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Bogdanov-Takens Bifurcation in a Host-parasitoid
Model
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Abstract In this paper, we study a host-parasitoid model with Holling IT
Functional response, where we focus on a special case: the carrying capacity
K> for parasitoids is equal to a critical value L. It is shown that the mod-
el can undergo Bogdanov-Takens bifurcation. The approximate expressions
for saddle-node, Homoclinic and Hopf bifurcation curves are calculated. Nu-
merical simulations, including bifurcation diagrams and corresponding phase
portraits, are also given to illustrate the theoretical results.
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1. Introduction

Following the pioneering work of Fisher [2], many mathematical models have been
proposed to describe and stop or reverse biological invasions ( [5,7,8,11]). Predators
are able to stop or reverse invasions, as shown first by Owen and Lewis [9], and a
slowdown of invasions can be obtained if the functional response is linear (Type I).

In order to study the invasion and biological control of leaf-mining microlepi-
dopteron, which attacks horse chestnut trees in Europe. Magal et al. [6] developed
a host-parasitoid model with Holling II Functional response as follows

. (1 u) nuw
t=ru(l — —)— ———
! K 1+ nhu’
. v ynuw
— 1— A b 1.1
o=rv(l= ) (1.1)

where u(t) and v(t) denote densities of the hosts (leafminers microlepidopteron)
and generalist parasitoids (Minotetrastichus frontalis) at time ¢, respectively. rq
and 79 represent the intrinsic growth rate of the hosts and parasitoids, respectively,
K, and K5 represent the carrying capacity of the hosts population and parasitoids
population, respectively. 7 is the encounter rate of hosts and parasitoids, v is the
conversion rate of parasitoids, h describes the harvesting time. r;, K;(i = 1,2), ~,
n, h are all positive constants. Magal et al. [6] analyzed the number and stability of
equilibria in system (1.1), and showed some complex dynamical behaviors, such as
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the existence of a cusp, an unstable limit cycle and a homoclinic loop, by numerical
simulations. However, the complex nonlinear dynamics and bifurcation phenomena
still remain unknown, which is the subject of this paper.

For simplicity, we first nondimensionalize system (1.1) with the following scaling

; o u T
=7r Tr = — =
1Y Kl’ Yy T1K2a
dropping the bars, model (1.1) becomes
b
t=x=x(1l—xz— i ),
a+x
cx
)= y( — 1.2
b=y -y+——) (1.2)
where
1 K, o T2
a= , b= o= ——, 0= —,
Klnh Kl’/’Qh Tlh T1

and a,b,c,d are all positive. In this paper, we focus on a special case of system
(1.2): & = %, ie., the carrying capacity K, for parasitoids is equal to a critical
value Z+. It is shown that the model can undergo Bogdanov-Takens bifurcation.
The approximate expressions about saddle-node, Homoclinic and Hopf bifurcation
curves are calculated. Numerical simulations, including bifurcation diagrams and
corresponding phase portraits, are also given to illustrate the results.

This paper is organized as follows. In section 2, we analyse the existence and
types of equilibria in model (1.2) when § = ¢. In section 3, we show the existence
of Bogdanov-Takens bifurcation, and some numerical simulations are also given to
illustrate the theoretical results. The paper ends with a brief discussion.

2. Equilibria and their types

By the biological implication, we only consider system (1.2) in R3 = {(z,y)|z >
0,y > 0}. It is easy to see that the positive invariant and bounded region of system
(1.2) is
c
Q={@yl<r<l0osy<di+ 7}
It is easy to see that system (1.2) always has three boundary equilibria (0, 0),
(1,0) and (0, 6) for all permissible parameters. The Jacobian matrix of system (1.2)

at any equilibrium E(z,y) of system (1.2) takes the following form

_ _ _aby _ bz
L N I
(a(:-c;/')Q % - 2y + a(f;t
and " i
aby a cx abery
Det(J(E)=(1—-20— ——=)(=—2
et(I(E) = (1- 20 = ) — 2y + S+ 2
cx aby

Tr(J(E)):1+%—2(a:+y)+a+m— 0

It implies that E(z,y) is an elementary equilibrium if Det(J(E)) # 0, a hyperbolic

saddle if Det(J(F)) < 0, or a degenerate equilibrium if Det(J(F)) = 0, respectively.
We can easily get the following results about the types of the boundary equilibria.
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Lemma 2.1. System (1.2) always has three boundary equilibria (0,0), (1,0) and
(0,9). (0,0) is always a hyperbolic unstable node, (1,0) is always a hyperbolic saddle.
(0,6) is a hyperbolic saddle if 6 < %, a hyperbolic stable node if 6 > ¢, a degenerate
equilibrium iof 6 = ¢.

Next we consider the positive equilibria of system (1.2). The positive equilibrium
E(z,y) satisfies the following equation:

b
l—z——2 o
a-+x
CXT
§— =0 2.1
vt 7= (2.1)

from which we can see that x is a root of the following equation:
23 + (20 — 1)2® + (a® — 2a + be + bd)x + abd — a* = 0, (2.2)

in the interval (0,1). By the root formula of three-order algebraic equation, we
can see that equation (2.2) may have three different real roots, which makes the
qualitative and bifurcation analysis very difficult, thus, throughout this paper, we
just consider a special case as follows:

d=7 (e Ko=), (2.3)

@
b
We firstly define

F(z) = 2?4 (2a — x4 a® — a + be,

f(z) = dFdS‘") =92z +2a — 1. (2.4)

It is easy to see that F(z) = 0 has at most two positive roots in the interval
(0,1), correspondingly, system (1.2) has at most two positive equilibria when (2.3)
is satisfied.

From F(x) =0, we can get

. (a+x)(1bfa7w)’ (25)

substituting (2.5) into Det(J(E)), we can rewrite Det(J(F)) as follows

Det(J(E)) = m f(2). (2.6)

We have the following results about the positive equilibria.

Lemma 2.2. If6 = ¢, then system (1.2) has at most two positive equilibria. More-
over,

(1) system (1.2) has no positive equilibrium if one of the following conditions is
satisfied:

(i) ¢> g5
(i) c= 7z and a > 3;
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(iii) U <e< ka1l

(11) if @ <c¢< 4 and 0 < a < %, then system (1.2) has two positive
equilibria Eq(z1,y1) and Es(xa,y2), which are all elementary equilibria and
FE1 s a hyperbolic saddle, where 0 < x1 < 29 < 1.

(1) if ¢ = @ and 0 < a < %, or<c< @ and 0 < a < 1, then system
(1.2) has a unique positive equilibrium Es(xa,y2) which is an elementary and

anti-saddle equilibrium, where 0 < xo < 1.

(IV) if c= 4 and 0 < a < %, then system (1.2) has a unique positive equilibrium
E* which is degenerate.

() (d)

Figure 1. The positive roots of F(z) = 0. (a) No positive root; (b) A unique positive single root x2;
(c) Two different positive single roots z1 and z2; (d) A double positive root z*.

Proof. From equation (2.6), it is easy to see that Det(J(E2)) > 0, Det(J(E1)) <
0, Det(J(E*)) = 0, then F4, E5 are all elementary equilibria and E} is a hyperbolic
saddle, E* is a degenerate equilibrium. O

Next we consider the case (IV) in Lemma 2.2, and look for some parameter
values such that the unique degenerate equilibrium E*(z*, y*) satisfied Tr(J(E*)) =
0. From F(z*) = f(x*) = 0, we can express ¢, * and y* by a and b as follows:
14+ 2a

1—2a
w "t T T VT T 27)

Moreover, from Tr(J(E*)) = 0 and (2.7), we have

~ 1+4+2a
~ 4a(1 —2a)°
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Defining the unique positive root of 8a® + 4a? — 1 = 0 as follows

100 + 124/69)3 + (100 — 12 52
4 & {100+ 12v/69):3 +1(2 VS 2 srnaze. (2.9)

we have the following results.

Theorem 2.1. If§ = %, 0 < a < § and the conditions in (2.7) are satisfied, then

system (1.2) has a umque positive equilibrium E*(1=22 2“, 1+2‘1) Moreover,

(I) if b # 4Q}nga), then E* (1222, 122) s ¢ saddle-node, which includes a stable

parabolic sector (or an unstable parabolic sector) if 0 < b < 24— (or

4a(1—2a)
14+2a .
b> 4a(_1‘_72a))’

(1) if b= 4@1T23a) , then E* (1522, a(1—2a)) is a cusp of codimension 2 if a # ay.
The phase portrait is given in Figure 2.

a=1/4 b=3 c=1/12

Figure 2. A unique positive equilibrium E* if ¢ = ﬁ and 6 = §, which is a cusp of codimension 2 if

__142a
b= Ta(i=2a) and a # ag.

Proof. (I)Ifb # 4@1&_2;(1), then the Jacobian matrix of equilibrium E* has only

one zero eigenvalue. We first let v = x — 1_22a,v =y — 11‘5“, then system (1.2)
becomes

0= (a —2a*)u+ (2a — 1)v + (4a® 4 2a — 1)u? — dabuv + o(|u, v|?),

142 1+2 142
= o 4—; a)u - Zb - o 2—; a)u2 + %uv — v+ o(Ju, v|?). (2.10)
Letu = gX—‘mﬂ%)sz, v = X+Y and make a time variation 7 = —mt,

then system (2.10) can be rewritten as

X = AX? + BXY +CY? +o(|X,Y]?),
Y =Y + DX? +EXY + FY? +o(|X,Y]?), (2.11)
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where
o 4b* (1 —2a)*(1 + 2a)
~ a(l+ a(2 — 4b) + 8a2b)?’
B 320%(2a% + b — 4ab + a3 (4 + 8b))
(1+2a)(1+ 2a — 4ab + 8a2b)? ’
16ab®(2a — 1)(—1 + 46 + 32a%b* + a(—2 + 8b — 24b?))
B (14 2a)(1 + 2a — 4ab + 8a2b)? ’
2b(1 + 2a)(1 — 2b + a(2 + 4b))
T a(l+a(2—4b) +8a2b)2
4b(—1 — 4b + 8b* + 32a3b? + 16a?b(1 + b) + a(—2 + 8b — 32b?))

E=-
(14 2a — 4ab + 8a2b)2 ’

C:

L+ F
(1+ 2a)(1 + 2a — 4ab + 8a2b)?’
Fy = 256a°b + 128a*b?(1 — b) + 16a>b(1 — 2b — 8b?),
Fy = 4a®(1 — 8b% + 24b%) + 4a(1 — b+ 20% — 4b%) + 1,

F:

we can see that A # 0, since b # 4a1(1"fga) and 0 < a < %, then according to

Theorem 7.1 in Zhang et al. [13], E*(1=2¢, 1422} j5 a saddle-node which includes a

a
stable (or an unstable) parabolic sector if 0 < b < 4@1&3‘2’@) (or b > 4a1(1+3‘21a) ).
(IT) Next we prove that the unique positive equilibrium is a cusp if b = 4al(ffga) .

Substituting (2.8) into system (2.10), then we have

14 2a 1+ 2a
Gy — —942)y, — _ 2y,.2 2
= (a—2a")u ” v+ (=14 2a+ 4a”)u —|—2a71uv+0(|u,v| ),
4(1 — 2a)%a? 8a3(1 — 2a)? 4a%(1 -2
@zwu+a(2a—l)v7 o @) u? a( a)uvaz
1+ 2a 1+ 2a 1+ 2a
+ o(|u, v|?). (2.12)
Let u= 4;2t28“a3x + 4a31('1"f;a)2y and v = z, system (2.12) becomes
. 20 +1 , 1+a 14 2a 9 9
Py St Eaa Y T 2w — 2z T oUm ),
. (1 —2a)*(1 + 2a) 2+1—2a—4a2 +—1+2a+8a2 5
=— x Y+ ——————
Y da 4a — 22 Y 4a3(1 — 2a)? Y
+o(lz, yl). (2.13)

Making a C*°-change of variables z = X+ 8a>+12a°—2¢—1 x'2 1+2a XY, y=

; 8a3(1—2a)? " 2a3(1—2a)?
Y + 1'53’1X2 + Eﬁ;(i’ébﬂ XY, we have

X =Y +o(X,Y]),

1 - 2a)%(1+2 1 — 4a? — 843
(1=20)(1+2a) yp 140’ —8a%\p L ix vpR), (2.14)

Yy =—
4a 4a3 — 2a2

2
where w # 0 since 0 < a < % If a # ag, then % # 0, and

E*(1522,a(1 — 2a)) is a cusp of codimension 2 by Perko [10]; if a = ag ~ 0.377439,

then E*(152%, a(1 — 2a)) is a cusp of codimension at least 3 ( [4]). O
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3. Bogdanov-Takens bifurcation

From Theorem 2.1 we know that system (1.2) has a cusp E* of codimension 2
when ¢ = ﬁ7 0=1%,b= 4a1(1"72‘21a) and a # ag, then it may exhibit Bogdanov-
Takens bifurcation around E*. Choosing b and ¢ as bifurcation parameters, then

the unfolding system of system (1.2) is as follows

(4a1(;r—2(21a) + Al)y

t=z(l—xz— ,

a—+x
a(l—2a)
. a (e + o)z
V=g Yt — ) (3.1)
4a1(-1i_—22a) + M etz

where A = (A1, A2) are small parameters vector in a small neighborhood of (0, 0)
and 0 < a < %
In the following we study if system (3.1) can undergo a Bogdanov-Takens bifur-

cation in a small neighborhood of equilibrium E* as parameters (b, c) varies in a
1+2a a(l—2a)

small neighborhood of (4a(1_2a), TT2a

) and the result as follows.

Theorem 3.1. When 0 < a < % and a # ag, parameters (A1, A2) vary in a small
neighborhood of the origin, system (3.1) undergoes a Bogdanov-Takens bifurcation

in a small neighborhood of E*. Moreover,

(1) if 0 < a < ag, then there exist a subcritical Bogdanov-Takens bifurcation.
Hence, there exist some various parameter values such that system (3.1) has
an unstable limit cycle or an unstable homoclinic loop around E*;

(II) ifag < a < %, then there exist an supercritical g Bogdanov-Takens bifurcation.
Hence, there exist some various parameter values such that system ((3.1) has
a stable limit cycle or a stable homoclinic loop around E*.

Proof. Firstly, we translate E* to the origin by letting u = = — 132“ ,o=y—a(l—

2a), and the Taylor expansion of system (3.1) around the origin takes the form

U = ago + a10u + ag1v + asou® + aj1uv + Py (u, v, ),
V= boo + b10U + b01’l) + b20u2 + bll’U/U + b021)2 + PQ(’LL, v, )\), (32)

where Py, P, are C* function at least of the third order with respect to (u,v),
whose coefficients depend smoothly on A1, A and
ago = —(1 —2a)%al1, a0 = a(l —2a)(1 —4a);),
1+ 2a

apy = o T (2a — 1)A1, ago = (=14 2a + 4a® + 8(1 — 2a)a®\y),
a
14+ 2a+4(1 —2a)a)
a1l = )
2a -1
b — a(l —2a)?(a(l — 4a®>)A1 hg — 16a3(1 — 2a) A1 + (1 + 2a)?\2)
00— (1+2a)(1 + 2a + 4a(1 — 2a)\y) ’
4a?(a(l —2a)* + (1 — 4a®)A2)
bio = ] ; bog = —1,
+ 2a
b (1 —2a)((1+2a)%(a — A2) + 4a(l — 2a)(a(1 + 6a) — (1 + 2a)\2) 1)
01 = —

(142a)(1+2a+4a(l —2a)\) ’
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b = — —_ .
20 1+ 2a oo 1+ 2a

8a%(a(1l — 2a)? + (1 — 4a?)X2) b da(a(l —2a) + (1 + 2a)A2)

Secondly, let
T =u, y=am + a0t + ag1v + asou? + ajjuv + Py(u,v, \),
then system (3.2) can be written as

T =y,

U = coo + c10T + cory + coox® + cr1wy + coay® + Qi(x,y, N), (3.3)

where Q1(x,y, A) is a C°° function at least third order with respect to (z,y) and

2
agoboz 2a00bo2 + aooa11
coo = ao1boo — agobo1 + , o1 = ay +bpyp — ———,
ao1 ao1
2 2
agas, + 2ap0pa10a01b
00911 00010201002
c10 = ao1bio + a11boo — a10bo1 — agob11 + 5 ;
ap1
2 2
app@10a7] — Gppap1G20a11 + a10a01b02
20 = ao1bzo + a11b10 — a10b11 — az20bo1 + a2 )
01
2
- b 2a10a01bo2 + a10a01011 + oGy _ai1 + boz
c11 = 2ag0 + b1 — 3 y Cog = ————.
ap1 ao1

Thirdly, we introduce a new time variable 7 by dt = (1 — cpex)dr, and still
denote 7 by t, then system (3.3) can be written as

z =y(1 — co2x),
y = (1= coaw)(coo + c10® + cory + c202” + cr1zy + co2y® + Qu(z,y, ),  (3.4)

next let X = z,Y = y(1 — cpaz), then system (3.4) takes

X =Y,
Y =doo + dioX +do1Y + dooX? + din XY 4 Qo(X, Y, \), (3.5)

where Q2 has the same property as P;(u,v,A) (i =1,2) and

doo = coo, dio = c10 — 2cpoco2, do1 = co1,

2
dag = c20 — 2¢10C02 + CooCha, di11 = €11 — Co1Co2-

Notice that when 0 < a < 3 and A; are small, dog = —a(1 — 2a)* < 0, we make
a change of variables as follows

then system (3.5) can be rewritten as

T =y,
U= el + e+ esy — 2° + eqry + Q3(w,y, N), (3.6)
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where Q3(X,Y,\) has the same property as P;(u,v,A) (i =1,2) and
o dw | dw _ dw_ du
doo’ dao’ V—=dao’ V—dao'
Next, let X =2+ 2,Y =y, then system (3.6) can be transformed as
X =Y,
Y:fl+f2YﬁX2+f3XY+Q4(X7Y7>‘), (37)

where Q4(X,Y, A) has the same property as P;(u,v,A) (i = 1,2) and

€2 ese
f1=€1+Z27 f2=€3+%, fa=eq.

When 0 < a < %, 8a% + 4a% — 1 # 0 and \; are small, then dy; # 0 and f3 # 0.

Make the last change of variables

t

T = _f??X? y= f??Yv T = _Ea

then system (3.7) takes the following form
T =y,
=+ poy + 2® +xy + Qs(x,y, ),
where @5 has the same property as P;(u,v,A) (i = 1,2) and
p = —fifs, p2=—fafs.
By lengthy calculation, we can express p; by A\;(i = 1,2) as follows

1 = gidt + g2ha + g3hi® + gadida + gsho® + o(| A1, Ao |?),
po = ki + koo + k3?4 kadida + ksho® + o(|A1, /\2|2)7

where
16(8a® + 4a® — 1)* 4(8a® + 4a® — 1)*
M= a0 —aa2p 0 T B 20)7(1 1 20)3
64(8a® + 4a® — 1)3g3 32(8a +4a® — 1)3g4;
BT 120811208 0 T Ta(l - 20)°(1 + 2a)8
4(8a® + 4a® — 1)3gs1 8a(1 — 8a? 4 16a* — 64a®)
BT TR 2001+ 20) T T (1-2a)2(1+ 20)F
by — 4(1 — 8a?)(8a® + 4a® — 1) by = — 32a? (ka1 + ksa)
(1-2a)*(1+2a)2 ~’ (1—2a)*(1+2a)7’
oy = ~ 8(ka1 + ka2) s = 2(ks1 + ks2)
(1 —4a2)>”’ a?(1 —2a)7(1 + 2a)3’
and

g31 = 224a” 4 1360a® + 488a° — 112a* — 100a® — 47a® + 26a + 4,

(3.9)
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ga1 = 32a°® + 1104a® 4 488a* + 8a® — 36a% — 45 + 13,

gs1 = 2884 — 78448 — 552a° — 176a* — 204> + 55a% + 3,

k31 = 2048a'! — 92164’ + 2560a° + 9984a® 4 6784a" 4 1344a°,
k3y = —1600a° — 640a* — 80a® + 484> + 18a + 1,

kg1 = 12800a° + 9728a® 4 1536a" — 1472a°,

kyo = —1344a® + 48a* + 144a® + 364> — 10a — 3,

ks = 1536a'° — 5120a° — 5632a® — 1920a" + 256a°,

kso = 736a° 4 144a* — 8a® — 14a® — 2a — 1.

Notice that

Aps p2) ‘ 32(8a3 + 4a® — 1)°

O, A2) a=o — a2(1 — 2a)8(1 + 2a)° 70

since 0 < a < 3 and a # ag, then the parameters transformation (3.9) is a home-
omorphism in a small neighborhood of the origin, and p4, uo are independent pa-
rameters. By the results in [1] and [12] (see also [3,10]), we obtain the following
local representations of the bifurcation curves up to second-order approximations:
(1) The saddle-node bifurcation curve SN = {(p1, p2) : 1 = 0, po # 0}, i.e.,

16(8a° +4a” —1)* | 4(8a® + 4a2 — 1)*
al—4a2p T B 20714203 2
64(8a® +4a2 —1)3Ny , = 32(8a® + 4a% — 1)3N;
(1—2a)5(14+2a)8 "' " a(l—2a)8(1 + 2a)¢
4(8a® + 4a® — 1)3N.
~ a*(1—2a)19(1 + 2a)*

SN = {(A1,\s) :

A1

A2+ O(|A1, Aol?) = 0, 111 (A1, A2) = 0},

where
Ny = 224a" 4 1360a° + 488a® — 112a* — 100a® — 470> + 26a + 4,
Ny = 32a® + 1104a° + 488a™* + 8a® — 364 — 45 + 13,
N3 = 288a" — 784a% — 552a° — 176a* — 20a® + 554> + 3.
(2) The Hopf bifurcation curve H = {(u1, p2) : plo = —y/—p1, p1 < 0}, ie.,
H = {0 ) 16(8a® + 4a® — 1)* 4(8a® + 4a® — 1)*
DA T (1= 4a2)5 T a3(1 = 2a)7(1 + 2a)3 72
128(8a3 + 4a® — 1) H, 24 32(8a3 + 4a® — 1)2H2>\ \
(1—-2a)0(1+2a)* "' a(l—2a)8%(1+22)% 77
4(8a® + 4a® — 1)?H;
T @41 = 2a)0(1 + 2a) A3+ O(A1, A2l?) = 0, 1 (A1, A2) < 0},
where

Hy, = 1024a'° + 5632a° + 4864a® + 384a" — 13446a% — 608a° + 64a*
+116a> + 32a% — 13a — 2
Hy = 768a° + 8192a® + 8640a” + 2080a® — 1472a° — 976a* — 764>
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+ 86a% + 45a — 13,
Hs = 1280a'° — 4096a° — 7552a® — 4160a” — 32a® + 9284° + 392a*
+ 44a® — 43a® — 3.
(3) The homoclinic bifurcation curve HL = {(p1, t2) : g2 = —%\/—7/“, < 0},
le.,
16(8a® + 4a? — 1)4 4(8a® + 4a? — 1)4
a(l — 4a?)® YT =20)7(1+ 2a)3>\2
128(8a® +4a® — 1)%ly 5, 32(8a® + 4a® — 1)21 A
49(1 — 2a)5(1 + 2a)8 "' " 49a(1 — 2a)3(1 + 2a)6 2
4(8a® + 4a® — 1)2l3
 49a4(1 — 2a)19(1 + 2a)

HL = {(/\1,/\2) .

225+ O(IA1, Aaf*) = 0, i1 (A1, Ag) < 03,

where
Iy = 471040 + 282112a° + 233728a® + 19584a" — 64896a° — 30368a°
+ 3184a* + 57324 + 15564 — 637a — 98,
ly = 25344a° + 4198404 + 415680a” + 99616a° — 69440a° — 482084
— 39164 + 426242 + 2205a — 637,
I3 = 8729640 — 225280a° — 3700484 — 1976964 — 2720a° + 450884°
+ 19304a* + 215603 — 2107a® — 147.

From the expression of f3 and the transformation 7 = ;—; to get system (3.8),
we can get the following results ( [4]):
(1) If 0 < a < ag, then f3 < 0, therefore, there exists a subcritical Bogdanov-

Takens bifurcation at (1522, a(1—2a)), and system (1.2) has an unstable limit cycle

or an unstable homoclinic loop for some various parameters values;

(2)Ifap<a< %, then f3 > 0, therefore, there exists a supercritical Bogdanov-
Takens bifurcation at (1522, a(1 — 2a)), and system (1.2) has a stable limit cycle or
an stable homoclinic loop for some various parameters values. O

The supercritical Bogdanov-Takens bifurcation diagram of codimension 2 and
phase portraits of system (1.2) with a = %, b= % and ¢ = 4% are given in Figure

3. These bifurcation curves SN, H and HL divide the small neighborhood of the
origin in the parameter plane (A1, A2) into four regions (see Figure 3(a)).

(i) There are no positive equilibria when the parameters lie in region I (see Figure
3(b)).

(ii) When the parameters lie on curve SN, there is a positive equilibrium, which
is a saddle-node.

(i) Two positive equilibria, which are an unstable focus and a saddle, will occur
through the saddle-node bifurcation when the parameters cross SN into region
1T (see Figure 3(c)).

(iv) A stable homoclinic cycle enclosing an unstable hyperbolic focus will occur
through the homoclinic bifurcation when the parameters pass region 11 and
lie on curve HL (see Figure 3(d)).

(v) A stable limit cycle will appear through the subcritical Hopf bifurcation when
the parameters cross H into region 111 (see Figure 3(e)).
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Figure 3. The supercritical Bogdanov-Takens bifurcation diagram and corresponding phase portraits
of system ((1.2)) with a = %, b =45/8 and ¢ = %4 (a) Bifurcation diagram; (b) No equilibria when
(A1, A2) = (0.15, —0.001) lies in region I; (c) An unstable focus when (A1, A2) = (0.12, —0.001) lies in
region IT; (d) A stable homoclinic cycle when (A1, A2) = (0.08, —0.001) lies in region III; (e) A stable limit
cycle when (A1, A2) = (0.071, —0.001) lies in region IV; (f) A stable focus when (A1, A2) = (0.1, —0.00124)
lies in region IV.
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4. Discussion

In this paper, we revisited a host-parasitoid model with Holling II functional re-
sponse, which was proposed by Magal et al. [6], we focus on a special case: Ko = =L,
i.e., the carrying capacity K> for parasitoids is equal to a critical value % After per-
forming a qualitative and bifurcation analysis, our results reveal that model (1.2) ex-
hibits Bogdanov-Takens bifurcation. The approximate expressions for saddle-node,
Homoclinic and Hopf bifurcation curves are calculated. Numerical simulations, in-
cluding bifurcation diagrams and corresponding phase portraits, are also given to
illustrate theoretical results. Moreover, from Lemma 2.2 and Theorems 2.1 and 3.1,
we can see that the invasion hosts can be stopped or reversed when model (1.2) has
no positive equilibrium, i.e., the generalist parasitoids can control the invasion of
the invading hosts; the invading hosts can persist in the form of multiple positive
steady states or one periodic oscillation when model (1.2) has one or two positive
equilibria. In both cases, the parasitoids always persist.
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