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New Proofs of Monotonicity of Period Function
for Cubic Elliptic Hamiltonian∗
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Abstract In [1] S.-N. Chow and J. A. Sanders proved that the period function
is monotone for elliptic Hamiltonian of degree 3. In this paper we significantly
simplify their proof, and give a new way to prove this fact, which may be used
in other problems.
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1. Introduction

Consider the cubic elliptic Hamiltonian function H(x, y) = y2

2 + P3(x), there P3 is
a polynomial of degree 3, the corresponding quadratic Hamiltonian system is

dx

dt
= y,

dy

dt
= −P ′3(x).

Suppose that the origin is a non-degenerate center, so we can write P3(x) = 1
2x

2 −
a
3x

3, where a 6= 0. If we write the closed orbit, surrounding the origin, by

γh ⊂ H−1(h) = {(x, y)|H(x, y) = h},

then, from the first equation of the system, we can write the period function by

T (h) =

∮
γh

1

y
dx, (1.1)

where y = y(x, h) is defined by H(x, y) = h. Note that by the scaling (x, y) 7→
(xa ,

y
a ), the period function does not change, hence without loss of generality we can

suppose that γh is defined by

H(x, y) =
y2

2
+A(x) = h, A(x) =

x2

2
− x3

3
, (1.2)

and the corresponding Hamiltonian system is

dx
dt = y,

dy
dt = −x+ x2 = x(x− 1).

(1.3)
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The continuous family of ovals is {γh ⊂ H−1(h), 0 < h < 1
6}, γh shrinks to the

center at (x, y) = (0, 0) when h → 0+, and γh expand to the homoclinic loop Γ

related to the saddle at (x, y) = (1, 0) when h→ 1
6

−
.

Theorem 1.1 (Theorem 3.8 of [1]). The period function T (h) is monotone for
0 < h < 1

6 .

For more information about the study of period functions, see Section 2.4 of [2],
for example.

2. A simple proof of Theorem 1.1

We first give a very simple proof of Theorem 1.1 by using Picard-Fuchs equation.
Let

Ik(h) =

∮
γh

xky dx, k = 0, 1, 2, · · · , (2.1)

then by using yyh = 1 and (2.1) we have

I ′k(h) =

∮
γh

xk

y
dx, k = 0, 1, 2, · · · . (2.2)

Lemma 2.1. The following equalities hold:

5I0 = 6hI ′0 − I ′1,

7I1 = I0 + (6h− 1)I ′1,
(2.3)

where Ik = Ik(h), I ′k = I ′k(h).

Proof. From (2.1), (1.2) and (2.2) we have

Ik =

∮
γh

xky2

y
dx =

∮
γh

xk(2h− x2 + 2
3x

3)

y
dx = 2hI ′k − I ′k+2 +

2

3
I ′k+3.

On the other hand, by using integration by parts and the fact that dy = x2−x
y dx

we have

Ik =

∮
γh

xkydx = − 1

k + 1

∮
γh

xk+1dy =
1

k + 1

∮
γh

xk+1(x− x2)

y
dx =

I ′k+2 − I ′k+3

k + 1
.

(2.4)
Eliminating I ′k+3 from the above two equalities, we obtain

(2k + 5)Ik = 6hI ′k − I ′k+2.

Taking k = 0, 1, we find

5I0 = 6hI ′0 − I ′2,

7I1 = 6hI ′1 − I ′3.
(2.5)

By integrating (x − x2)y dx = y2 dy along γh we get I1(h) ≡ I2(h), hence the first
equation of (2.5) gives the first equality of (2.3). Taking k = 0 in (2.4) we have
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I0 = I ′2−I ′3 = I ′1−I ′3, eliminating I ′3 from this equation and the second one of (2.5)
we get the second equality of (2.3).

Now it is ready to prove Theorem 1.1.
Proof. Making one more derivative on the two equations of (2.3), we have

6hI ′′0 − I ′′1 = −I ′0,

(1− 6h)I ′′1 = I ′0 − I ′1.
(2.6)

Multiplying the first equation of (2.6) by (1 − 6h), then add it to the second one,
and finally using the first equation of (2.3), we get

6h(1− 6h)I ′′0 = 6hI ′0 − I ′1 = 5I0.

Hence, by using (1.1) and (2.2) (k = 0) we obtain

T ′(h) = I ′′0 (h) =
5

36h( 1
6 − h)

I0(h) > 0, 0 < h <
1

6
.

Note that the orientation of γh is clockwise, I0(h) is the area surrounded by γh,
hence I0(h) > 0 for 0 < h < 1

6 .

3. A new way of the proof of Theorem 1.1

In this section we need the following two lemmas:

Lemma 3.1 (A simplified form of Lemma 4.1 of [3]). Let γh be an oval inside the

level curve {y
2

2 +A(x) = h}, and we consider a function F such that F
A′ is analytic

at x = 0. Then, for any positive integer k,∮
γh

F (x)yk−2dx =

∮
γh

G(x)ykdx,

where G = 1
k

(
F
A′

)′
(x).

Lemma 3.2 (A simplified form of Theorem 1 of [4]). Let γh be an oval inside

the level curve {y
2

2 + A(x) = h} for h ∈ (c, d), where A(x) is analytic, satisfying
A′(x)x > 0 (or < 0) for x ∈ (α, 0) ∪ (0, β), where A(α) = A(β). Hence for each γh
a unique function x̃ = x̃(x) can be defined by A(x̃) = A(x) for α < x < 0 < x̃ < β.
Condider a ratio of two Abelian integrals

P (h) =

∮
γh
f(x)y dx∮
γh
y dx

, (3.1)

where f is differentiable. Define a function

ξ(x) =
f(x)A′(x̃)− f(x̃)A′(x)

A′(x̃)−A′(x)

∣∣∣∣
x̃=x̃(x)

, (3.2)

where x ∈ (α, 0). Then ξ′(x) < 0 (> 0) for x ∈ (α, 0) implies P ′(h) > 0 (< 0) for
h ∈ (c, d).
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As we mentioned in Section 1 that the continuous family {γh ⊂ H−1(h), 0 <
h < 1

6} is bounded by the center (0, 0) and the homoclinic loop Γ related to the
saddle (1, 0). Since H(x, 0)− 1

6 = − 1
6 (x− 1)2(2x+ 1), for this family we have

− 1

2
< x < 0 < x̃ < 1, (3.3)

where x̃ = x̃(x) is the unique function satisfying (3.3) and

H(x, y) = H(x̃, y), i. e. A(x) = A(x̃). (3.4)

By (1.1) and (1.2) we have for h > 0

T (h) =

∮
γh

dx

y
=

1

h

∮
γh

(A(x) +
y2

2
)
dx

y
,

hence

hT (h) =
1

2

∮
γh

y dx+

∮
γh

A(x)

y
dx.

By Lemma 3.1 (k = 1)∮
γh

A(x)

y
dx =

∮
γh

f(x)ydx, f(x) =

(
A(x)

A′(x)

)′
=

2x2 − 4x+ 3

6(1− x)2
.

We obtain

hT (h) =

∮
γh

(
1

2
+ f(x)

)
y dx =

1

2
I0(h) + I1(h) = I0(h)

(
1

2
+ P (h)

)
, (3.5)

where I0(h) =
∮
γh
y dx, I1(h) =

∮
γh
f(x)y dx, P (h) = I1(h)

I0(h)
.

Lemma 3.3. Let x+ x̃ = u, xx̃ = v, where x̃ = x̃(x) is defined above. Then
(1) Along any γh for h ∈ (0, 16 ) we have v = v(u) = u(u− 3

2 );
(2) u ∈ (0, 12 ) and ux < 0 for x ∈ (− 1

2 , 0).

Proof. The statement (1) can be easily obtained by using A(x) = A(x̃) and
x < 0 < x̃. Note v = xx̃ < 0 for all possible x. When x ∼ 0 we have u ∼ 0, hence
from statement (1) we have u > 0 for x ∼ 0, this implies 0 < u < 3

2 for all possible
x. Note that A′(x̃) = x̃− (x̃)2 > 0, and

ux = 1 + x̃′(x) = 1 +
A′(x)

A′(x̃)
=
u− u2 + 2v

A′(x̃)
=
u(u− 2)

A′(x̃)
< 0.

This fact and (3.3) improve the estimation of u ∈ (0, 32 ) to u ∈ (0, 12 ).

Lemma 3.4. The following statements hold:
(1) limh→0+ P (h) = 1

2 ;
(2) P ′(h) > 0 for h ∈ (0, 16 ).

Proof. The statement (1) can be easily obtained by using the mean-value theorem
for integrations and the fact that f(0) = 1

2 . To prove Statement (2) we use Lemma
3.2. By using formula (3.2) and Lemma 3.3 (1) we can change {x, x̃} to {u, v}, then
use v = v(u). Computations give

η(u) = ξ(x(u)) =
4u4 − 16u3 + 19u2 − 9u+ 3

3(u− 1)(u− 2)(2u− 1)2
,
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hence

η′(u) =
8u4 − 24u3 + 12u2 + 20u− 15

3(u− 1)2(u− 2)2(2u− 1)3
> 0, u ∈

(
0,

1

2

)
.

By this estimation and Lemma 3.3 (2) we have ξ′(x) = η′(u)ux < 0, hence by
Lemma 3.2 we finally obtain P ′(h) > 0 for h ∈ (0, 16 ).

Now it is ready to prove Theorem 1.1.
Proof. Making derivative on both sides of (3.5) and using I ′0(h) = T (h) we have

hT ′(h) = T (h)

(
P (h)− 1

2

)
+ I0(h)P ′(h).

From this equality and using Lemma 3.4 we immediately get T ′(h) > 0 for h ∈ (0, 16 ),
since T (h) > 0 and I0(h) > 0.
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