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Complete Hyper-elliptic Integrals of the First
Kind and the Chebyshev Property*

Jihua Yangh'

Abstract This paper is devoted to study the following complete hyper-
elliptic integral of the first kind

3
dx,

J(h) = 7{ ao + a1z + asz? + asz
Y
Tp
where a; € R, I';, is an oval contained in the level set {H(z,y) = h,h €
(-2,0)} and H(z,y) = 2y* — 22" + L12°. We show that the 3-dimensional
real vector spaces of these integrals are Chebyshev for ap = 0 and Chebyshev
with accuracy one for a; =0 (i = 1,2, 3).

Keywords Complete hyper-elliptic integral of the first kind, Chebyshev,
ECT-system.
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1. Introduction and main results

In 1990, Arnold [1] proposed ten problems among which the 7th problem is on the
number of zeros of Abelian integrals, which can be stated in the following way:
consider the Abelian integral

I(h)= ¢ P(x,y)dy+ Q(x,y)dx, hel,
Ty

where T, is a family of closed curves of a real polynomial H(z,y) = h, P(x,y),
Q(z,y) and H (x,y) are polynomials satisfying max{deg P,deg Q} = n and deg{H} =
m + 1, J is an open interval. How large can the number of isolated zeros of the

function I(h) in the open interval J? And for the complete hyper-elliptic integral
of the first kind

g—1
J(h):j{ — y e H(z,y) =y* +U(z),
'y

where degU = 29+ 1 > 4, ; (i = 1,2,---g — 1) are real parameters. Is the
g-dimensional family of J(h) a Chebyshev family in the open interval? Where
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Chebyshev family means that the number of the isolated zeros of J(h) is smaller
than g — 1.

It is known to all that the first part of the 7th problem is so-called the weakened
16th Hilbert problem compare to Hilbert in [13]. On the theme there have been
many excellent works, see [2-6,10,11,14-18,20,21,23-28] and the references therein.

However, there are few works on the second part of the 7th problem, especially
for g > 2. Gavrilov and Iliev [8] obtained that the g-dimensional real vector space
of J(h) is not Chebyshev for any g > 1, and when g = 2 and deg U = 5 there exist
exceptional families of ovals {I';,} of y2 4 U(x) = h such that every Abelian integral
of the form

J(h) :j{ W T G ad£0
Ty Y
has at most one isolated zero for h in an open interval I. Wang, Wang and Xiao [22]
studied the Chebyshev property of the above J(h) for three classes of degenerate
families of ovals T'y, in [8]. It is shown that the three classes of complete hyper-
elliptic integrals are Chebyshev, and the exact bounds on the number of zeros of
these Abelian integrals are one.

In this paper, motivated by the above results, especially by [1,8,22], we investi-

gate the following hyper-elliptic Hamilton system

i=y, §=-2"(2"-1), (1.1)
whose Hamiltonian is
IR VR R
H(z,y) = 5Y° — 3% +9x =5y +U(z). (1.2)
The oval H(z,y) = f% corresponds to the center C(1,0), the oval H(z,y) = 0

corresponds to the homoclinic through the nilpotent saddle point O(0, 0), see Figure
1. It intersects the positive z-axis at point (% v/72,0). The corresponding complete
hyper-elliptic integral of the first kind is

19

/|

T T T
-1 -0.5 0 0.5 1

-0.51

o1d

Figure 1. The level curves of H(z,y) = h.

J(h) = dx

j{ a0 + a1z + asz? + asz®
'y Yy
=apJo(h) + a1 Ji(h) + as Ja(h) + as T3 (h),
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where

D= (e o) = hh € (<0} G = § Sdoi=01.23

For the sake of convenience, we denote by V. the 3-dimensional real vector spaces
generated by vectors {Jo(h), J1(h), J2(h), T3(h) \{Tk(h)}, k = 0,1,2,3. The main

result is as follows.

Theorem 1.1. (i) Vj is Chebyshev on (—35,0), and the ezact bound on the num-
ber of zeros of J(h) = a1 Ji(h) + asJa(h) + aszJs(h) is two on (—=,0) for all
(a1, a9,a3) € R3 (counting the multiplicity).

(i1) Vi is Chebyshev with accuracy one on (—,
R3 such that J(h) = aoJo(h) + aaJ2(h) + aszJs(h) has two zeros on (—z5
(counting the multiplicity).

0), and there exists (ao,ag,ag,) €
5:0)

(iii) Vo is Chebyshev with accuracy one on (—=,0), and there exists (ap, al,ag) €
R* such that J(h) = aoJo(h) + arJi(h) + azJs(h) has two zeros on (—35,0)
(counting the multiplicity).

(v) V3 is Chebyshev with accuracy one on (—=5,0), and there exists (o, o, 042) €
R3 such that J(h) = aoJo(h) + a1 J1(h) + a2 J2(h) has two zeros on (—=5,0)
(counting the multiplicity).

2. Preliminaries

For the reader’s convenience, we first introduce some helpful results in the literature.
For more details, one can see [7,9,19].

Definition 2.1. The real vector space of functions V is said to be Chebyshev on
an open interval I C R provided that every function f € V\{0} has at most dim V-
1 zeros on 1. V is said to be Chebyshev with accuracy m on I if any function
f € V\{0} has at most dim V' + m — 1 zeros on L

Definition 2.2. Let fo, f1,---, fn—1 be analytic functions on an open interval I C
R.

(1) {fo, f1, -+, fn—1} is a Chebyshev system (in short, T-system) on I if any non-
trivial real linear combination

apfo(z) +arfi(z) +- -+ an—1fnoa
has at most n — 1 zeros on 1.

(i) {fo, f1,- -+, fn—1} is a complete Chebyshev system (in short, CT-system) on I
if {fo, f1,-++, fx—1} is a Chbyshev system on I for each k =1,2,--- ,n

(iii) {fo, f1, -, fn—1} is an extended complete Chebyshev system (in short, ECT-
system) on I if for each k = 1,2,--- ,n, any nontrivial real linear combination

aofo(z) +arfi(x) + -+ ap-1fe—1

has at most k — 1 isolated zeros on I (counted with multiplicities).
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(iv) {fo, f1,- -+, fa—1} is a Chebyshev system (in short, T-system) with accuracy
m on I if for any nontrivial real linear combination

aofo(z) +arfi(x) +-+ +an_1fu
has at most n +m — 1 isolated zeros on 1.

Remark 2.1. According to Definition 1 and Definition 2, {fo, f1, -, fa—1} is an
ECT-system on I if and only if the real vector space V' generated by the vectors
{fo, f1,-++, fn—1} is Chebyshev on I, and {fo, f1, -, fn—1} is a T-system with
accuracy m on I if and only if the real vector space V' generated by the vectors
{fo, f1, -+, fn—1} is Chebyshev with accuracy m on L

Definition 2.3. Let fy, f1,- -, fn—1 be analytic functions on an open interval I C
R. The continuous Wronskian of (fo, f1,--, fr—1) at * € T is

folx)  filz) - fo—a(z)
Wlfor f1,- - s fooa](@) = det(f;i)(x))ogi,jgk—l _ fo(z) @) - fl(2)

k—1 k—1 k-1
V@) @) 5 @)
where f’(z) is the first order derivative of f(x) and f O] (2) is the ith order derivative
of f(x).

The following relation between an ECT-system and their continuous Wronskian
is well known.

Lemma 2.1. {fo, f1,- -, fu_1} is an ECT-system on I if and only if for each
k=1,2,---,n, W[fi](x) #0 for all z € I.

Let H(z,y) = A(z) + % be an analytic function in some open subset of R?
that has a local minimum at the origin, and let H(0,0) = 0. Then there exists a
punctured neighborhood P of the origin foliated by ovals T'y, C {(z,y)|H(z,y) =
h, ho <h <0or0<h < hi}. The projection of P on the z-axis is an interval
(21, z,) with 2; < 0 < z,. Suppose that zA'(z) > 0 for all € (z;,2,)\{0}. Then
there exists a unique analytic involution function z(z) with z; < z(x) < 0 such that
A(z) = A(z(x)) for z € (0, ;).

We consider the Abelian integrals I;(h) = [ gi(z)y**~'dz for h € (ho,0) or

IV
h € (0,hy), where g; (i = 0,1,--- ,n — 1) are analytic functions on the interval
(z1,2,) and s € N.
Define a new analytic function in the interval (0, z,) as follows

=A@ @) @1)

Then from Lemma 2.1 we have the following algebraic criterion(see Theorem B
in [9] and Theorem A in [19]).

Lemma 2.2. (i) If s > n — 2 and Wlly,l1,--- ,1;] is different from zero in the
interval (0,x,) for each i = 0,1,--- ,n — 1, then {Io(h),I1(h), - ,I,—1(h)} is an
extended complete Chebyshev system on the interval (hg,0) or (0, hy).
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(i) If s > n+m—2 and assume that Wy, l1,- - ,1;] is different from zero in (0, ;)
for each i =0,1,--- ;n—2 and Wllp,ly,--- ,ln—1] has m zeros on (0,x,) counted
with multiplicities, then {Io(h), 1 (h), -, I,—1(h)} has at most n + k — 1 isolated
zeros on (0, ;) counted with multiplicities. We call {Io(h),I1(h), -, I,—1(h)} is a
Chebyshev system with accuracy m on the interval (hg,0) or (0, hy).

The following lemma in [9] gave a formula which promotes the power of y in the
integrand of Abelian integral I;(h) into a higher order that we want.

Lemma 2.3. Let F(x) such that % is analytic at x = 0. Then for any k € N,

F(x)y* tdax = G(x)y** T da,
Fh Fh

where G(z) = 2;1 (%y(aj)

3. Proof of Theorem 1.1

Since the origin is not the local minimum of H(x,y), we shift the center C(1,0) of
system (1.1) to the origin by the transformation x = 1 —u,y = —v, and still denote
the variable pair by (z,y) after the transformation for the sake of convenience. Then
system (1.1) can be written

p=y, §=(@—1%+ @1 (3.1)
which has the Hamiltonian
1 1 2 2
H(z,y) :52/2 - 5369 + 2 — 42" + ESxG — 142° + %w‘l — é)xg’ + gﬁ
1
::§y2 + A(x)

with a local minimum at origin and the continuous family of ovals 7; surrounding
the center (0,0), where
1 28 55 25
Ax) = —§$9 + 2% — 42" + ExG — 142° + Zx4 - §x3

)
+ §$2,

5
M= {(x,y)l”r"l(%y) =1,0<i< %}.

The homoclinic 7; defined by | = 3% intersects the 2-axis at the points (1—1+v/72,1).
It is easy to check that zA’(z) > 0 for z € (1—3+/72,1)\{0}. Thus for z € (0,1), we
can define an involution z(z) with 1 — V72 < z(z) < 0 such that A(z) = A(z(z)),
where z(z) is implicity defined by ¢(z, z) = 0, here
q(z,2) = — 90z — 3362° — 3627 + 428 + 30022 — 4952 + 5042 + 1442° + 30022
—4952% + 5042" — 3362° + 1442° — 3627 + 42® — 90z + 42%2° — 362%2°
+ 144222 — 336222 — 495222 + 30022 4 42°2% + 5042%2% — 4952%x
+ 422" — 36225 + 144225 — 33622t + 50422° — 3627 2% + 42 2?
+ 1442323 — 362321 + 4232° + 14422 2% — 3362223 — 362225 + 42220
+50422° — 33622* + 144x2® — 36725 + 422"
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And we have
dz Aq(x, z)

dr ~ As(z,2) =0, (3.2)

where

Ai(z,2) = — 90 + 600z + 8642° + 327 — 14852 + 20162 — 16802 — 2522°
— 4952 + 5042° — 3362 + 1442° — 362° + 427 + 300z + 242°2° — 1802%z*
+ 5762°2° + 151222° — 990z — 100822 + 10082°x + 2822° — 21622°
+ 72022t — 134422° + 122%2° + 20223 — 1442%2° + 16232* — 1082%2*
+ 4322 2% — 67222° + 288x2* — T222° + 8225,

As(z,2) = — 90 + 300 + 1442° + 42" — 495> + 5042° — 336" — 362° — 14852
+20162° — 16802" 4 8642° — 2522° + 322" + 600z 4 122%2° — 1082°2"
+4322%2% + 100822 — 9902z — 10082%22 + 151222 + 822° — 7222°
+ 28822 — 67220° 4 242°2° + 162" 2% — 1442°2° + 202°2* — 18027 2"
+ 5762°2° — 134422° + 72022" — 21622° + 28x2°.

Lemma 3.1. {J1(h), J2(h), J3(h)} is an ECT-system on (—35,0).

Proof. We only need to verify that {Ji(1), J2(1), J3(I)} is an ECT-system on
(0, 35), where J;(I) = fw %dm,i =0,1,2,3. We can not apply Lemma 2.2 directly
for {J1(1), J2(1), J3(1)}, since n = 3 and s = 0. Note that $y* 4+ A(z) = [ along the

oval 7; with 0 < [ < =, then for i = 0,1, 2,3, by Lemma 2.3, we have

367
§ e,
" Y

= [f g s f 4]
1 [ () e

= % fi(x)ydx.

"

Ji(l) =

o~ =

where

filw) = 2o’ + (xAA(g?)

But by Lemma 2.2 s > n — 2 is still not satisfied since n = 3 and s = 1, we need to
promote the power of y.

HO = 5§ F@) (55" + Als)yda
1

= L4 trawiar f p@ Ayl

i Vi

<L (b (A
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= %2% gi(:c)y?’dx,
where
1 1/ fi(z)A(x)\’
Define

gi(z)y3dx, i =0,1,2,3,4.

Nl
Il
S~

It is only to prove {I1(1), Iz(1), I5(1)} is an ECT-system on (0, 3). For i = 1,2,3,
set

0 al)
P W) T AGE)

Then we get ;(x,2) = m (z, z)m;(z, 2),i = 1,2,3, where
_ xr—z
T 11664(z — 1)1 (2 — 1)1 (24 — 523 4+ 1022 — 10z + 5)5 (x4 — 523 + 1022 — 10z + 5)5’

m (I, Z)

and m;(x, z) are polynomials of (z,z). By Lemma 2.2, we only need to assert that
forall1—IvV72<z<0<z<1

(i) Wima](z,2) #0;  (ii) W[my, ma](z,2) # 0;  (iil) W[mq, ma, ms|(x, z) # 0.
In fact, for i = 1,2, 3, let

om; ~ Om; _Oa; | Oa;
ai(x,z) = o + 5, O, bi(zr,z)= o + o 0,
where O is defined by (3.2). Then
Wimi](z, z) = mi(, 2),
my ma|  &o(x, 2)
Wimi,ms](x, z) = = o1(z, 2),
e N e e
mi1 Mo M3 3
x,z
Wilmy,ma, ms|(z,2) = a1 az as gggm Z)JQ(xaz)v
by by b

where z = z(x) satisfies ¢(z,2) = 0, 0;(x, 2) are polynomials in (z,z) for i = 1,2,
and

Co(w,2) = (x — 2)(2* — 52° +102% — 10z + 5)(2* — 52° 4+ 102% — 102 + 5),

E(x,2) =4a" 4 8202 + 122522 + 162%23 + 2023 2% + 242225 + 28225 + 3227 — 3625
— 72252 — 108z 22 — 1442°32% — 18022 2% — 216225 — 25225 + 1442°
+ 288z 2 + 4322322 + 5762223 + 72022 + 8642° — 33621 — 6722%2 (3.4)
— 1008222% — 134422% — 16802* + 5042 + 1008222 + 1512223
+20162° — 49527 — 9902 — 148522 + 3002 + 600z — 90.
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Now we rely on the symbolic computation by Maple to compute the resultant be-
tween two polynomials and apply Sturm’s theorem to assert nonexistence of zeros
of two polynomials.

The resultant with respect to = between ¢(z,2) and my(z,z) is (2* — 523 +
1022 — 102+ 5)*(2 — 1)39¢y(2) with (y(z) a polynomial of degree 386 in 2. Applying
Sturm’s theorem, we can assert that (p(z) # 0 for all z € (1 — %5/73, 0). Hence

Wilmi](z,z) #0forall 1 — V72 < 2 <0<z <1.
The resultant with respect to « between ¢(z, z) and £(z, 2) is

R(z) = 513567385819545627 (2 — 523 +102% — 102 4 5)7(z — 1)?L.

It is easy to check that R(z) # 0 for all z € (1 — 2v/72,0). Thus, W[m1, mo)(z, z)
and W[m1, mo, m3)(z, z) are well defined for 1 —1V/72 <2< 0<z < 1.

The resultant with respect to x between ¢(z, z) and o1 (z, 2) is 557256278016 z* —
523 + 1022 — 102 + 5)%(z — 1)%4(;(2) with ¢;(2) a polynomial of degree 756 in 2.
Applying Sturm’s theorem, we obtain that ¢;(z) = 0 has a root z* on (1— % V72,0),
where

2" ~ —0.0566261441438041451626293538974365468929151313629
7305422922277039097954332795357548772879565736549666.

Substituting z = z* into ¢g(z, z) = 0, we get g(z*,2*) = 0, where

x* ~ 0.06991788767359290989555335841335720199584576104974
179314378944664647772053534775414886366796445399978.

But substituting x = 2*, z = z* into W[my, ms](z, z), we obtain

Wma, me](z*, 2") = 4.977931511645031242995757183291304776358458262240122
962780914455864450384677265249171924291484023951 x 102,

Hence W{my,mo](z,2) #0forall 1 — 1972 <z<0<z <1
The resultant with respect to = between ¢(z, z) and oa(z, 2) is

1971117274719741650707244872321990656 (2* — 52° +1022 — 102 +5)% (2 — 1)1%4(a(2)

with (2(z) a polynomial of degree 1092 in z. Applying Sturm’s theorem, we can
assert that (2(2) # 0 for all z € (1 — £v/72,0). Hence Wmy, mo, ms3](x,z) # 0 for
all 1 - VT2 <z<0<z <1, O

Lemma 3.2. For h € (—3—56,0), each of the following function sequences is a T-
system with accuracy one:

(1) {71(h), Ja(h), Jo(h)}; (i) {To(h), Ta(h), Tu(R)}; (iii) {To(h), Ts(h), T2(h)}-

Proof. Without loss of generality, we only prove (i). The others can be shown in
a similar way. Note that %yz + A(x) =1 along the oval v, with 0 <[ < 3—56, then for
1 =0,1,2,3,4, by Lemma 2.3, we have

30 = 5 P o) (v + Ao
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- f i H(58

l "

/
where g;(x) is defined by (3.3) and h;(z) = 1g;(x) + %(%{2)@)) . Define

Ji() = ¢ hi(z)y’dr,i=0,1,2,3,4.
M
We need to prove that {J;(I), Ja2(1), Jo(l)} is a T-system with accuracy one on
(0,2). Fori=0,1,2,3,4, let
_ hi(z)  ha(z(2))
= H ) T AG)

Then we get 1;(z, 2) = n2(x, 2)ni(x, z), i =0,1,2,3,4, where

xr—z
T 2099520(z — 1)15(z — 1)15 (24 — 523 + 1022 — 10z + 5)7 (24 — 523 + 1022 — 10z + 5)7
and n;(z, z) are rational functions of (z,z). For ¢ = 1,2, 3,4, let

772(17'3)

on;  On; _ Oci | Oc;
ci(z,2) = or 02 0, di(z2)= oz " o2 ©,
where O is defined by (3.2). Then
n1 N2 Ng 3
84(x — 2)
Wini,na,nol(z,2) = ¢ ¢z co| = 5((1*,2)3 T(z, 2),

dy dy dy

where z = z(x) satisfies ¢(z, z) = 0, £(z, 2) is defined as (3.4), and 7(z, z) is a poly-
nomial in (z, z). By Lemma 3.1, we obtain that W[n;](z, z) # 0, W[ny, na|(z, 2) #
0, and Wny,ne2|(x, z) and Winy, na, nol(x, z) are well defined.

Now we assert that Wni,ns, nol(z,z) has only one zero for 1 — $v/72 < z <
0 < z < 1. In fact, the resultant with respect to « between ¢(z, z) and 7(z, z) is

660123187103394274955004739584 (2" — 523 + 1022 — 2z + 5)'8(z — 1)M%(2)

with p(z) a polynomial of degree 1528 in z. Applying Sturm’s theorem, we can get
that p(z) = 0 has only one root 2z} on (1 — $v/72,0), where
2] ~ —0.172496110743238959188185788130729469073712042401
8317766718528107309383339901918800259628714533100000.

Substituting z = 2} into ¢(x, z) = 0, we get g(z7, z7) = 0, where

x] ~ 0.58817242331132175244900691015066764547638901392688
22395545058507080769650831951383791271107371609875.
Substituting x = x7, z = 27 into Winy, na, nol(x, ) gives Wny, na, nol(z7, 27) = 0.
O

Using the similar arguments as in the proof of Lemma 3.1, we get the following
lemma.
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Lemma 3.3. {Jo(h), J1(h)}, {Jo(h), J2(h)} and {To(h), T3(h)} are ECT-systems
for h e (— 36,0)

Lemma 3.4. For 0 < —h < 1, Jx(h), k= 0,1,2,3, have the following asymptotic
expansions

Ji(h) §+§1 (=h) +O((=h)1),
27‘(5 9\@\/7? ol — % . %
o) =5 Ty qinTry * V22 +O(),

B v/ 648 f 6v/2 3
Js(h) = SU()T(Z)sin(2r) 3 ri(=h)

where 1 > 0 and ro < 0 are constants and T'(+) is the Gamma function.
Proof. Noting that

gy = 2, (3.5)

where
I;(h) :]{ aFyde, i=0,1,2,3.
I'n

We first calculate asymptotic expansions of I;(h) (i = 0,1,2,3) for 0 < —h < 1.
From the reference [12], we have

I(h) :(Jéolo(h) + a1y (h) + Oéglz(h) + Oégfg(h)
=c1 + co(—h) + eshIn(—h) + cah + c5(=h) T + ¢6(—h) T + O((~h)7),

where
o 15¢/6v20 (3T () sin( )a0+5 432720 (3T (&) sin( 7 )a1+
11f 26/7
3v2 97 V/9v2y/m
(%) 1 as,
10 2380(2)I'(55) sin(£m)
421y V2 4/2ry 24V/2

2= = T3 Q0 BT 5, 6= T (g, G = r1a3;

and ¢4 can be computed to be

2N/ 92/ oy 4 7/ 648V2\/7
50(5)T (L) sin(Ln) 50(2)T () sin(2n) s

if co = 0 and c3 = 0, where r; > 0 and ro < 0 are constants. The conclusion follows
from (3.5). O

In order to get the asymptotic expansions of 7;(h) (i = 0,1,2,3) for 0 < h+2 <
1, we consider the following system

=y, y=2a>—2%+elap+ oz + az®+ azz®)y. (3.6)
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Lemma 3.5. For( < h+3—56 < 1, Ji(h) (i =0,1,2,3) have the following asymptotic
eTpansions

Jolh) = 22? 157155/577(11 %) %fﬂh %)Mw((m%)?’),
Juh) = ?g +%%;(h+a9+lzggr(h+§9'++O«h+§ﬁﬂ’
Ja(h) = 2? +%%§( +3&+3§§ﬁ;(h+§Q‘PH%( ;f’
Ja(h) = 2;: +%§;( +§? ﬂﬁ%g( +3§ ++O<( z;f)

Proof. We move the center C(1,0) into the origin by letting z = u + 1, y = v/5v
and t = %T, then system (3.6) becomes

du
bkl
dr ’
d 1 8 28 56
% =—u— gus - 3u7 — guG - gu‘:’ — 14u* — 1143 — 5u? (3.7)
1
—|—e—(a0—|—a1(u+1)+a2(u+1)2+a3(u—|—1)3)v.
V5
For € = 0, the corresponding Hamiltonian of (3.7) is
L Hee) = L ety s Lo Lyt B M L 5
Iy : H(u,v)72(u —|—v)—|—45u +5u +5 T+ =2 U 6+ 5 + 2 +3u =h,

where h = $(h + %), 0 < h < 3. Let u = rcosf, v = rsinf. Then I'; can be
transformed into for 0 < h < 1

10 28 . 56 8 2 2
r\/l + 37 cos3 0 + 5 7“2 cos? +€r5 cos® 6 + 1—5r4 cosb 6 + gr5 cos” 0 + 57’6 cos8 0 + £r7 cos? 6
—V2h =0,

because 0 < iL7<< land 0 < r < 1.
Let p = V2h and

F(r,p) = —p+

0 11 28 56 ) 8 2 2
r\/l + ?rcosg' 6+ ?7‘2 cost 0 + ?ra cos® 0 + BT4 cosb 0 + 57‘5 cosT 0 + gr° cos8 0 + ET7 cos? 6.

Applying the Implicit Theorem to F(r, p) at (r,p) = (0,0), we obtain that there
exist a smooth function r = ¢(p) and a small positive number 4, 0 < § < 1 such
that F(¢p(p),p) = 0 as 0 < p < §. It can be checked that ¢(p) has the following
asymptotic expansion

11 2
#(p) :p—gcos?’0p2+( - 08 16+ 185 (:0869)p3
14 1
—1—(—?0059—1—% 70—2—20(30899>p4 (3.8)
B 5y, OOTT 5, 1925 i, 48125 ) . .
+( 15 ¢ 0+ o5 O 0 g oo 0+ 516 €% 0)p°+ O(p°).



442 J. Yang

Let us compute Abelian integrals I(h) in the coordinate (r,6), where

I(h) = (ao+a1(u+1)+a2(u+1)2+a3(u+1)3>vdu.

1
From (3.8), we have

\f?{ a0 + a1(u 1)+a2(u+1)2+a3(u+1)3)vdu

:% // ao+a1(u+1)+a2(u+1)2+a3(u+1)3)dudv (3.9)

intI'y

(p)
:%/ d0/ (ao+a1(7‘cost9+1)+a2(rcose+1)2+a3(rcos0+1)3)rd1«_
0

Note that h = %pz. With the help of symbolic computation in (3.9), we obtain
the asymptotic expansion of I(h) as h — 0

I(l) = c1h + c2h® + e3h® + O(h*), (3.10)
where
2 5
c1 T\[ﬂ'(ao +a1+as+az), e = %7‘((430&0 + 1511 + 9las + 7Tas),
NG
c3 *mﬁ(170401a0 + 30731 + 335292 + 869050r3).

Since h = %h + 3—16 and I(h) = aglo(h) + arI1(h) + aslz(h) + aszlz(h), we get the
conclusion from (3.5). O

Since Jy(h) is the period of ovals I'y, Jo(h) # 0 for h € (—,0). Set
Ji(h) .
Py(h) = Ci=1,2,3. 311
()= T8, i )
Lemma 3.6. Fori=2,3, P;(h) are monotonic on (—%70)
Proof. By direct calculation, we obtain
2(h)\ _ J5(h)Jo(h) — Tg(h)Ta2(h)
Py (h
fo0 = i (F) = T3 h) ’
/ 3(h)\ _ J5(h)Jo(h) — T5(h)Ts(h)
Py(h .
= i (T = T3 )
From Lemmas 3.4 and 3.5, we have
5 5
P2(*%+) =1, P3(*%+) =1
Py(0—) = 0, P3(0—) =0,
2; 5 9 3, 5 12 (3.12)
PQ(—%‘F) =5 P3(_%+) = 5
P0-) = 00, P}(0-) = oo
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Now we assert that, for i = 2,3, P/(h) don’t have isolated zeros on (—=,0). By
reductio ad absurdum. We assume that P/(h) (i = 2,3) have at least one zero on
(—=,0). By (3.12) P/(h) (i = 2,3) have even isolated zeros on (—=,0). Noting
that aoJo + o J; = Jo (ao + aiPi(h)) (1 = 2,3). Therefore, there exist values of ag
and «; such that agJp + o J; have at least two zeros on (—?;5—6, 0), which contradicts
that {Jo(h), Ji(h)} (i = 2,3) are ECT-systems proved in Lemma 3.3. Therefore,

P;(h) (i = 2,3) are monotonic on (—z5,0). O
Theorem 3.1. For (ag,ai,as,a3) € R with az = 0, J(h) has two zeros on
(—35:0)-
Proof. For az =0, we have
J(h) =aJo(h) + a1 J1(h) + aaJa(h)
=Jo(h) (a0 + a1 Pi(h) + azPa(h)).

It is easy to obtain that Pj(h) < 0 for h € (—35,0) by (3.12). Let P = P,(h), we

get h = Py ' (P), and then we define the curve
- 5
1 = {(P, PO)(W)|PA(P) = Pi(Py ), h € (—55,0)
So the number of zeros of J(h) is the number of intersection points of the straight
line
LZO&0+042P+041P1 =0
and the curve ¥;. By direct calculation, we have

d*Py _ P{'(h)P3(h) — Py (h) Pi(h)

ary P (h)
It follows from Lemmas 3.4 and 3.5 that ‘fjf; (0—) = —oc0 and
2
“h (*3+) = 147012437r2 - 15506491\/57r ~ —5.23580712800000026 < 0
dP? ' 36"~ 24300000 9720000 '

Hence, ¥ is strictly concave for 0 < h + ?756 < 1land 0 < —h <« 1. We assert that
1 is globally concave for h € (—2,0). In fact, if ¥ has at least one inflection
point, then it will have even number of inflection points and this number will be at
least 2. Therefore, there exists (og, @i, a3) such that L and ¥; with (o, a1, a2) =
(o, af,a3) have at least 4 intersection points (counting the multiplicity), which
yields that afJo(h) + ajJi(h) + a3J2(h) has at least 4 zeros in (— =%, 0) (counting
the multiplicity). But this contradicts the fact that {Ji(h), J2(h), Jo(h)} is an
ECT-system with accuracy 1 proved in Lemma 3.2. Therefore, 3; has no inflection
point and is globally concave on (—3—56, 0), which yields that there exists (ag, af, a3)
such that L and ¥; have exactly 2 intersection points (counting the multiplicity).

O

Theorem 3.2. For (ag,ai,as,a3) € R* with ay = 0, J(h) has two zeros on
(73%57 )
Proof. For ay = 0, we have
J(h) =aoJo(h) + a1J1(h) + azJs(h)
:jo(h) (O{O + qul(h) + Oz3P3(h)).
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It is easy to get that P§(h) < 0 for h € (—Z,0) from (3.12). Let P = Ps(h), we get

h = P;*(P), and then we define the curve
_ 5
%o = {(P, P))(W)|PA(P) = Pi(Py ), h € (—55,0)}

So the number of zeros of J(h) is the number of intersection points of the straight
line
LZCVO+043P+041P1 =0

and the curve ¥3. From Lemmas 3.4 and 3.5 that ‘f;lf; (0—) = —oo and
3

d*P;, 5 _ 13522747 , 15506491+/5

T A ~ —4.28584575899999986 < 0.
2Pz 36" = 32100000" ~ 12060000 "

Using the similar arguments as in the proof of Theorem 3.1, the conclusion can be
concluded. O

Theorem 3.3. For (ag,a1,az,a3) € R* with aq = 0, J(h) has two zeros on
(_%70)'

Proof. For a; = 0, we have

J(h) =aoTo(h) + asJ2(h) + asJs(h)
:jo(h) (Oto + QQPQ(h) + agpg(h)).

It is easy to obtain that Pj(h) < 0 for h € (—55,0) from (3.12). Let P = Py(h), we

get h = Py ' (P), and then we define the curve

Sy = {(P. PYWIP(P) = Po(Py 1), b€ (—,0))

So the number of zeros of J(h) is the number of intersection points of the straight
line
LZO&0+C¥2P+043P3 :O

and the curve ¥3. From Lemmas 3.4 and 3.5 that ‘f;IfS (0—) = 400 and
2

d?Ps . 5 2830951 , 1192807V/5

—QZ5 l—5=t) = ~ 0.28774674 .
dP22( 36+) m ~ 0.287746749999999996 > 0

= 24300000 9720000

Hence, X3 has strictly convex for 0 < h + 3575 < 1land 0 < —h < 1. We assert
that X3 is globally convex for h € (—35—6, ). In fact, if 33 has at least one inflection
point, then it will have even number of inflection points and this number will be at
least 2. Therefore, there exists (ag, a5, a3) such that L and X3 with (g, a2, a3) =
(o, ab, o) have at least 4 intersection points (counting the multiplicity), which
yields that afJo(h) + a3J2(h) + a3J3(h) has at least 4 zeros in (—=,0) (counting
the multiplicity). But this contradicts Lemma 3.2. Therefore, X3 has no inflection
point and is globally convex on (—=,0), which yields that there exists (of, a3, a3)
such that L and X3 have exactly 2 intersection points (counting the multiplicity).
That is J(h) has two zeros on (—55,0). O

Remark 3.1. Theorem 1.1 follows from Remark 2.1, Lemma 3.1 and Theorems
3.1-3.3.
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