A?4, A50 = —4A14(64A4114 - A41), Bl4 = 314347
Bsg = —12(64A7, —2 — Ag1)A2,, By = 8A14(—1+ 24A4%));

8 16
I;: Asg=——-A1uBa, Aso = ——A14(—91B}, + 16843, B4 — 15),

3 105
416 52 16
Ap = -2+ 5 A34Big — 1*53%4, By = ﬂAM(QSBil —3);
16
B50 = T5B$4(_13B14 + 24‘4%4)7
2B41B14 3 2
To: Agp— ——20DUM -y S B, (12B% -
8 32 0+ 1682, 50 25(9 + 16B2,) 41(12B7,; — 5),
196 4 56
Ay = —B% + =, Byy = —(14B2 B
0= o+ 5 Bso 125( ia +5)Bia,
3B41 4 2
Ay=—>24 B — = /15B.(16B 9),B 05
M a9 +16BY) TN T 45 VISBI(16BE 4 9), i > 0:
4B41B14 3B41 (8B}, + 1)
1o A = - A " e—
YT 3 4seBy, YT 3+432B7,
28 1 28
Ap = —3354 + 3’ Bso = —3(1 +4B7,) Bua,
3B41 4 2
1= 55 gapry Bo 9\/3714(3 2 +3), Bia <0
Lo: Agy—_2BuBu - Bu(412B3, - 25)
10 - 32 163%4 — 1, 50 25(16B%4 — 1) )
28 13104 3
A= —2B2 —2 Byp——ps g -5
41 5 14 ) 50 25 14> 14 4(16B%4 — 1)7

4
By, = g\/TBM(M)'B%4 —1), By <0;

8
Ly Asge = _§A14Bl4>

Asp = 1 f
P07 T 3(Z3By; — 24A1, + 6482, A14) "
16(256A43, B3, — 12B41 A3, — 64A14B}, — 8A14B14 + 3B14B41) B3,

—3By1 — 24414 + 64B2, Ay, ’

Bsg =

2

Ay = ;
4T 3(=3Byy — 24Ay, + 64B2, A1) Js
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8
Asy = —*A14B147

.[12 :
32 1 8 2 4
Asp = A41B AL + B41A14B14 + 3341 + *A14 - *A41B41 + *A14A41
256 2048 128
A34Bl4 15 B34A34 + 5B14B41 15 B44A14 5 BQ4A14,
4f1
BS = - )
0 15g1
Ay = 3B —(16B3, A%, + 12B}, + 3B14 + 343, £ 31/ (A3,B14 + A}));
16
Lis: Az = —*A14B147 By = *A14(2832 —-3),
Aso = — 1o A14(576A§4Bl4 4 208B%, — 30 — 45A41),
120 212992 3 26624 9 6656
350—7 1= e Ay T e bl e P
64 26624 4608 5504
— A%, A ——A1,B —— B} A}, + B}
R e T I et Tt 105 1
128 56 32 15872 4
+ A§4 05A413f4 - 7AilBl4 + /124314/141 7314,441,
1
Ay = 3 Bl4 ——(3B14 +16B3, A%, + 3A3, + 12B3, £ 3A14\/ B4 + A2,);
Iy: Az = —514143147
128 32 1 8 2
Ao = A41B 1 A1a + 53411424314 + 5341 + *A14 — 5A41341
256 2048 8
+ *A14A41 A34B14 ——BJ, A}, + -B}Bu
5 45 5
512 128
- 15 B%4A14 15 B14A147
1
A =
7 3(448B2 Ay, — 21By; — 484,,) f,
4
By = f2 )
2192
512 448 172 132
Bso = A;*4Bl4 B — B3 A, + - —~ A2, +16B3, + - — B+ 105\/ fa:
Lis: Az = **A14Bl4,
128 32
Aso = A4lB 4A14 + B41A14Bl4 + B41 + A14 — *A4lB41 + A14A41
256 2048 512 128
A?4Bl4 343, + §5B14B4l - T5314A14 31414147
1
A f—
7 3(448B2, A1y — 21By; — 48444 Ts,
By = —8A1— f4
9
16 96 1
Bso = (BB%AL +7 gAi;BM + ﬁ@)Byp
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where f; and g; are given in Appendizx.

If the condition I; in Theorem 3.2 holds, system (2.11) can be rewritten as

dr 1
d—f = Z(l + ) (8Biyz? — 4Aq " — 4y + 16 B1yx?y
— 6y° + 8Baz’y® — 4y® — ),
d
d—i{ = 2(—22% — 8B%,22 + Bsoz* + AByyy — 42y — 16B%,2%y

+ 6B14y* — 22%y% — SBf4a:2y2 + 4By + Bl4y4),

which is symmetric with the z-axis.
If the condition I in Theorem 3.2 is satisfied, system (2.11) is reduced to

der 1
d%’ = o5 (—4Bua” — 5y + 200"y + 80BYaty — 40Buia®y® + 5y°),
dy

dt = —:E(Bl4 — B505L‘4 — B41x3y + 21:2y2 + 8B%4£E2y2 — Bl4y4),

which is a Hamiltonian system with the first integral,

Fy {20Bs50z% + 240B%,2*y* — 60B1422(1 + y*)

_
120
+y[ — 24By1a® + 5y(—3 + 122 + y*)] }.

If the condition I5 in Theorem 3.2 holds, system (2.11) becomes

dw_ 1,
dt ~— 20

d
CT?Z = 2%(Bpx — 2y)y,

4B41$5 — 8A4lB41(E5 — 5y + 20A41x4y + 5y5),

which has an integrating factor,
My =2(—1+ An)y.

If the condition I in Theorem 3.2 holds, system (2.11) takes the form

dr 1 4 4
dy _ .3
pri 2° (8414 + Byix — 2y)(4A1ax + v),

for which an integrating factor is obtained,
My = (4A145C + y).
If the condition I5 in Theorem 3.2 holds, system (2.11) is transformed to
dx
dt
dy
dt

1
= Z(4141496 +y) (=14 4A52* + o),

= —2x3y(4Al4x +vy),
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which is symmetric with the z-axis.
If the condition I in Theorem 3.2 holds, system (2.11) takes the form

de 1
pri Z(4A14x +y)(1 + 256 A% 0 — 4Ag 2t — 6443, 2%y + 24 A3, 2%y — ),
d
di; = —2(3A42, — 24A%,2% + 7684827 — 1242, Ay2* + 8A142dy
— 192452y + 22%y* + 7241,2%y* — 3AL,yY),
(3.2)
which has two algebraic invariant curves:
fi=-2Auz+y, f2=06Auz+y.
Then an inverse integrating factor for (3.2) is obtained as
Ms = (=244 + y) 2 T39AT— 3 An (6Ayz + y) 1 (7275245, +4u)
If the condition I7 in Theorem 3.2 holds, system (2.11) takes the form
v _ i(—420A x — 960A142° 4+ 1075243, By4a®
dt - 420 14 14 1414
— 5824A,4B%,2° — 105y — 840z"y + 1164842, Byyx'y
— 1456B%,z%y — 1120A14 B142y? — 840B142%y°
+ 420 A 47y* + 105y°), (3.3)
dy 1
i —ﬁz(l%BM — 268842, B?,z*

+ 1456 B3, 2% 4 240A 1423y — 2240414 B 23y + 2102%y>
+ 840B%,2%y* — 105B14y)

which has two algebraic invariant curves:

f3 = —4B142® + y(4A1az + y),

f1=840B14(—3A3, + Byy) + 16(24A3, — 13B14) B14(—15
+ 56(3A3, — B14)Bis)x* + 320A,4B14(—15 + 56(3A43,
— B14)B14)2z%y 4 120B14(15 + 56 B14(—3A2%, 4+ B14))zy?
+15(—=15 4 56(3A47, — B14) Bua)y",

which in turn yield an inverse integrating factor M3z = f3 fy, for system (3.3).

Remark 3.1. If the condition Ig in Theorem 3.2 holds, let Byy = 1572, system
(2.11) takes the form

d 1
d—f = %(—207"30 + 16r2® — 8640r°2° — o5y + 16x4y
+19600r* 2y — 800r323y? — 600r2z2y® + 20ray? + 5¢°).
d 1
diL{ = gg;(—75r2 +168r22* + 10584075 2* + 60r23y

+ 24000r° 23y — 1022y? — 9000r*z%y? 4 75r2y4),
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which has an algebraic invariant curve,
fs = —6rz+y.

Although we have tried up to 13th-degree curves, we did not obtain more algebraic
invariant curves and thus we cannot construct an integrating factor and so cannot
prove that this condition is sufficient for the origin of this system to be a center.
Similarly, it is very hard to prove the sufficiency for the conditions Ig-I75.

Summarizing the above results, we have the following theorem.

Theorem 3.3. The conditions I1-I5 in Theorem 3.2 are necessary conditions for
(0,£1) of system (2.11) to be centers. Moreover, the conditions I,-I7 are also
sufficient.

Conjecture 3.1. When p = 0, the conditions Is-I15 in Theorem 3.2 are sufficient
for (0,£1) of system (2.11) to be centers.

4. Center problem of (0, £1) with multiplicity 5

Suppose (0, £1) are nilpotent foci or centers of system (1.3) with multiplicity 5. By
proper linear transformation and time recalling, system (1.3) can be changed to

de 1
E = 1(—4141433 + 4A50$5 ) + 4A41$4y + 4A32$3y2

+ 4A23$2y3 + 4A14$y4 + ys), (4 1)
d .
di; = —2(Ba — Bsoz" + 16414 As3 B1a2®y — 4435 B1az’y

— 4453 Braz®y® — Biay?),

where By is given in (2.12). Denote
8
Ag2a =p— §A14B14-

Theorem 2.2 shows that (0,+1) of system (4.1) are foci or centers if y? < 1 and
degenerate singular points if p? > 1.

4.1. Lyapunov constants at (0, £1) of system (4.1)

In this section, we study the integrability of (0,£1) of system (4.1) when (0,+£1)
are nilpotent singular points with multiplicity 5. We first compute the Lyapunov
constants at (0,+1) by using the method of normal forms developed in [15].

Proposition 4.1. The first five Lyapunov constants at (0,£1) of system (4.1) are

VL= [,
1
vy = 5(60A14A41 + 15450 — 12843, B4 — 224A,,B3,),
o Agy

V3 = %(675 — 4032042, Ay1 + 104448 A%, B4

+ 3840A41 B14 + 17766442, B2, — 15360B3,).
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Case 1. For Byy # 2L A3,

 225(21A42, — 2By4)
A14
 9676800(2142, — 2B14)?

Vy = Gla

Gs.

Vs =
Case 2. For Byy = 2L A43,,

3
vy = 5Al4(5 + 21504 A8,),
Vs = 0.
where G1, Gy are given in Appendix.

Theorem 4.1. The first five Lyapunov constants at the two singular points (0,+1)
of system (4.1) are all zero if and only if the following condition holds:

Lg: Ayy=As0=p=0.

Proof. When the condition I14 holds, system (4.1) can be rewritten as

dx 5
i —2B12” + Anz' +y — 6Baa’y + Ana'y + §y2

— 6Bvaz?y? S 3 23,94, 15

ur°yY + y° — 2B’y + -yt + -y,
2 4 4

d 3
digli = —83545(:3 — Z.”L's + 4A41.B14:L‘5 + 4B142y

— 163%4303?4 + 6Bl4xy2 — SB%4x3y2 + 4Bl4$cy3 + Bl4xy4,

which is symmetric with the z-axis. O

Hence, we have the following theorem.

Theorem 4.2. The singular points (0,£1) of system (4.1) with multiplicity 5 are
centers if and only if A1y = Aso = = 0.

5. Conclusion

In this paper, we have studied quintic Zs-equivariant vector fields with two isolated
nilpotent singular points, with particular attention on the case u = 0. We first
introduce some transformations to simplify the system, and get a general form of
the system which has two isolated nilpotent foci or centers at (0,41). Then we
compute the first seven Lyapunov constants of the system by using the inverse inte-
grating factor method when (0,41) are nilpotent singular points with multiplicity
3. Moreover, the integrability of the system is discussed, leading to fifteen center
conditions, all of them are necessary and seven of them, I;-17, are also proved to be
sufficient. In addition, by using the method of normal forms, the first five Lyapunov
constants of the system are obtained when (0, +1) are nilpotent singular points with
multiplicity 5, and the integrability of the system is discussed. Two problems are
still open, left for future study: (1) proving sufficiency of the other eight conditions,
Ig-I;5 for the system when (0,41) are order-3 nilpotent singular points; and (2)
computing the Lyapunov constants for the system when p # 0.
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Appendix

f1 = 576083, A14A41 + 2160B14 A%, A14 — 76032B3, A3 A3, — 540A14B14 Ay
+11520A14 B}, Ay; — 32870481, Ay1 A3, + 864083, A1, A%, — 9720A14B14
+860160A3%, B3, + 503808 B, A3, — 13824041, B3, — 5184A3, Ay
+110592A3, B14 + 36864 A%, B?, — 40320A14 B3, + 884736 A3, BY,
+1507328 By, A3, + 540083, By + 378A14 B3, + 1728 B4, A2,
+810B14B41 — 1036843, + 11376 A2, Ay B, By — 540A41 B, By
—28800A%, B14By1 — 49152A%, B3, By1 + 18983, A14A41 + 864A32, Ay1 By
—405A%, B14B41 — 100843, B14B3, — 405B14A41Bs1 — 756 B, B}, A14
—25344By; B, A2, — 24480By; B3, A2, + 86408, B4y — 184320A,,B7,,

g1 = 36A14 — 63By; — 336 By1 A%, B1y — 1344A41 B}, A14 — 252B%, By,
+7168B3, A3, + 63A41 Bay + 144A14As1 + 5376 B4 A14
—T68A3,B14 + T68B}, A4,

f2 = 24126606083, — 20271384087, — 39062016087, + 185932800A4%,
+21244317696 B{, AS, + 7774470144 B3, A}, — 832978944 A%, B14
—4532161536 A, B?, — 3284508416 A2, B, + 8318679040A%, B},
—T7645236480A%, B3, + 7T01367840A%, B14 — 386083286481, A3,
—4067280A%, Bso + 24413760 B}, Bso — 912838582, B
+761100660B%, A3, + 9503256042, B}, Bso
—12724110A%, B14Bs0 + 37961280 A%, B, Bso,

g2 = —4110480B3, — 348768087, — 1272411042, B14B5o — 15494400 A,
+69414912 A%, B14 + 189681408 AS, B?, — 12724110A%, B14Bso
+74273920A%1, B3, — 4876332041, B14 — 29325968 B, A%,
—12724110A%3, B14Bso + 338940A%, Bso + 21798083, Bso
—35144880B7, A%, + 84850542, B14Bso,

f3 = 30802544, — 401408044, B4, — 1989120A%, B2, + 30802542, B4
—2983680A%, By, + 240844849, B3, + 80281685, A2,
+308025A2, B4 + 99456083, A2, + 7225344 A8, B2,

g3 = 50176 B4, + 3360082, — 301056 B3, A2, + 11025 — 10080042, B4
+451584 A%, B2,,
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f1 = 2464749000087, — 184104576000 81, — 2097506016000B8%, + 15172312582,
—66656411136008%, — 8943530803200 817 — 4369888051200 312
—237456011427840A%, B, + 120010151854080A%, B,
+29883528806400A4%, B3, + 11934755758080B7, A2,
+25735457894400 A%, B}, — 3984368486400B7, A2,
—2801288448000A1, B, — 1444283136000B5, A%,
+102876480000A42, B4 — 170698752008, B2, + 5462360064005%, Bso
—1454355000B3, BZ, — 960180480081, B2, + 289494777600B%, Bso
+712599552000B7, Bso — 737262000042, Bso — 3870990000814 Bs
433083964000 B3, Bso — 42433693876224 A%, B?, Bso
—2755620000A42,, B14 B, + 2342283116544 A%, BY, Bso
+26231813701632A8, B, Bso + 13289141698560A%, B, Bso
—3014888325120 A1, B}, Bso + 149751504000A%, B, Bso
—1995466752000A%, B3, Bso + 172642752000 A%, B14 Bso
—115828531200A42, B, Bso — 1470895718400A%, B?, B
+23318668800A2%, B}, B2, — 3698374213632A42, B, Bso
—2794541137920A2, BS, Bso + 1646023680043, B?, B2,
+4998616842240 A%, B3, Bso + 102419251200A2, B}, B2,
+598476849152A2, B},0B50 — 7181722189824 A%, BY, Bso
—153628876800A%, B, B, + 32317749854208 A%, B}, Bso
—64635499708416 A%, B] , Bso + 48476624781312A19BY, Bso
—5193924083712 A1 B, Bso + 3102503986003968 B, A12
—332411141357568 BY, A1 + 153210073382912B1% A1,
—976714217816064B1,1AS, + 3102503986003968 B1, A%,
—4912297977839616 BY, A1} + 3762665054797824 85, A,
—3214373120114688 BT, A1] + 1225295206023168 A%, BS,
—1031122351816704 A%, B, — 155511957749760 A%, B},
+43036204990464 B, A2, + 144789717123072B%, A},
—1391757090619392A8%, BY, + 131010014478336 B1} A},
+382238566907904 A1) B}, + 25772936921088 B14 A2,
—9575629586432B15 A2,
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g4 = 147884940000 82, + 1038282624000 8%, + 2848372128000B,

fs =

fo =

fr=

fs =

+889835625 B2 + 35293999104005%, + 1638708019200519
+442736545628160A, By, — 59382170910720A4%,B%,
+130807797350400 A9, B, — 17197283819520B87, A%,
—50355377049600A%, Bf, — 6218257766400B87, A2,
—13987531008000A%, B, + 9442707840005, A2,
+617258880000A42, B14 + 42865200008%, B2,
+6401203200B1, B2, — 289171814400B%, Bso
—204838502400 B, Bso — 4411422000042, B
—23007240000B81 4 Bso — 13586907600053, Bso
+24238312390656 A%, BY, Bso — 12859560000A2, By, B,
+2693145821184 A%, BY, Bso — 12119156195328 A$, BS, Bs
—11135411159040A%, B{, Bso — 589804830720A%, B?, Bso
+157022064000A42,, B, Bso + 1031159808000A%, B}, Bso
+837179712000A%, B14Bso + 1197997516800A2, B}, Bso
—6067818086400A$, B, Bso — 38407219200A4%, B}, B,
—224428818432 A2, BY, Bso + 1362844385280A42, BS, Bsy
+57610828800A%, B, B2, + 18509597245440 A%, B}, Bso
—18178734292992 A1 B, Bso — 1163438994751488 B, A1%
—1163438994751488 B§, A%, + 184211171689856 B], A1)
—1535653573558272A%, BY, + 561151890948096 AS, B],
—615324828303360A%, B, — 9280116228096 BY, A2,
—55284517306368 B, A, + 366267831681024 A%, BY,
—57453777518592B1) A, + 1402759035224064 A1) B,
+3590861094912B11 A2,

QBZI + 72B41A14 + 122883%414[114 + 10243%414%4 — 19203%4/1%4
—576B41A§4Bl4 — 24OB4lB%4A14,

76843, By — 14482, Ay4 + 512B%, A3, + 72A14 + 9Bay
_24By A%, By — 18B2, By + 384B%, A4,

36414 — 63841 — 33684114%4814 — 252B124B41 + 7168B:134A§4
FT68B2, Ay + 537684, Ay — T68A3, Bua,

36A14 — 63841 — 33634114%4314 — 2523%4341 + 71683%414‘;’4
+768B%, A4 + 5376 B}, A1y — T68A3, B4,
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G =

Gy =

8847360A%, B14 — 279281664 A%, B?, + 88375296 A1, B},
+4987744 A2, B}, — 70752083, — 3645000A4%, + 17010042, B4
+105300B%,,

106542032486400A1,2B14 — 9381533303439360A1,0B%,
+863284903280640A%, B, + 1618159372861440A$, B,
+8847360A5, B14 — 455881204695040 A%, B,
—110125080576000A%, — 279281664 A%, B,
+44573995827200A%, BY, — 24409340928000 A%, B14
+88375296 A%, B3, — 1494173614080 57,
+18695570688000A%, BZ, + 4987744 A2, B},
—2317135824000A2%, B3, — 70752087, — 3645000A1,
+87395616000 B, + 17010042, By, — 1157743125042,
+105300B%, + 1929571875B14.
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