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A New Model of Coupled Hindmarsh-Rose Neurons

Chi Phan1 and Yuncheng You2,†

Abstract A new model of two coupled neurons is presented by the partly diffusive Hindmarsh-
Rose equations. The solution semiflow exhibits globally absorbing characteristics. As the main
result, the self-synchronization of the coupled neurons at a uniform rate is proved, which can
be extended to complex neuronal networks.
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1. Introduction

The Hindmarsh-Rose equations as a mathematical model for neuron firing-bursting were initially
proposed in [8]. This model originally composed of three ordinary differential equations has been
studied through numerical simulations and bifurcation analysis, cf. [10–12,18,20,22] and the refer-
ences therein.

In this paper, we present a new model of coupled two neurons in terms of the following system
of the coupled partly diffusive Hindmarsh-Rose equations:

∂u1

∂t
= d∆u1 + au2

1 − bu3
1 + v1 − w1 + J + p(u2 − u1),

∂v1

∂t
= α− v1 − βu2

1,

∂w1

∂t
= q(u1 − c)− rw1,

∂u2

∂t
= d∆u2 + au2

2 − bu3
2 + v2 − w2 + J + p(u1 − u2),

∂v2

∂t
= α− v2 − βu2

2,

∂w2

∂t
= q(u2 − c)− rw2,

(1.1)

for t > 0, x ∈ Ω ⊂ Rn (n ≤ 3), where Ω is a bounded domain with locally Lipschitz continuous
boundary. Here (ui, vi, wi), i = 1, 2, are the state variables for two Hindmarsh-Rose (HR) neurons.
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The input electrical current J > 0 and the coefficient of neuron coupling strength p > 0 are treated
as constants. For cell biological reason, the coupling terms are only with the two equations of the
membrane potential of neuronal cells.

In this system (1.1), the variable ui(t, x) refers to the membrane electrical potential of a neuronal
cell, the variable vi(t, x) called the spiking variable represents the transport rate of the ions of sodium
and potassium through the fast ion channels, and the variable wi(t, x) called the bursting variable
represents the transport rate across the neuronal cell membrane through slow channels of calcium
and other ions.

All the involved parameters are positive constants except c (= uR) ∈ R, which is a reference
value of the membrane potential of a neuron cell. In the original ODE model of a single neuron [22],
a set of the typical parameters are

J = 3.281, r = 0.0021, S = 4.0, q = rS, c = −1.6,

ϕ(s) = 3.0s2 − s3, ψ(s) = 1.0− 5.0s2.

We impose the homogeneous Neumann boundary conditions for the ui-components,

∂u1

∂ν
(t, x) = 0,

∂u2

∂ν
(t, x) = 0, for t > 0, x ∈ ∂Ω, (1.2)

and the initial conditions to be specified are denoted by (i = 1, 2)

ui(0, x) = u0
i (x), vi(0, x) = v0

i (x), wi(0, x) = w0
i (x), x ∈ Ω. (1.3)

The single HR neuron model [8] was motivated by the discovery of neuronal cells in the pond
snail Lymnaea. This model characterizes the phenomena of synaptic bursting and more interested
chaotic bursting in the (u, v, w) space.

Neuronal signals are short electrical pulses called spikes or action potential. Neurons often
exhibit bursts of alternating phases of rapid firing spikes and then quiescence. Bursting constitutes
a mechanism to modulate and set the pace for brain functionalities and to communicate signals.
Synaptic coupling of neurons has to reach certain threshold for release of quantal vesicles and
synchronization [5, 15,17].

The bursting dynamics in chaotic coupling neurons in the simulations and semi-numerical anal-
ysis of the Hindmarsh-Rose model in ordinary differential equations exhibited more rapid syn-
chronization and more effective regularization of neurons due to lower threshold than the regular
synaptic coupling [20].

Bursting behavior and patterns occur in a variety of excitable cells and bio-systems such as pitu-
itary melanotropic gland, thalamic neurons, respiratory pacemaker neurons, and insulin-secreting
pancreatic β-cells, cf. [1, 2, 4, 8]. The mathematical analysis mainly using bifurcations of several
models in ODEs on neuron bursting and synchronization has been studied by many authors,
cf. [6, 12,18,20–22].

It is known that Hodgkin-Huxley equations [9] provided a highly nonlinear four-dimensional
model if without simplification. Besides the FitzHugh-Nagumo equations [7] provided a two-
dimensional model for an excitable neuron. It admits an exquisite phase plane analysis showing
sustained periodic spiking with refractory period, but seems hard to motivate any chaotic solutions
and to generate chaotic bursting dynamics.
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The new model (1.1) in this paper is composed of the coupled partly diffusive Hindmarsh-Rose
equations and it reflects the structural feature of neuronal cells: the central cell body containing
the nucleus and intracellular organelles, the dendrites of short branches near the nucleus receiving
incoming signals of voltage pulses, the long-branch axon, and the nerve terminals to communicate
with other cells. The long axon of neurons propagating outreaching signals and the fact that neurons
are immersed in aqueous biochemical solutions with charged ions suggest that the partly diffusive
reaction-diffusion equations (1.1) will be more appropriate and realistic to describe the neuronal
dynamics of the signal transmission network for ensemble of neurons. It is expected that this new
model and the advancing result on the exponential synchronization achieved in this paper will be
exposed to a wide range of researches and applications in neurodynamics.

In recent work [13,14], the authors studied the global dynamics for the single HR neuron model
of diffusive Hindmarsh-Rose equations and proved the existence of global attractor and the existence
of exponential attractor of the solution semiflow. Here we shall present the analysis of absorbing
dynamics of this new model and then prove the main result on the synchronization of the coupled
Hindmarsh-Rose neurons at a uniform exponential rate with the estimate of a threshold of the
coupling strength for realizing the synchronization.

2. Formulation

Define the Hilbert spaces H = L2(Ω,R6) and E = [H1(Ω) × L2(Ω,R2)]2. The norm and inner-
product of H or L2(Ω) will be denoted by ‖ · ‖ and 〈 ·, · 〉, respectively. The norm of E or H1(Ω)×
L2(Ω,R2) will be denoted by ‖ · ‖E . We use | · | to denote a vector norm in Rn.

The initial-boundary value problem (1.1)-(1.3) can be formulated into the initial value problem
of the evolutionary equation:

∂g

∂t
=Ag + f(g) + P (g), t > 0,

g(0) = g0 ∈ H.
(2.1)

Here the column vector g(t) = col (u1(t, ·), v1(t, ·), w1(t, ·), u2(t, ·), v2(t, ·), w2(t, ·)) is the unknown
function and the initial data function is g0 = col (u0

1, v
0
1 , w

0
1, u

0
2, v

0
2 , w

0
2). The nonpositive self-adjoint

operator associated with this problem is

A =



d∆ 0 0

0 −I 0

0 0 −rI

d∆ 0 0

0 −I 0

0 0 −rI


: D(A)→ H, (2.2)

where D(A) = {g ∈ [H2(Ω) × L2(Ω,R2)]2 : ∂u1/∂ν = ∂u1/∂ν = 0}, is the generator of a C0-
semigroup {eAt}t≥0 on the Hilbert space H. Since H1(Ω) ↪→ L6(Ω) is a continuous imbedding for
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space dimension n ≤ 3 and by the Hölder inequality, the nonlinear mapping

f(g) =



au2
1 − bu3

1 + v1 − w1 + J

α− βu2
1

q(u1 − c)

au2
2 − bu3

2 + v2 − w2 + J

α− βu2
2

q(u2 − c)


: E −→ H (2.3)

is a locally Lipschitz continuous mapping. The coupling mapping is the vector function

P (g) =



p(u2 − u1)

0

0

p(u1 − u2)

0

0


: H −→ H (2.4)

Consider the weak solution of this initial value problem (2.1), cf. [3, Section XV.3], defined
below and similar to what is presented in [13,14].

Definition 2.1. A six-dimensional vector function g(t, x), (t, x) ∈ [0, τ ]×Ω, is called a weak solution
to the initial value problem of the evolutionary equation (2.1) formulated from (1.1), if the following
conditions are satisfied:

(i) d
dt (g, ζ) = (Ag, ζ) + (f(g) + P (g), ζ) is satisfied for almost every t ∈ [0, τ ] and any ζ ∈ E;

(ii) g ∈ C([0, τ ];H) ∩ L2([0, τ ];E) and g(0) = g0.

Here (·, ·) is the dual product of the dual space E∗ versus E.

The following proposition can be proved by the Galerkin approximation method.

Proposition 2.1. For any given initial state g0 ∈ H, there exists a unique local weak solution
g(t, g0), t ∈ [0, τ ], for some τ > 0 may depending on g0, of the initial value problem (2.1) associ-
ated with the coupled partly diffusive Hindmarsh-Rose equations (1.1). The weak solution g(t, g0)
continuously depends on the initial data g0 and satisfies

g ∈ C([0, τ ];H) ∩ C1((0, τ);H) ∩ L2([0, τ ];E). (2.5)

If the initial data g0 ∈ E, then the weak solution becomes a strong solution on the existence time
interval [0, τ ], which has the regularity

g ∈ C([0, τ ];E) ∩ C1((0, τ);E) ∩ L2([0, τ ];D(A)). (2.6)
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In the next section, we shall prove the global existence of weak solutions in time for the initial
value problem problem (2.1) and present the analysis of the absorbing dynamics of the solution
semiflow generated by the weak solutions.

The basics of infinite dimensional dynamical systems, which can be called as semiflow when
generated by the autonomous parabolic partial differential equations, can be referred to [3, 16,19].

Definition 2.2. Let {S(t)}t≥0 be a semiflow on a Banach space X . A bounded set B∗ of X
is called an absorbing set for this semiflow, if for any given bounded set B ⊂ X there exists a
finite time TB ≥ 0 depending on B, such that S(t)B ⊂ B∗ for all t ≥ TB . The semiflow is called
dissipative on X if there exists an absorbing set in X .

In the final section, we shall prove the main result on asymptotic synchronization of the coupled
Hindmarsh-Rose neurons realized by this new model, provided that the coupling strength exceeds
a threshold quantified in terms of the involved parameters. Moreover, the synchronization has a
uniform exponential rate independent of any initial conditions.

3. Absorbing Dynamics

First we prove the global existence of weak solutions in time for the initial value problem (2.1) of
the coupled partly diffusive Hindmarsh-Rose equations.

Theorem 3.1. For any given initial state g0 ∈ H, there exists a unique global weak solution in
time, g(t) = col (u1(t), v1(t), w1(t), u2(t), v2(t), w2(t)), t ∈ [0,∞), of the initial value problem (2.1).

Proof. Summing up the L2 inner-product of the u1-equation with C1u1(t) and the L2 inner-
product of the u2-equation with C1u2(t), where the adjustable constant C1 > 0 is to be determined
later, and by Young’s inequality we get

C1

2

d

dt
(‖u1‖2 + ‖u2‖2) + C1d(‖∇u1‖2 + ‖∇u2‖2)

=

∫
Ω

C1(au3
1 − bu4

1 + u1v1 − u1w1 + Ju1) dx

+

∫
Ω

(C1(au3
2 − bu4

2 + u2v2 − u2w2 + Ju2)− p(u1 − u2)2) dx.

(3.1)

Summing up the L2 inner-products of the vi-equation with vi(t) and the L2 inner-products of the
wi-equation with wi(t) for i = 1, 2, we have

1

2

d

dt
(‖v1‖2 + ‖v2‖2) =

∫
Ω

(αv1 − βu2
1v1 − v2

1 + αv2 − βu2
2v2 − v2

2) dx

≤
∫

Ω

(
αv1 +

1

2
(β2u4

1 + v2
1)− v2

1 + αv2 +
1

2
(β2u4

2 + v2
2)− v2

2

)
dx

≤
∫

Ω

(
2α2 +

1

8
v2

1 +
1

2
β2u4

1 −
1

2
v2

1 + 2α2 +
1

8
v2

2 +
1

2
β2u4

2 −
1

2
v2

2

)
dx

=

∫
Ω

(
4α2 +

1

2
β2(u4

1 + u4
2)− 3

8
(v2

1 + v2
2)

)
dx,

(3.2)
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and

1

2

d

dt
(‖w1‖2 + ‖w2‖2) =

∫
Ω

(q(u1 − c)w1 − rw2
1 + q(u2 − c)w2 − rw2

2) dx

≤
∫

Ω

(
q2

2r
(u1 − c)2 +

1

2
rw2

1 − rw2
1 +

q2

2r
(u2 − c)2 +

1

2
rw2

2 − rw2
2

)
dx

≤
∫

Ω

(
q2

r
(u2

1 + u2
2 + 2c2)− 1

2
r(w2

1 + w2
2)

)
dx.

(3.3)

Now we choose the positive constant in (3.1) to be C1 = 1
b (β2 + 4), so that

∫
Ω

(−C1bu
4
i ) dx+

∫
Ω

(β2u4
i ) dx ≤

∫
Ω

(−4u4
i ) dx, i = 1, 2.

Then we estimate all the mixed product terms on the right-hand side of (3.1) by using the Young’s
inequality in an appropriate way as follows. For i = 1, 2,∫

Ω

C1au
3
i dx ≤

3

4

∫
Ω

u4
i dx+

1

4

∫
Ω

(C1a)4 dx ≤
∫

Ω

u4
i dx+ (C1a)4|Ω|,

and ∫
Ω

C1(uivi − uiwi + Jui) dx

≤
∫

Ω

(
2(C1ui)

2 +
1

8
v2
i +

(C1ui)
2

r
+

1

4
rw2

i + C1u
2
i + C1J

2

)
dx,

where on the right-hand side of the second inequality we can further treat the three terms involving
u2
i as follows,

∫
Ω

(
2(C1ui)

2 +
(C1ui)

2

r
+ C1u

2
i

)
dx

≤
∫

Ω

u4
i dx+

[
C2

1

(
2 +

1

r

)
+ C1

]2

|Ω|.

Besides, in (3.3) we have

∫
Ω

1

r
q2u2

i dx ≤
∫

Ω

(
u4
i

2
+

q4

2r2

)
dx ≤

∫
Ω

u4
i dx+

q4

r2
|Ω|.

Substitute the above term estimates into (3.1) and (3.3). Then sum up the resulting inequalities
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(3.1)-(3.3) to obtain

1

2

d

dt

(
C1(‖u1‖2 + ‖u2‖2) + (‖v1‖2 + ‖v2‖2) + (‖w1‖2 + ‖w2‖2)

)
+ C1d (‖∇u1‖2 + ‖∇u2‖2)

≤
∫

Ω

C1(au3
1 − bu4

1 + u1v1 − u1w1 + Ju1) dx

+

∫
Ω

(C1(au3
2 − bu4

2 + u2v2 − u2w2 + Ju2)− p(u1 − u2)2) dx

+

∫
Ω

(
4α2 +

1

2
β2(u4

1 + u4
2)− 3

8
(v2

1 + v2
2)

)
dx

+

∫
Ω

(
q2

r
(u2

1 + u2
2 + 2c2)− 1

2
r(w2

1 + w2
2)

)
dx

≤
∫

Ω

(3− 4)(u4
1 + u4

2) dx+

∫
Ω

(
1

8
− 3

8

)
(v2

1 + v2
2) dx+

∫
Ω

(
1

4
− 1

2

)
r(w2

1 + w2
2) dx

+ |Ω|

(
2(C1a)4 + 2C1J

2 + 2

[
C2

1

(
2 +

1

r

)
+ C1

]2

+ 4α2 +
2q2c2

r
+

2q4

r2

)

= −
∫

Ω

(
(u4

1 + u4
2)(t, x) +

1

4
(v2

1 + v2
2)(t, x) +

1

4
r(w2

1 + w2
2)(t, x)

)
dx+ C2|Ω|,

(3.4)

where C2 > 0 is the constant given by

C2 = 2(C1a)4 + 2C1J
2 + 2

[
C2

1

(
2 +

1

r

)
+ C1

]2

+ 4α2 +
2q2c2

r
+

2q4

r2
.

We see that (3.4) yields the following group estimate,

d

dt

(
C1(‖u1‖2 + ‖u2‖2) + (‖v1‖2 + ‖v2‖2) + (‖w1‖2 + ‖w2‖2)

)
+ C1d (‖∇u1‖2 + ‖∇u2‖2)

+ 2

∫
Ω

(
(u4

1 + u4
2)(t, x) +

1

4
(v2

1 + v2
2)(t, x) +

1

4
r(w2

1 + w2
2)(t, x)

)
dx ≤ 2C2|Ω|,

(3.5)

for t ∈ Imax = [0, Tmax), which is the maximal time interval of solution existence. Note that

2u4
i ≥

1

2

(
C1u

2
i −

C2
1

16

)
, i = 1, 2.
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It follows from (3.5) that

d

dt

(
C1(‖u1‖2 + ‖u2‖2) + (‖v1‖2 + ‖v2‖2) + (‖w1‖2 + ‖w2‖2)

)
+ C1d (‖∇u1‖2 + ‖∇u2‖2)

+
1

2

∫
Ω

(
C1(u2

1 + u2
2)(t, x) + (v2

1 + v2
2)(t, x) + r(w2

1 + w2
2)(t, x)

)
dx

≤
(

2C2 +
C2

1

16

)
|Ω|.

Set r1 = 1
2 min{1, r}. Then we have

d

dt

(
C1(‖u1‖2 + ‖u2‖2) + (‖v1‖2 + ‖v2‖2) + (‖w1‖2 + ‖w2‖2)

)
+ C1d (‖∇u1‖2 + ‖∇u2‖2)

+ r1(C1(‖u1‖2 + ‖u2‖2) + (‖v1‖2 + ‖v2‖2) + (‖w1‖2 + ‖w2‖2))

≤
(

2C2 +
C2

1

16

)
|Ω|.

(3.6)

Apply the Gronwall inequality to (3.6) with the term C1d (‖∇u1‖2 + ‖∇u2‖2) being removed, we
obtain

‖g(t)‖2 = ‖u1(t)‖2+ ‖u2(t)‖2 + ‖v1(t)‖2 + ‖v2(t)‖2 + ‖w1(t)‖2 + ‖w2(t)|2

≤ max{C1, 1}
min{C1, 1}

e−r1t‖g0‖2 +
M

min{C1, 1}
|Ω|

(3.7)

for t ∈ Imax = [0, Tmax), where

M =
1

r1

(
2C2 +

C2
1

16

)
.

The estimate (3.7) shows that the weak solution g(t, x) will never blow up at any finite time because
it is uniformly bounded. Indeed we have

‖g(t)‖2 ≤ max{C1, 1}
min{C1, 1}

‖g0‖2 +
M

min{C1, 1}
|Ω|, for t ∈ [0,∞). (3.8)

Therefore the weak solution of the initial value problem (2.1) for the partly diffusive Hindmarsh-
Rose equations (1.1) exists globally in time for any initial state. The time interval of maximal
existence is always [0,∞) for any initial state g0.

The global existence and uniqueness of the weak solutions and their continuous dependence on
the initial data enable us to define the solution semiflow of the partly diffusive Hindmarsh-Rose
equations (1.1) on the space H as follows:

S(t) : g0 7−→ g(t, g0), g0 ∈ H, t ≥ 0,

where g(t, g0) is the weak solution with the initial status g(0) = g0. We shall call this semiflow
{S(t)}t≥0 the coupling Hindmarsh-Rose semiflow generated by the evolutionary equation (2.1).



Coupled Hindmarsh-Rose Neurons 87

Corollary 3.1. There exists an absorbing set for the coupling Hindmarsh-Rose semiflow {S(t)}t≥0

in the space H, which is the bounded ball

B∗H = {h ∈ H : ‖h‖2 ≤ K} (3.9)

where K = M |Ω|
min{C1,1} + 1.

Proof. From the uniform estimate (3.7) in Theorem 3.1 we see that

lim sup
t→∞

‖g(t, g0)‖2 < K =
M |Ω|

min{C1, 1}
+ 1 (3.10)

for all weak solutions of (2.1) with any initial data g0 ∈ H. Moreover, for any given bounded set
B = {h ∈ H : ‖h‖2 ≤ R} in H, there exists a finite time

T0(B) =
1

r1
log+

(
R

max{C1, 1}
min{C1, 1}

)
(3.11)

such that ‖g(t)‖2 < K for all t > T0(B) and for all g0 ∈ B. Thus, by Definition 2.2, the bounded
ball B∗H shown in (3.9) is an absorbing set and the coupling Hindmarsh-Rose semiflow is dissipative
in the phase space H.

Corollary 3.2. For any initialdata g0 ∈ H, the weak solution g(t, g0) of the initial value problem
(2.1) of the coupled partly diffusive Hindmarsh-Rose equations (1.1) satisfies the estimate∫ 1

0

‖g(t, g0)‖2E dt ≤M1‖g0‖2 +M2|Ω|, (3.12)

where M1 and M2 are two positive constants independent of initial data.

Proof. Integrate the differential inequality (3.6) over the time interval [0, 1] to get

C1d

∫ 1

0

(‖∇u1(t)‖2 + ‖∇u2(t)‖2) dt ≤ max{C1, 1}‖g0‖2 +

(
2C2 +

C2
1

16

)
|Ω|.

And (3.8) means that∫ 1

0

‖g(t, g0)‖2 dt ≤ max{C1, 1}
min{C1, 1}

‖g0‖2 +
M

min{C1, 1}
|Ω|.

Summing up the above two inequalities, we reach the result (3.12).
In the next result, we show that the coupling Hindmarsh-Rose semiflow {S(t)}t≥0 has also the

absorbing property in the space E with the H1-regularity for the u-components.

Theorem 3.2. For the coupling Hindmarsh-Rose semiflow {S(t)}t≥0, there exists an absorbing set
in the space E, which is a bounded ball

B∗E = {h ∈ E : ‖h‖2E ≤ Q} (3.13)

where Q > 0 is a constant. For any given bounded set B ⊂ H, there exists a finite time TB > 0
such that for any initial state g0 ∈ B, the weak solution g(t, g0) = S(t)g0 of the initial value problem
(2.1) of the coupled partly diffusive Hindmarsh-Rose equations (1.1) enters the ball B∗E permanently
for t ≥ TB.
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Proof. We make estimates by taking the L2 inner-products of the ui-equation with −∆ui, i = 1, 2,
and then summing up the inequalities to obtain

1

2

d

dt
(‖∇u1‖2 + ‖∇u2‖2) + d(‖∆u1‖2 + ‖∆u2‖2)

=

∫
Ω

[(au2
1 − bu3

1 + v1 − w1 + J)(−∆u1)− p(u2 − u1)(∆u1)] dx

+

∫
Ω

[(au2
2 − bu3

2 + v2 − w2 + J)(−∆u2)− p(u1 − u2)(∆u2)] dx

≤
∫

Ω

(−au2
1∆u1 − 3bu2

1|∇u1|2 − v1∆u1 + w1∆u1 − J∆u1) dx

+

∫
Ω

(−au2
2∆u2 − 3bu2

2|∇u2|2 − v2∆u2 + w2∆u2 − J∆u2) dx− p‖∇(u1 − u2)‖2

≤
∫

Ω

(
2au1|∇u1|2 − 3bu2

1|∇u1|2 +
2v2

1

d
+

2w2
1

d
+
d

4
|∆u1|2

)
dx

+

∫
Ω

(
(2au2|∇u2|2 − 3bu2

2|∇u2|2 +
2v2

2

d
+

2w2
2

d
+
d

4
|∆u2|2

)
dx− p‖∇(u1 − u2)‖2

=

∫
Ω

(
(2au1 − 3bu2

1)|∇u1|2 +
2

d
(v2

1 + w2
1) +

d

4
|∆u1|2

)
dx

+

∫
Ω

(
(2au2 − 3bu2

2)|∇u2|2 +
2

d
(v2

2 + w2
2) +

d

4
|∆u2|2

)
dx− p‖∇(u1 − u2)‖2

≤
∫

Ω

2

d

(
v2

1 + v2
2 + w2

1 + w2
2

)
dx+

d

2
(‖∆u1‖2 + ‖∆u2‖2)− p‖∇(u1 − u2)‖2

+C3(‖∇u1‖2 + ‖∇u2‖2),

(3.14)

where C3 = a2/(3b) is a constant, because

2aui − 3bu2
i = C3 − (

√
3bui −

√
C3)2 ≤ C3, i = 1, 2.

Then from (3.14) it follows that

d

dt
(‖∇u1‖2 + ‖∇u2‖2) + d(‖∆u1‖2 + ‖∆u2‖2)

≤C3(‖∇u1‖2 + ‖∇u2‖2) +

∫
Ω

2

d

(
v2

1 + v2
2 + w2

1 + w2
2

)
dx, t > 0.

(3.15)

By Corollary 3.1, for any given bounded set B = {h ∈ H : ‖h‖2 ≤ R} ⊂ H, there is a finite time
T0(B) > 0 such that for all t > T0(B) and any initial state g0 ∈ B,∫

Ω

2

d

(
v2

1(t, x) + v2
2(t, x) + w2

1(t, x) + w2
2(t, x)

)
dx ≤ 2

d
‖g(t, g0)‖2 ≤ 2K

d
. (3.16)

On the other hand, for a bounded domain Ω in R3 combined with the homogeneous Neumann
boundary condition, the Sobolev imbedding H2(Ω) ↪→ H1(Ω) ↪→ L2(Ω) is continuous and compact.
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By the interpolation of these Sobolev spaces, for any given ε > 0, there is a constant Cε > 0 such
that

‖∇ui(t)‖2 ≤ ε‖∆ui‖2 + Cε‖ui‖2, for i = 1, 2.

Therefore, there exists a constant C4 > 0 only depending on the parameters a, b and d such that
(with the above ε = d)

(C3 + 1)(‖∇u1‖2 + ‖∇u2‖2) ≤ d(‖∆u1‖2 + ‖∆u2‖2) + C4(‖u1‖2 + ‖u2‖2) (3.17)

for all t > τ > 0.
Substitute (3.16) and (3.17) into (3.15). Then we obtain the inequality

d

dt
(‖∇u1‖2 + ‖∇u2‖2) + (‖∇u1‖2 + ‖∇u2‖2)

≤C4(‖u1‖2 + ‖u2‖2) +
2K

d
≤ C4‖g(t, g0)‖2 +

2K

d
≤ C4K +

2K

d

(3.18)

for all t > max {1, T0(B)}.
By Corollary 3.2 and (3.12), for any given bounded ball B = {h ∈ H : ‖h‖2 ≤ R} aforementioned

and g0 ∈ B, the mean value theorem shows that the weak solution g(t, g0) ∈ L2([0, 1], E) and there
exists a time 0 < τ ≤ 1, such that

‖g(τ, g0)‖2E =

∫ 1

0

‖g(t, g0)‖2E dt ≤M1‖g0‖2 +M2|Ω| ≤M1R+M2|Ω|. (3.19)

Now we can use the Gronwall inequality to (3.18), namely,

d

dt
(‖∇u1‖2 + ‖∇u2‖2) + (‖∇u1‖2 + ‖∇u2‖2) ≤ C4K +

2K

d
, t ∈ [τ,∞),

to reach the uniform estimate

‖∇u1(t)‖2 + ‖∇u2(t)‖2 ≤ e−(t−τ)(‖∇u1(τ)‖2 + ‖∇u2(τ)‖2) + C4K +
2K

d

≤ e−(t−1)‖g(τ, g0)‖2E + C4K +
2K

d
≤ e−(t−1)(M1R+M2|Ω|) + C4K +

2K

d

≤ e−(t−1)M1R+M2|Ω|+ C4K +
2K

d
, for t > max{1, T0(B)},

(3.20)

where T0(B) is given in (3.11).
Finally, it follows that for any g0 ∈ B, there exists a finite time

TB = max{T0(B), T1(B)},

where T1(B) = 1 + log+(R), such that e−(t−1)R < 1. Hence,

‖g(t, g0)‖2E = ‖∇u1(t)‖2 + ‖∇u2(t)‖2 + ‖g(t, g0)‖2H ≤ Q, for t > TB , (3.21)

where
Q = M1 +M2|Ω|+K(1 + C4 + 2/d). (3.22)

Thus the bounded ball B∗E in (3.13) with Q given in (3.22) is an absorbing set for the coupling
Hindmarsh-Rose semiflow {S(t)}t≥0 in the space E.
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4. Synchronization of Neurons

Synchronization of neurons is one of the central topics in neuroscience. Here we shall prove that the
new model of the coupled Hindmarsh-Rose neurons proposed in this paper will yield the asymptotic
synchronization of two coupled neurons at a uniform exponential rate, which can be potentially
extended to synchronization study for complex neuronal network.

Definition 4.1. For the model equations (1.1) of two coupled neurons, we define the asynchronous
degree of the coupled Hindmarsh-Rose semiflow to be

degs(HR) = sup
g01 ,g

0
2∈L2(Ω,R3)

{
lim sup
t→∞

‖g1(t)− g2(t)‖L2(Ω,R3)

}
where g1(t) = col (u1(t), v1(t), w1(t)) and g2(t) = col (u2(t), v2(t), w2(t)) are the two component
solutions of (1.1) with any initial state g0 = col (g0

1 , g
0
2). The semiflow is said to be asymptotically

synchronized if degs(HR) = 0.

The following synchronization theorem is the main result of this work.

Theorem 4.1. For the coupled Hindmarsh-Rose semiflow generated by the weak solutions of the
initial value problem (2.1) of the coupled partly diffusive Hindmarsh-Rose equations (1.1),

degs(HR) = 0 (4.1)

provided that the coefficient of coupling strength p > 0 satisfies

p >
4β2

b
+
a2

b
+

b

32β2r

[
q − 8β2

b

]2

. (4.2)

Under the condition (4.2), the coupled Hindmarsh-Rose neurons are asymptotically synchronized in
the space L2(Ω,R3) at a uniform exponential rate independent of any initial states.

Proof. Let g1(t) = col (u1(t), v1(t), w1(t)) and g2(t) = col (u2(t), v2(t), w2(t)) be the first three
components and the last three components of any solution of (1.1) in H with the initial states
g0

1 = (u0
1, v

0
1 , w

0
1) and g0

2 = (u0
2, v

0
2 , w

0
2), respectively. Denote by U(t) = u1(t) − u2(t), V (t) =

v1(t)− v2(t),W (t) = w1(t)− w2(t). Then

g1(t)− g2(t) = col (U(t), V (u),W (t)), t ≥ 0.

By subtraction of the last three equations from the first three equations in (1.1), we obtain the
differenced Hindmarsh-Rose equations:

∂U

∂t
= d∆U + a(u1 + u2)U − b(u2

1 + u1u2 + u2
2)U + V −W − 2pU,

∂V

∂t
= −V − β(u1 + u2)U,

∂W

∂t
= qU − rW.

(4.3)

Conduct estimates by taking the L2 inner-products of the first equation of (4.3) with λU(t)
(the constant λ > 0 is to be chosen later), the second equation of (4.3) with V (t), and the third
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equation of (4.3) with W (t) respectively and then sum them up to get

1

2

d

dt
(λ‖U(t)‖2 + ‖V (t)‖2 + ‖W (t)‖2)

+ dλ ‖∇U(t)‖2 + 2pλ ‖U(t)‖2 + ‖V (t)‖2 + r ‖W (t)‖2

=

∫
Ω

λ
(
a(u1 + u2)U2 − b(u2

1 + u1u2 + u2
2)U2

)
dx

+

∫
Ω

(λUV − β(u1 + u2)UV + (q − λ)UW ) dx

≤
∫

Ω

(
λa (u1 + u2)U2 − β(u1 + u2)UV − λb (u2

1 + u1u2 + u2
2)U2

)
dx

+

(
λ2 +

1

2r
(q − λ)2

)
‖U(t)‖2 +

1

4
‖V (t)‖2 +

r

2
‖W (t)‖2, t > 0.

(4.4)

In the last step of (4.4), we used the following Young’s inequalities:

λU(t)V (t) ≤ λ2U2(t) +
1

4
V 2(t),

(q − λ)U(t)W (t) ≤ 1

2r
(q − λ)2U2(t) +

r

2
W 2(t).

The integral terms in the last inequality of (4.4) are treated as follows:

∫
Ω

(
λa (u1 + u2)U2 − β(u1 + u2)UV − λb (u2

1 + u1u2 + u2
2)U2

)
dx

≤
∫

Ω

(
λa (u1 + u2)U2 − β(u1 + u2)UV − λb

2
(u2

1 + u2
2)U2

)
dx

≤
∫

Ω

(
λa (u1 + u2)U2 + 2β2(u2

1 + u2
2)U2 +

1

4
V 2 − λb

2
(u2

1 + u2
2)U2

)
dx.

(4.5)

Now we choose the constant multiplier to be

λ =
8β2

b
> 0, (4.6)
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so that (4.5) is reduced to∫
Ω

(
λa (u1 + u2)U2 − β(u1 + u2)UV − λb (u2

1 + u1u2 + u2
2)U2

)
dx

≤
∫

Ω

(
λa (u1 + u2)U2 +

1

4
V 2 − λb

4
(u2

1 + u2
2)U2

)
dx

=
1

4
‖V (t)‖2 +

∫
Ω

(
λa (u1 + u2)U2 − λb

4
(u2

1 + u2
2)U2

)
dx

=
1

4
‖V (t)‖2 +

∫
Ω

(
a(u1 + u2)− b

4
(u2

1 + u2
2)

)
λU2 dx

=
1

4
‖V (t)‖2 +

∫
Ω

[
2a2

b
−
(

a

b1/2
− b1/2

2
u1

)2

−
(

a

b1/2
− b1/2

2
u2

)2
]
λU2 dx

≤ 1

4
‖V (t)‖2 +

2λa2

b
‖U(t)‖2.

(4.7)

Substitute (4.7) into (4.4). Then we obtain

1

2

d

dt
(λ‖U(t)‖2 + ‖V (t)‖2 + ‖W (t)‖2)

+ dλ ‖∇U(t)‖2 + 2pλ ‖U(t)‖2 + ‖V (t)‖2 + r ‖W (t)‖2

≤
(
λ2 +

2λa2

b
+

1

2r
(q − λ)2

)
‖U(t)‖2 +

1

2
‖V (t)‖2 +

r

2
‖W (t)‖2, t > 0.

(4.8)

From the above inequality we get

d

dt
(λ‖U(t)‖2+ ‖V (t)‖2 + ‖W (t)‖2) + 4pλ ‖U(t)‖2 + ‖V (t)‖2 + r‖W (t)‖2

≤
(

2λ2 +
4λa2

b
+

1

r
(q − λ)2

)
‖U(t)‖2, t > 0.

(4.9)

Under the condition of this theorem that the coupling coefficient p > 0 satisfies (4.2), we have

δ = 4pλ−
(

2λ2 +
4λa2

b
+

1

r
(q − λ)2

)
> 0, (4.10)

where λ is given by (4.6). Then (4.9) and (4.10) yield the differential inequality

d

dt
(λ‖U(t)‖2 + ‖V (t)‖2 + ‖W (t)‖2) + min

{
δ

λ
, r

}
(λ‖U(t)‖2 + ‖V (t)‖2 + ‖W (t)‖2)

≤ d

dt
(λ‖U(t)‖2 + ‖V (t)‖2 + ‖W (t)‖2) + δ‖U(t)‖2 + ‖V (t)‖2 + r‖W (t)‖2 ≤ 0

for t > 0. This inequality is written as

d

dt
(λ‖U(t)‖2 + ‖V (t)‖2 + ‖W (t)‖2) + µ(λ‖U(t)‖2 + ‖V (t)‖2 + ‖W (t)‖2) ≤ 0, t > 0, (4.11)
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where µ = min{δ/λ, r}, for any initial state g0 = col (g0
1 , g

0
2) ∈ H. We can solve (4.11) by Gronwall

inequality to reach the conclusion that

min {1, λ}‖g1(t)− g2(t)‖2L2(Ω,R3) ≤ λ‖U(t)‖2 + ‖V (t)‖2 + ‖W (t)‖2

≤ e−µt max{1, λ}‖g0
1 − g0

2‖2L2(Ω,R3) → 0, as t→∞.
(4.12)

Hence it is proved that

degs(HR) = sup
g01 ,g

0
2∈L2(Ω,R3)

{
lim sup
t→∞

‖g1(t)− g2(t)‖L2(Ω,R3)

}
= 0.

It shows that the coupled Hindmarsh-Rose neurons are asymptotically synchronized in the space
L2(Ω,R3) at a uniform exponential rate. The proof is completed.

As a remark, one can further study the synchronization problem of the coupled neurons in the
regular space E. Another interesting question is to find the lower bound of a threshold of the
coupling strength p > 0 for the self-synchronization in this model.
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