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Trajectory Segmentation and Symbolic
Representation of Dynamics of Delayed Recurrent

Inhibitory Neural Loops*

Jianfu Ma1 and Jianhong Wu1,†

Abstract We develop a general symbolic dynamics framework to examine the
dynamics of an analogue of the integrate-and-fire neuron model of recurrent
inhibitory loops with delayed feedback, which incorporates the firing procedure
and absolute refractoriness. We first show that the interaction of the delay, the
inhibitory feedback and the absolute refractoriness can generate three basic
types of oscillations, and these oscillations can be pinned together to form
interesting coexisting periodic patterns in the case of short feedback duration.
We then develop a natural symbolic dynamics formulation for the segmentation
of a typical trajectory in terms of the basic oscillatory patterns, and use this
to derive general principles that determine whether a periodic pattern can and
should occur.
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tern formation, recurrent inhibitory loops.
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1. Introduction

We propose to develop a theoretical framework that allows us to reformulate the
delayed feedback as an induced action on a segment of symbols, so we can develop
a systematic approach to look at the co-existence of multiple stable periodic os-
cillations in network of neurons with delayed feedback. For this purpose, we start
with a recurrent inhibitory loop that consists of an excitatory neuron E and an
inhibitory neuron I, where neuron E gives off collateral branches and excites the
inhibitory neuron I, which in turn inhibits the firing of neuron E, in a delay time.
The incorporation of time delays is necessary, as these are intrinsic properties of
both biological and artificial loops due to axonal conduction times, distances of
interneurons, the finite switching speeds of amplifiers and the passive propagation
of potentials down the dendrites of neurons [6, 7, 21,22,24,28,29].

The simple recurrent inhibitory loop and its represented coupled network of
neuron populations have been used to study how the interaction of the excitatory
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and the inhibitory neurons, the connection strength and the time delay affects the
network’s computational performance [1, 2, 15, 26, 27]. In particular, the studies
[9, 10, 18] focus on the dynamical behaviors of the excitatory neuron in the loops
and hence their model equation takes the form of a scalar delay differential equation
that can also arise in modeling a single neuron with delayed self-feedback. The
model in [9, 10, 18] takes a quite general form involving membrane potential of the
excitatory neuron, ionic currents, an applied current, the effects of the inhibitory
feedback on the membrane potential of the excitatory neuron, and the probability
that a certain channel is open. In these models, the delay can be large in comparison
with the intrinsic spiking period when we consider the recurrent inhibitory loop as a
simplification of a large polysynaptic loop or neuron population network. In such a
network, many factors can contribute to the delay and consequently the propagation
time through the network may be considerably longer than would be estimated from
the conduction velocities.

Foss and Milton [9] used the well-known Hodgkin-Huxley model to study recur-
rent inhibitory loops and found multiple coexisting attracting periodic solutions by
computer simulations. Unfortunately, the intrinsic complexity of the conductance-
based neuron models such as the Hodgkin-Huxley model makes it difficult for
a detailed qualitative and theoretical analysis and hence reduced neuron mod-
els such as integrate-and-fire models become desirable from a theoretical point of
view. On the other hand, Chow et. al. [3] showed that under some assumptions,
the full conductance-based dynamics can be approximated by the integrate-and-
fire neuron model Cv′(t̃) = −gL(v − vL) + Ĩ0 − F (t̃, τ̃), with the reset condition:
v(t̃+) = vr when v(t̃−) = ϑ̃. Such a system can be further normalized and sim-
plified as V ′(t) = −V + I0 − F (t, τ) by re-scaling t = t̃/τm, τ = τ̃ /τm and letting
V = (v − vr)/(ϑ̃ − vr) with τm = C/gL. Under this normalization procedure, the
V (t) is reset to Vr = 0 whenever it reaches the threshold potential ϑ = 1.

The reset condition has so far been considered as an impulse: the potential is
reset immediately after it reaches the threshold. In real biological neurons, however,
the reset process involves a firing procedure followed by the absolute refractory
period. It turns out that the firing procedure and the absolute refractoriness have
very important impact on the timing of the inhibitory feedback, and this impact
is particularly significant if the feedback is delayed. Indeed, numerical results [18]
showed that an integrate-and-fire model incorporating the firing procedure and
absolute refractoriness is capable of generating a large number of asymptotically
stable periodic solutions with predictable patterns of oscillations, in agreement with
some earlier studies in [9, 13,23,25].

In this series of papers, we hope to develop a systematical approach to rigorously
analyze the mechanism for the observed multistability in recurrent inhibitory loops.
In particular, we shall show how the interaction of the time lag, the inhibition,
the firing procedure and the absolute refractory period can generate some basic
and analytically trackable types of oscillations, and how these basic oscillations
can then be pinned together to form a large class of periodic patterns. We shall
also illustrate by numerical simulations that these periodic patterns can be easily
observed. In subsequent work, we will link the periodic patterns exhibited in our
simple integrate-and-fire model to a variety of rhythms displayed in the nervous
system.

The rest of this paper is organized as follows: we first formulate the integrate-
and-fire model of recurrent inhibitory loops by incorporating the firing procedure
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and the absolute refractoriness in Section 2. We identify three possible scenarios
by comparing the feedback duration with the firing and the absolute refractory
period when the feedback duration is relatively short. We show that the inhibition
delivered by delayed feedback eventually stabilizes a trajectory composed of the
aforementioned basic oscillations to a stable periodic pattern and different possible
combinations of these basic oscillations within a time interval of length τ then lead
to the coexistence of multiple stable periodic patterns. We outline the symbolic
dynamics approach in Section 3, present some general results in Section 4, and
illustrate these with a case study in Section 5.

2. Spiking neuron model

We consider the following normalized integrate-and-fire model for the membrane
potential of the excitatory neuron in the recurrent inhibitory loop depicted in Figure
1:

Figure 1. A schematic illustration of a recurrent integrate-and-fire neuron loop that consists of an
excitatory neuron E and an inhibitory neuron I, where neuron E excites the neuron I instanttly, which
in turns delivers an inhibitory postsynaptic potential (IPSP) to the neuron E with a delay τ .

V ′(t) = −V (t)− F (t) + I0, (2.1)

where I0 is the external input (assumed to be a constant) and F (t) describes the
delay feedback, which will be described in detail later.

The dynamical behaviors of the model solutions are subject to a resetting mech-
anism: when the membrane potential V (t) reaches the threshold ϑ at a firing time
tf , the membrane potential increases from ϑ to a constant c > ϑ (at tf + s1) and
then decays to the so-called reset potential Vr (at tf+TF ). We normalize the system
so that the rest potential Vr = 0.

For simplicity, we shall use the following piecewise linear function Vf to describe
this firing procedure, though much of the analysis and simulation in this paper
remains true if this function is replaced by any one with the aforementioned features.
So,

Vf (t) =

ϑ+ c−ϑ
s1

(t− tf ) if t ∈ [tf , tf + s1);

Vr + c−Vr

TF−s1 (tf + TF − t) if t ∈ [tf + s1, tf + TF ],
(2.2)
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where TF is the width of spike and the firing time tf is defined by the threshold
condition:

V (tf ) = ϑ and V (tf − ε) < ϑ

for sufficiently small ε > 0.
The firing is followed by an absolute refractory period, where the membrane po-

tential follows a particular pattern independent of the external input and feedback.
We assume, based on the work [12], that this particular pattern is given by

V (t) = E[1− e−(t−tf−TF )] for t ∈ (tf + TF , tf + TFR], (2.3)

with E being a constant. We define by TRe := TFR−TF the duration of the absolute
refractoriness and TFR as the sum of the width of spike and the duration of the
absolute refractory period. The membrane potential at time tf + TFR is called the
after-potential and is denoted by VA. It is obvious that

VA = E(1− e−TRe).

The inhibitory feedback is given by

F (t) =

a if t ∈ [tτf + τ, tτf + τ + TFD];

0 otherwise,
(2.4)

where TFD is the duration of the inhibitory feedback and tτf is the firing time of
the neuron prior to the time t− τ . More precisely, τ τf = sup{s; s ≤ t− τ, V (s) = ϑ
and V (s − ε) < ϑ for sufficiently small ε > 0}. Therefore, if TFD coincides the
amount of time that the membrane potential is above the threshold ϑ during a
spike (from Q to S in Figure 2), then F (t) = G(V (t − τ)) where G(x) is the step
function with G(x) = a if x ≥ ϑ and G(x) = 0 otherwise. In this case, equation
(2.1) can be written in the standard form of a scalar delay differential equation
V ′(t) = −V (t)−G((V (t− τ)) + I0.

Figure 2. In the absence of recurrent inhibition (F ≡ 0), an intrinsic spiking period T is the period
from Q to W ; TF from Q to U ; TRe from U to V ; TFR from Q to V ; TAϑ from V to W .

In what follows, we always assume that the stimulus I0 is sufficiently large so
that

I0 > ϑ.
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Under this assumption, in the absence of recurrent inhibition (F ≡ 0), the action
potential described by (2.1) subject to the firing procedure and absolute refrac-
toriness is a periodic function. We call the period of such a periodic function the
intrinsic spiking period of the excitatory neuron. This period, denoted by T , is the
duration between two consecutive firing times of the spike train, and is divided into
two parts: TFR and TAϑ (from Q to V and from V to W in Figure 2, respectively),
TAϑ is the time that it takes the membrane potential to increase from the after-
potential VA to the threshold ϑ (from time tf + TFR to the next firing time), given
by

TAϑ = log

[
I0 − VA
I0 − ϑ

]
. (2.5)

To consider the impact of the recurrent inhibition on the dynamical behaviors
of the excitatory neuron, we note that each time the excitatory neuron fires a spike,
an inhibitory feedback is delivered but with a time lag τ . In what follows, we always
assume that

a > I0

so that an inhibitory feedback can cause the membrane potential of the excitatory
neuron to decline. Note that, however, if the feedback is delivered during the firing
period or the absolute refractoriness of the excitatory neuron, the feedback has no
effect on the membrane potential.

3. Building blocks and connection to symbolic dy-
namics

To describe three basic types of oscillations (V , Wd, Wu) that give the building
blocks of periodic patterns, we start from a firing time tf of the neuron and consider
the situation when a feedback is delivered at time tf + s2. After a firing procedure
and the absolute refractoriness, at least three scenarios can occur:

(i) Ineffective feedback, s2 ∈ (tf , tf + TFR) and TFR − s2 > TFD: In this ,
case the feedback has arrived too early and ended too soon, and thus has no
impact on the membrane potential. The neuron generates a natural spike: the
membrane potential arises from VA to ϑ (via equation (2.1) with F (t) = 0).
This oscillation from the firing time tf to the next firing time is illustrated
by the graph from A to E in Figure 3. We call this type of oscillation a
V -oscillation.

(ii) Partial feedback, s2 ∈ (tf , tf + TFR) and TFR − s2 < TFD: In this case
the feedback has arrived too early and but will not end before the absolute
refractoriness period, the membrane potential goes down first (via equation
(2.1) with F (t) = a), then goes up (via equation (2.1) with F (t) = 0) until
reaching the firing threshold ϑ. This is shown in the graph from I to L in
Figure 3, and we call this type of oscillation a Wd-oscillation.

(iii) Full feedback, s2 ∈ (tf + TFR, tf + TFR + TAϑ), In this case the feedback
arrived after the absolute refractoriness period and the feedback has its full
effect during the feedback duration, the membrane potential goes up first
(via equation (2.1) with F (t) = 0), then goes down (via equation (2.1) with
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F (t) = a), finally goes up again (via equation (2.1) with F (t) = 0) until
reaching the firing threshold ϑ. This is illustrated by the graph from E to I
in Figure 3, and we call this type of oscillation a Wu-oscillation.
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Figure 3. Three basic types of oscillations generated by the integrate-and-fire model. From A to E is
a V -oscillation; from E to I is a Wu-oscillation; from I to L is a Wd-oscillation.

3.1. Pattern formation from three basic oscillations

Observe that the corresponding solution V (t) for t ≥ 0 for a given initial function
on [−τ, 0] satisfies the following properties:

• If I0 > ϑ, then the sequence of firing times is unbounded. For otherwise,
we have V (t) ≤ ϑ and V ′(t) = −V (t) + I0 for large t, and this leads to a
contradiction since I0 > ϑ.

• The duration between two consecutive firing times is always greater than or
equal to the intrinsic spiking period T .

Therefore, for a given initial function, after a transit time, the excitatory neuron
must fire. We will use r1 to denote the first firing time, we denote the series of firing
times of the excitatory neuron by {r1, r2, r3, ...}, the action potential in the interval
[ri, ri+1] by π̃i, and the duration of π̃i by T̃i (T̃i := ri+1 − ri).

We will denote by tAϑ,i the duration from the time when the inhibition of feed-
back (after ri) wears off to the next firing time. If no confusion arises, we will
eliminate the subindex i and denote this by tAϑ. This duration is depicted by the
time from D to E, from H to I, or from K to L in Figure 3. Let ∆t = tAϑ − TAϑ.
It is obvious that ∆t = 0 for a V -oscillation. Each Wd-oscillation is characterized
by (tdown,∆t) and a Wu-oscillation is characterized by (tup, TFD,∆t). In Figure
3, tdown is the duration between J and K for a Wd-oscillation, while tup is the
duration between F and G for a Wu-oscillation. It is obvious that ∆t > 0 for a
Wd-oscillation. For a Wu-oscillation, if the feedback inhibition brings the membrane
potential below VA, ∆t > 0 and it is the time between the offset of inhibition and
the time when VA is reached again; otherwise, ∆t < 0.

We then define ∆tmax as the maximum value of all possible values ∆t. This
maximum occurs when tdown = TFD for a Wd-oscillation or tup = 0 for a Wu-
oscillation. A specific formulae will be given in (4.5). Note that ∆tmax → 0 as
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TFD → 0. Therefore, TFD < TFR and ∆tmax ≤ TFR − TFD hold simultaneously if
TFD is small.

When TFD < TFR and ∆tmax ≤ TFR−TFD, the duration from the time when a
feedback arrives to the next firing time is always less than or equal to the intrinsic
spiking period T . Therefore, the action potential π̃i with ri ≥ Tf + T must be one
of three oscillations described above. More precisely, we have

Lemma 3.1. If TFD < TFR and ∆tmax ≤ TFR − TFD, then π̃i ∈ {V,Wd,Wu} for
any segment of the action potential π̃i with ri ≥ Tf + T .

Proof. We first note that the distance/duration between two feedbacks is greater
than or equal to T . We want to show that between two feedbacks, the neuron must
fire. In other words, we want to prove that once the first feedback arrives, the
membrane potential will reach the threshold before the next feedback is delivered.
We denote by T ∗ the duration between the time when the first feedback arrives
and the time when the membrane potential reaches the threshold. We claim that
T ∗ ≤ T for all the three oscillations.

This is obvious for an V -oscillation. For a Wd-oscillation, the duration of the
inhibitory feedback is TFD, that is the sum of tdown and the time within the absolute
refractoriness and the firing procedure. The fact that tAϑ = TAϑ + ∆t with ∆t ≤
∆tmax and the condition ∆tmax ≤ TFR − TFD lead to T ∗ = TFD + tAϑ ≤ TAϑ +
TFR = T . Similarly, for a Wu-oscillation, we have T ∗ = TFD + tAϑ ≤ T .

In summary, T ∗ ≤ T for each basic oscillation V,Wd and Wu. Therefore, the
neuron will fire before the next feedback arrives.

3.2. Representation by a sequence of symbols

Then the solution can be expressed as {π̃1, π̃2, ..., π̃n, ...} with π̃i ∈ {Wd,Wu, V } if
ri ≥ Tf + T . Furthermore, when ri ≥ Tf + T , T̃i can be calculated as follows:

T (π̃i) := T̃i =


T if π̃i = V ;

T + tdown + ∆t if π̃i = Wd;

T + tup + TFD + ∆t if π̃i = Wu.

(3.1)

Note that at this stage, tdown, tup and ∆t should all have the subindex i since
theoretically they are supposed to be different for different π̃i. We drop such a
subindex here for simplicity of notation. Later on, we shall show that these numbers
are indeed independent of the subindex.

3.3. Feedback-induced action on symbol segments

We define

σ̃n = (π̃n, π̃n+1, ..., π̃n+Nn−1, π̃n+Nn) such that Nn = min
k

( k∑
i=0

T̃n+i ≥ τ
)

(3.2)

for n = 1, 2, .... The duration of σ̃n is pn := T (σ̃n) =
∑Nn

i=0 T̃n+i. According to the
the above definition of σ̃n, the spike of π̃n may deliver an inhibitory feedback to a
segment of π̃n+Nn

. Therefore, the feedback can be considered as an action of the
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first item π̃n on the last item π̃n+Nn
within σ̃n, and our ultimate goal is to describe

how such an action will eventually stabilize σ̃n to a periodic pattern.
It is therefore natural to consider a general periodic pattern σ = {πi; i ≥ 1}.

Such a pattern is uniquely determined by the initial segment of symbols below:

(π1, π2, ..., πN ), N := min
k

k∑
i=1

T (πi) ≥ τ.

Therefore, in what follows, we write such a pattern as
σ = (π1, π2, ..., πN−1, πN ) where πi ∈ {Wd,Wu, V },

N = mink

(∑k
i=1 T (πi) ≥ τ

)
.

(3.3)

Define a shift operator ϕ : Σ→ Σ with Σ := {σ;σ is a periodic pattern} by

(ϕσ)i := ϕπi =

πi+1 if i ∈ {1, 2, ..., N − 1};

π1 if i = N.

Definition 3.1. Two periodic patterns σ1 and σ2 are said to be equivalent, if there
exists an integer j ∈ {1, ..., N} such that σ2 = ϕjσ1.

3.4. Characterization of feedback-induced actions

For a periodic pattern defined by (3.3), the action of the feedback from π1 on πN
yields 

∑N−1
i=1 T (πi) + TFR ≥ τ + TFD if and only if πN = V ;∑N−1
i=1 T (πi) + TFR + tdown = τ + TFD if and only if πN = Wd;∑N−1
i=1 T (πi) + TFR + tup = τ if and only if πN = Wu.

(3.4)

Analogously, ϕσ, ..., ϕN−1σ give other N−1 similar relationships. As will be shown,
these relationships determine the types of periodic patterns that can be generated
by the recurrent inhibitory loop for a given time delay τ .

An important property of a periodic pattern σ defined by (3.3), which will be
shown in Lemma 4.1, is that within a given periodic pattern σ, all Wd-oscillations
are the same in terms of (tdown,∆t) and all Wu-oscillations are the same in terms
of (tup, TFD,∆t). In view of the above definition of equivalence, therefore, we can
simply describe a periodic pattern in terms of the numbers and orderings of Wd,
Wu and V oscillations as follows:

σ = (n1π1, n2π2, ..., nkπk) or σ = (n1π1n2π2...nkπk) where πi ∈ {Wd,Wu, V }.

For example, (WuWuWuV V ) can be simply written as (3Wu, 2V ) or (3Wu2V ).
Note also that (WuWuWuV V ) and (WuWuV VWu) are equivalent periodic pat-
terns. In what follows, we shall use (3Wu2V ) to denote the equivalence class of
(WuWuWuV V ) under the equivalence defined in Definition 3.1, so that (WuWuV VWu)
also belongs to (3Wu2V ). Note that (WuVWuWuV ) /∈ (3Wu2V ). On the other
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hand, if σ = (1Wu2V 1Wu2V ), the minimum periodic pattern should be σmin =
(1Wu2V ). Hence, we give the definition of the minimum periodic pattern.

Definition 3.2. For a p-periodic pattern σ described by (3.3), we call σmin =
(π1, π2, ..., πÑ−1, πÑ ) the minimum pmin-periodic pattern of σ, if there exists the

maximum integer 1 < k̃ < N such that N = k̃Ñ , p = k̃pmin and σ = k̃σmin :=
(σmin, ..., σmin) (k̃ times).

If there is no such an integer k̃, then σmin = σ. In what follows, we shall use

Ωm,h,j =

{
pmin; σmin = (n1π1, n2π2, ..., nkπk) : m =

∑
πi=Wd

ni,

h =
∑

πi=Wu

ni, j =
∑
πi=V

ni

}
(3.5)

to denote the set of all periodic patterns composed of m Wd-oscillations, h Wu-
oscillations and j V -oscillations with the minimum period pmin. Then the set of all
periodic patterns for a given time delay τ is give by Ωτ = ∪Ωm,h,j . For example,

Ω0,3,2 = {5T + 3tup + 3TFD + 3∆t; (3Wu2V ), (2Wu1V 1Wu1V )}.

Note that, up to the equivalence given in Definition 3.1, (3Wu2V ) and (2Wu1V 1Wu1V )
are the only possible periodic patterns with 3 Wu-oscillations, 2 V -oscillations and
the minimum period 5T + 3tup+ 3TFD + 3∆t, so the notation Ω0,3,2 is a pattern set
specified by all possible 3 Wu-oscillations and 2 V -oscillations arranged in a ring.
Since the system of equations (3.4) is independent of the orders of those oscillations
πi, we conclude that if (3Wu2V ) can be generated, then (2Wu1V 1Wu1V ) can also
be generated by the model with the same set of parameters.

4. Pattern formation and transition

We first recall the notation (tup, TFD,∆t) of a Wu-oscillation. We note that tup
should satisfy 0 < tup < TAϑ and the sign of ∆t depends on the value of tup. In
particular, there exists an important quantity

Tc = log

[
I0 − VA

(I0 − VA − a)eTFD + a

]
> 0 (4.1)

such that

∆t


= 0 if tup = Tc;

> 0 if tup < Tc;

< 0 if tup > Tc.

(4.2)

We shall show that interesting transitions of dynamical behaviors of the recurrent
inhibitory loop occur at certain critical values of the time delay. In order to define
these critical values, we need to introduce two functions: one is a positive and
increasing continuous function f1, given by

f1(∆t) = log

[
I0 − VA − a

(I0 − VA)e∆t − a

]
(4.3)
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which describes the relationship of tdown and ∆t for a Wd-oscillation; and another
is a decreasing continuous function f2, given by

f2(∆t) = log

[
I0 − VA

(I0 − VA)eTFD+∆t − aeTFD + a

]
(4.4)

which describes the relationship of tup and ∆t for a Wu-oscillation. Obviously,
Tc = f2(0). These functions are then used to define four critical values T1, T2, T3

and T4 in (4.10), (4.16), (4.17) and (4.18).
We note that tdown ∈ [0, TFD] and ∆t ≥ 0 for a Wd-oscillation. There are two

extreme cases: tdown = TFD for a Wd-oscillation and tup = 0 for a Wu-oscillation.
The action potentials in these two cases are the same and ∆t reaches its maximum
value, given by

∆tmax = f−1
1 (TFD) = log

[
(I0 − VA − a)e−TFD + a

I0 − VA

]
> 0. (4.5)

On the other hand, for a Wu-oscillation, when tup approaches the value TAϑ, ∆t
approaches its minimum value, given by

∆tmin = f−1
2 (TAϑ) = −TFD + log

[
e−TAϑ +

a(eTFD − 1)

I0 − VA

]
< 0. (4.6)

We shall use these extreme cases to define the minimum value τmin and the
maximum value τmax of the time delay for the existence of certain periodic patterns.

We now fix an integer n ≥ 1 and assume τ/T ∈ [n, n+1). We start with general
conditions to ensure Ωm,h,j ⊆ Ωτ .

Lemma 4.1. All Wu-oscillations in a periodic pattern are the same in terms of
(tup, TFD,∆t) and all Wd-oscillations in a periodic pattern are the same in terms
of (tdown,∆t).

Proof. We first illustrate our argument in a simple case where σ = (π1, π2) =

(W
(1)
u ,W

(2)
u ), W

(1)
u is characterized by (tup,1, TFD,∆t1) and W

(2)
u is characterized

by (tup,2, TFD,∆t2). By condition (3.4), π2 = Wu can be generated if and only if

T + tup,1 + TFD + ∆t1 + TFR + tup,2 = τ.

Similarly, in terms of ϕσ = (π2, π1), we have

T + tup,2 + TFD + ∆t2 + TFR + tup,1 = τ.

The above two equations give rise to ∆t1 = ∆t2. Hence, tup,1 = tup,2.

Similarly, if σ = (π1, ..., πN ) = (W
(1)
u , ...,W

(N)
u ) with each W

(i)
u being character-

ized by (tup,i, TFD,∆ti), πN = Wu can be generated if and only if[
(N − 1)T +

∑
1≤i≤N,i6=N

(tup,i + TFD + ∆ti)

]
+ TFR + tup,N = τ.

Analogously, in terms of ϕσ, ϕ2σ, ..., ϕN−1σ, we have[
(N − 1)T +

∑
1≤i≤N,i6=j

(tup,i + TFD + ∆ti)

]
+ TFR + tup,j = τ
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for each 1 ≤ j ≤ N−1. The above system of equations gives rise to ∆t1 = ... = ∆tN ,
and hence, tup,1 = ... = tup,N .

The same argument can be used to show that all Wu-oscillations in a peri-
odic pattern of Ωm,h,j with h ≥ 1 and m + j ≥ 1 must be the same in terms of
(tup, TFD,∆t) and all Wd-oscillations in a periodic pattern are the same in terms
of (tdown,∆t).

As will be shown in Lemma 4.8, there exists at most one Wd-oscillation in a
given periodic pattern. Therefore, we only consider the case m = 1 for a periodic
pattern in Ωm,h,j in the next result (and later in Theorem 4.2).

Lemma 4.2. If a Wd-oscillation and some Wu-oscillations coexist in a periodic
pattern, then ∆t for the Wd-oscillation is equal to the ∆t for all the Wu-oscillations.

Proof. We consider σ = (π1, π2, ..., πN ) = (Wd,Wu, ...,Wu) ∈ Ω1,h,0, where Wd is
characterized by (tdown,∆t1) and Wu is characterized by (tup, TFD,∆t2).

By condition (3.4), πN = Wu can be generated if and only if

T + tdown + ∆t1 + (h− 1)(T + tup + TFD + ∆t2) + TFR + tup = τ.

Similarly, for ϕσ = (π2, ..., πN , π1), we have

h(T + tup + TFD + ∆t2) + TFR − (TFD − tdown) = τ.

The above two equations give rise to ∆t1 = ∆t2.
The same argument can be used for a periodic pattern in Ω1,h,j with h, j ≥ 1.

This completes the proof.

By Lemma 4.2, we can (and shall) use ∆t to denote the common value for a
Wd-oscillation and all Wu-oscillations in a given periodic pattern. Lemmas 4.1 and
4.2 imply that by the time the inhibition wears off, the membrane potentials of a
Wd-oscillation and all Wu-oscillations are essentially of the same voltage. This is in
agreement with the work of [16].

Condition (3.4) immediately leads to

Lemma 4.3. Assume τ ∈ [nT, nT + T ) for an integer n. Then Ω0,0,1 ⊆ Ωτ holds
true when and only when τ ∈ [nT, nT + TFR − TFD], and the periodic pattern is
(1V ).

We now consider Ω1,0,n.

Lemma 4.4. Ω1,0,n ⊆ Ωτ holds true when and only when τ ∈ (nT + TFR −
TFD, nT + TFR], and the periodic pattern is (1Wd, nV ).

Proof. We consider σ = (π1, ..., πn+1) = (Wd, V, ..., V ). Condition (3.4) gives rise
to nT + tdown + ∆t+ TFR ≥ τ + TFD for a V -oscillation;

nT + TFR + tdown = τ + TFD for a Wd-oscillation.

This means that a given segment of potentials nV is followed by a Wd-oscillation if
and only if nT + TFR + tdown = τ + TFD; and a given segment (Wd, (n − 1)V ) is
followed by a V -oscillation if and only if nT + tdown + ∆t+ TFR ≥ τ + TFD.
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For a Wd-oscillation, we have ∆t ≥ 0 and 0 < tdown ≤ TFD. Therefore, the
above inequality and equation are consistent. When tdown approaches zero and
tdown = TFD, we obtain the minimum value τmin = nT + TFR − TFD and the
maximum value τmax = nT + TFR for the existence of such a periodic pattern,
respectively.

Note that the fact that the maximum value τmax of the periodic pattern of Ω0,0,1

in Lemma 4.3 is equal to the minimum value τmin of the periodic pattern of Ω1,0,n

suggests that a pattern transition occurs at τ = nT + TFR − TFD.

Lemma 4.5. Ω0,1,n ⊆ Ωτ holds true when and only when τ ∈ (nT + TFR, nT +
TFR + Tc], and the periodic pattern is (1Wu, nV ).

Proof. We consider σ = (π1, ..., πn+1) = (Wu, V, ..., V ). Condition (3.4) gives rise
to nT + tup + TFD + ∆t+ TFR ≥ τ + TFD for a V -oscillation;

nT + TFR + tup = τ for a Wu-oscillation.
(4.7)

It yields ∆t ≥ 0 and hence, 0 < tup ≤ Tc. When tup approaches zero or tup = Tc,
we obtain the minimum value τmin = nT + TFR or the maximum value τmax =
nT + TFR + Tc for the existence of such a periodic pattern, respectively.

Again, this shows a pattern transition from Ω1,0,n to Ω0,1,n at τ = nT + TFR.

Theorem 4.1. Periodic patterns in Ω0,h,j with h, j ≥ 1 and N := h + j ≤ n + 1
can be generated if and only if tup = τ−[(N−1)T+TFR+(h−1)(TFD+∆t)]

h ,

0 < tup ≤ Tc and 0 ≤ ∆t < ∆tmax.
(4.8)

The minimum and maximum values of τ for the existence of such periodic patterns
are given by  τmin = (N − 1)T + TFR + (h− 1)T2,

τmax = (N − 1)T + TFR + (h− 1)TFD + hTc,
(4.9)

where

T2 := ∆tmax + TFD. (4.10)

Proof. We consider σ = (π1, ..., πn) = (hWu, jV ) ∈ Ω0,h,j . Condition (3.4) gives
rise to (N − 1)T + h(tup + TFD + ∆t) + TFR ≥ τ + TFD for a V -oscillation;

(N − 1)T + (h− 1)(tup + TFD + ∆t) + TFR + tup = τ for a Wu-oscillation.

It yields ∆t ≥ 0 and hence 0 < tup ≤ Tc. Re-arranging the above equation leads to
(4.8).
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The extreme case, tup = 0 and ∆t = ∆tmax, gives rise to the minimum value
τmin as

τmin = (N − 1)T + TFR + (h− 1)(TFD + ∆tmax)

= (N − 1)T + TFR + (h− 1)T2,

where T2 is defined by

T2 = ∆tmax + TFD.

The situation, where tup = Tc and ∆t = 0, gives rise to the maximum value as

τmax = (N − 1)T + TFR + (h− 1)TFD + hTc.

Lemma 4.6. If h and j have no common factor, the number of periodic patterns
in Ω0,h,j is

(
h+j
h

)
/(h + j) and periodic patterns are all the possible arrangements

of h Wu-oscillations and j V -oscillations in a ring. If h and j have a common
factor q > 1, then the possible arrangements of periodic patterns in Ω0,h/q,j/q must
be deducted.

For example, all possible arrangements of 2 Wu-oscillations and 4 V -oscillations
(Ω0,2,4) in a ring are σ1 = (2Wu4V ), σ2 = (1Wu1V 1Wu3V ) which is equivalent to
(1Wu3V 1Wu1V ), and σ3 = (1Wu2V 1Wu2V ). Although a periodic pattern σ3 =
(1Wu2V 1Wu2V ) is a possible arrangement of Ω0,2,4, the minimum periodic pattern
of σ3 is the periodic pattern (1Wu2V ) which belongs to the pattern set Ω0,1,2.
Therefore, the number of periodic patterns in Ω0,2,4 is [

(
6
2

)
− 3]/6 = 2 and Ω0,2,4 =

{(2Wu4V ), (1Wu1V 1Wu3V )}.

Lemma 4.7. If Ω0,h,j ⊆ Ωτ and h, j have a common factor q > 1, then Ω0,h/q,j/q ⊆
Ωτ . Furthermore, periodic patterns in both Ω0,h,j and Ω0,h/q,j/q coexist on the same
interval τ ∈ (τmin, τmax) with τmin and τmax being given in (4.9).

Theorem 4.2. We now consider the general case where N is fixed, and h and j
may vary under the constraint that 1 ≤ N := h+ j ≤ n

(i). Periodic patterns in Ω1,h,j with h, j ≥ 0 and 1 ≤ N := h + j ≤ n can be
generated if and only if

NT + h(tup + TFD + ∆t) + TFR + tdown = τ + TFD,

0 < tup ≤ Tc,

0 < tdown ≤ TFD,

0 ≤ ∆t < ∆tmax.

(4.11)

The minimum and maximum values of τ for the existence of such a periodic pattern
are given by

τmin = NT + TFR + (h− 1)TFD

+ min
0≤∆t≤∆tmax

[f1(∆t) + h∆t+ hf2(∆t)], (4.12)

τmax = NT + TFR + hT2. (4.13)
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(ii). If τ reaches its minimum value τmin at ∆t = ∆tmax, periodic patterns can
not be generated at this minimum value.

(iii). If τ does not reach its minimum at ∆t = ∆tmax, then a pattern transition
occurs at τ = NT + TFR + hT2.

Proof. We consider σ = (π1, ..., πN ) = (Wd, hWu, jV ) with j ≥ 1. Condition
(3.4) gives rise toNT + tdown + ∆t+ h(tup + TFD + ∆t) + TFR ≤ τ + TFD for a V -oscillation;

NT + h(tup + TFD + ∆t) + TFR + tdown = τ + TFD for a Wd-oscillation.

The above equation and inequality give rise to ∆t ≥ 0 and hence 0 < tup ≤ Tc. For
a Wd-oscillation, we have 0 < tdown ≤ TFD.

If j = 0, we also have the above equation and the condition ∆t ≥ 0 because of
the Wd-oscillation. Hence 0 < tup ≤ Tc and 0 < tdown ≤ TFD.

The minimum value of τ for the existence of periodic patterns in Ω1,h,j is given
by

τmin = NT + TFR + (h− 1)TFD + min
0≤∆t≤∆tmax

[f1(∆t) + h∆t+ hf2(∆t)].

The extreme case, tdown = TFD and ∆t = ∆tmax for the Wd-oscillation, and
tup = 0 for the Wu-oscillations, gives rise to the maximum value τmax as

τmax = NT + TFR + h[∆tmax + TFD] = NT + TFR + hT2.

However, if τ reaches the minimum value τmin at ∆t = ∆tmax, then τmin = τmax.
This implies that the periodic pattern of Ω1,h,j can not be generated.

If periodic patterns of Ω1,h,j exist, the fact that the maximum value τmax of
Ω1,h,j is equal to either the minimum value τmin of Ω0,h+1,j in Theorem 4.1 for
j ≥ 1 or the minimum value τmin of Ω0,1,0 in Theorem 4.3 for j = 0, suggests that
a pattern transition occurs at τ = (h+ j)T + TFR + hT2.

As a result of pattern transitions described above, we have the following:

Lemma 4.8. Any periodic pattern in Ωτ contains at most one Wd-oscillation. In
other words, if Ωm,h,j ⊆ Ωτ , then m = 0 or m = 1.

Lemma 4.9. The number of periodic patterns in Ω1,h,j is
(
h+j
h

)
and periodic pat-

terns are all possible arrangements of one Wd-oscillation, h Wu-oscillations and j
V -oscillations in a ring.

We now apply Theorem 4.2 in the case where h = 0, 1, 2.

For h = 0, τmin and τmax are given by τmin = NT + TFR − TFD,

τmax = NT + TFR.
(4.14)

This is the result of Lemma 4.4.
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For h = 1, τmin and τmax are given by τmin = NT + TFR + T1,

τmax = NT + TFR + T2,
(4.15)

where T1 is defined by

T1 := min
0≤∆t≤∆tmax

[f1(∆t) + f2(∆t) + ∆t]. (4.16)

If τ reaches its minimum value τmin at ∆t = 0, then T1 = Tc and periodic patterns
in Ω0,1,n transit to periodic patterns in Ω1,1,n−1 at T = NT + TFR + Tc for τ ∈
(nT, nT + T ). Otherwise, periodic patterns in Ω0,1,n coexist with periodic patterns
in Ω1,1,n−1 on the subinterval τ ∈ (nT +TFR +T1, nT +TFR +Tc) if Tc < T2 or on
the subinterval τ ∈ (nT + TFR + T1, nT + TFR + T2) if Tc ≥ T2.

For h = 2, τmin and τmax are given by τmin = NT + TFR + T3,

τmax = NT + TFR + T4, where T4 := 2T2,
(4.17)

where T3 is defined by

T3 := TFD + min
0≤∆t≤∆tmax

[f1(∆t) + 2f2(∆t) + 2∆t]. (4.18)

We assume T4 < TAϑ. If τ reaches its minimum value τmin at ∆t = 0, T3 =
TFD + 2Tc and periodic patterns in Ω0,2,n−1 transit to periodic patterns in Ω1,2,n−2

at T = NT + TFR + TFD + 2Tc for τ ∈ (nT, nT + T ). Otherwise, T3 < TFD + 2Tc
and periodic patterns in Ω0,2,n−1 coexist with periodic patterns in Ω1,2,n−2 on the
subinterval τ ∈ ((n+1)T +TFR+T3, (n+1)T +TFR+TFD+2Tc) if TFD+2Tc < T4

or on the subinterval τ ∈ ((n+1)T+TFR+T3, (n+1)T+TFR+T4) if TFD+2Tc ≥ T4.

Theorem 4.3. The periodic pattern (1Wu) for σ = (kWu) with 2 ≤ k ≤ n+ 1 can
be generated if and only if tup = τ−[(k−1)T+TFR+(k−1)TFD+(k−1)∆t]

k ,

0 < tup < TAϑ.
(4.19)

The minimum and maximum values of τ for the existence of such periodic patterns
are given by τmin = (k − 1)T + TFR + (k − 1)T2,

τmax = (k − 1)T + TFR + (k − 1)TFD + kTAϑ + (k − 1)∆tmin.
(4.20)

Proof. We consider σ = (π1, ..., πk) = (Wu, ...,Wu) with Wu being characterized
by (tup, TFD,∆t). Condition (3.4) gives rise to

(k − 1)T + (k − 1)(tup + TFD + ∆t) + TFR + tup = τ.

Re-arranging the above formula yields equation (4.19) and tup must satisfy 0 <
tup < TAϑ.
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The extreme case, tup = 0 and ∆t = ∆tmax, gives rise to the minimum value
τmin

τmin = (k − 1)T + TFR + (k − 1)T2.

The situation where tup approaches TAϑ and ∆t approaches the minimum value
∆tmin yields

τmax = (k − 1)T + TFR + (k − 1)TFD + kTAϑ + (k − 1)∆tmin.

We now summarize our discussions about periodic patterns of recurrent in-
hibitory loops in the case where TFD < TFR and ∆tmax ≤ TFR−TFD. For a given
τ ∈ [nT, nT + T ), the coexistence of periodic patterns in pattern subsets Ω0,0,1,
Ω0,1,0, Ω0,h,j (h, j ≥ 1), Ω1,h,j (h, j ≥ 0 and h+ j ≥ 1) leads to multistability. The
necessary and sufficient conditions of the existence of periodic patterns in Ω0,h,j ,
Ω1,h,j and Ω0,1,0 are given by Theorems 4.1, 4.2, 4.3. The most important feature
of periodic patterns is the transition from one pattern subset to another at some
transition values of time delay τ : nT + TFR − TFD, nT + TFR, nT + TFR + T2 and
nT +TFR+T4. The pattern transition plays an important role in the coexistence of
multiple periodic patterns for the recurrent inhibitory loop. The coexistence of two
types of W -oscillations in one periodic pattern increases substantially the number
of periodic patterns in some subintervals.

5. Realization and illustration

In the previous section, we obtained general results of periodic patterns for a given
τ/T ≥ 1 when TFR > TFD and ∆tmax ≤ TFR − TFD. In this section, we shall use
a special case to illustrate how these general results can be applied. The specified
parameter values are

E = 1.0, I0 = 1.45, a = 2.25, ϑ = 1, TRe = 0.25, TF = 0.2, TFD = 0.25.

We have TFR = TF + TRe = 0.45. Then

VA = E(1− e−TRe) = 0.2212, TAϑ = log

[
I0 − VA
I0 − ϑ

]
= 1.00455,

T = TFR + TAϑ = 1.45455, Tc = log

[
I0 − VA

(I0 − VA − a)eTFD + a

]
= 0.1851T,

∆tmax = log

[
(I0 − VA − a)e−TFD + a

I0 − VA

]
= 0.1160T,

∆tmin = −TFD + log

[
e−TAϑ +

a(eTFD − 1)

I0 − VA

]
= −0.2549T,

and

T1 = Tc, T2 = ∆tmax + TFD = 0.2879T, T3 = 0.5404T, T4 = 0.5758T.

It is easy to check that the conditions TFD < TFR and ∆tmax < TFR − TFD are
both satisfied.
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We first discuss periodic patterns when τ/T is a positive integer. The pattern
subsets and the number of periodic patterns are listed in Table 1 when τ = nT
and 1 ≤ n ≤ 8. The number 8 with ∗ indicates that there are two (1Wu) periodic
patterns: one for σ = (5Wu) and one for σ = (6Wu). For example, n = 6T , there
are six periodic patterns: (1V ), (1Wu), (1Wu1V ), (3Wu3V ), (2Wu2V 1Wu1V ) and
(2Wu1V 1Wu2V ), and Ω6T = Ω0,1,0 ∪ Ω0,0,1 ∪ Ω0,1,1 ∪ Ω0,3,3.

Table 1. Pattern subsets and the number of periodic patterns when τ = nT . In the case marked by ∗,
there are two (1Wu) periodic patterns: one for σ = (5Wu) and one for σ = (6Wu).

τ Pattern Set No. τ Pattern Set No.

T Ω0,0,1 1 5T Ω0,1,0 ∪ Ω0,0,1 ∪ Ω0,3,2 4

2T Ω0,1,0 ∪ Ω0,0,1 2 6T Ω0,1,0 ∪ Ω0,0,1 ∪ Ω0,1,1 ∪ Ω0,3,3 6

3T Ω0,1,0 ∪ Ω0,0,1 2 7T Ω0,1,0 ∪ Ω0,0,1 ∪ Ω0,3,4 8∗

4T Ω0,1,0 ∪ Ω0,0,1 ∪ Ω0,3,1 3 8T Ω0,1,0 ∪ Ω0,0,1 ∪ Ω0,3,5 ∪ Ω0,6,1 10

We now discuss the case where τ ∈ (nT, nT + T ) with a positive integer n.
Figure 5 shows six coexisting periodic patterns as an example when τ ∈ [3T +
TFR + T3, 3.8515T ). Table 2 lists pattern subsets and periodic patterns in the
interval τ ∈ [T, 2T ). A plot of p/T versus τ for τ ∈ [T, 2T ] is shown in Figure 4 (a),
where p is the minimum period of periodic patterns and T is the intrinsic spiking
period of the excitatory neuron. Four dotted lines in Figure 4 (a) are critical values
T + TFR − TFD, T + TFR, T + TFR + T1 and T + TFR + T2, which separate the
interval [T, 2T ) into five characteristic subintervals. Line segments, from the bottom
to the top, correspond to pattern subsets Ω0,0,1, Ω0,1,0, Ω1,0,1, Ω0,1,1 and Ω1,1,0. The
corresponding periodic patterns in these subintervals are (1V ), (1Wd1V ), (1Wu1V ),
(1Wd1Wu) and (1Wu) with σ = (2Wu). The periodic pattern (1V ) transits to the
pattern (1Wd1V ) at τ = T + TFR − TFD, then the pattern (1Wd1V ) transits to
the pattern (1Wu1V ) at T + TFR, and then the pattern (1Wu1V ) transits to the
pattern (1Wd1Wu) at T + TFR + T1, finally the pattern (1Wd1Wu) transits to the
pattern (1Wu) with σ = (2Wu) at τ = T + TFR + T2.

Table 2. Pattern subsets and periodic patterns when τ ∈ [T, 2T ).

τ Pattern subsets Periodic patterns

[T, T + TFR − TFD] Ω0,0,1 (1V )

(T + TFR − TFD, T + TFR] Ω1,0,1 (1Wd1V )

(T + TFR, T + TFR + T1] Ω0,1,1 (1Wu1V )

(T + TFR + T1, T + TFR + T2] Ω1,1,0 (1Wd1Wu)

(T + TFR + T2, 2T ) Ω0,1,0 (1Wu)

Table 3 and Table 4 list pattern subsets, periodic patterns and the number of
periodic patterns in the interval τ ∈ [2T, 3T ) and τ ∈ [3T, 4T ) respectively.

A plot of p/T versus τ for τ ∈ [2T, 3T ] is shown in Figure 4 (b), where p is the
minimum period of periodic patterns. Six dotted lines in Figure 4 (b) are critical
values 2T + TFR − TFD, 2T + TFR, 2T + TFR + T1, 2T + TFR + T2, 2T + TFR + T3
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Figure 4. Plots of p/T versus τ for τ ∈ [T, 2T ] ((a)) and τ ∈ [2T, 3T ] ((b)), where p is the minimum
period of a given pattern in the specific interval and T is the intrinsic spiking period of the excitatory
neuron. (a) Values of time delay τ for four dotted lines are T + TFR − TFD, T + TFR, T + TFR + T1

and T + TFR + T2, respectively. Line segments, from the bottom to the top, correspond to pattern
subsets Ω0,0,1, Ω0,1,0, Ω1,0,1, Ω0,1,1 and Ω1,1,0. (b) Values of time delay τ for six dotted lines are
2T + TFR − TFD, 2T + TFR, 2T + TFR + T1, 2T + TFR + T2, 2T + TFR + T3 and 2T + TFR + T4,
respectively. Line segments, from the bottom to the top, correspond to pattern subsets Ω0,0,1, Ω0,1,0

for σ = (3Wu), Ω0,1,0 for σ = (3Wu), Ω1,0,2, Ω0,1,2, Ω1,1,1, Ω0,2,1 and Ω1,2,0.

Table 3. Pattern subsets and periodic patterns when τ ∈ (2T, 3T ), where R1 = 0.6076T , R2 =
TFR + TFD + 2Tc = 0.8515T and ‘No.’ stands for ‘the number of periodic patterns’.

τ Pattern subsets Periodic patterns No.

[2T, 2T + TFR − TFD] Ω0,1,0 ∪ Ω0,0,1 (1V ); (1Wu) 2

(2T + TFR − TFD, 2T + TFR] Ω0,1,0 ∪ Ω1,0,2 (1Wu); (1Wd2V ) 2

(2T + TFR, 2T + TFR + T1] Ω0,1,0 ∪ Ω0,1,2 (1Wu); (1Wu2V ) 2

(2T + TFR + T1, 2T + TFR + T2] Ω0,1,0 ∪ Ω1,1,1 (1Wu); (1Wd1Wu1V ),

(1Wu1Wd1V ) 3

(2T + TFR + T2, 2T +R1] Ω0,1,0 ∪ Ω0,2,1 (1Wu); (2Wu1V ) 2

(2T +R1, 2T + TFR + T3] Ω0,2,1 (2Wu1V ) 1

(2T + TFR + T3, 2T +R2) Ω0,2,1 ∪ Ω1,2,0 (2Wu1V ); (1Wd2Wu) 2

(2T +R2, 2T + TFR + T4] Ω1,2,0 (1Wd2Wu) 1

(2T + TFR + T4, 3T ) Ω0,1,0 (1Wu) 1

and 2T + TFR + T4 which separate the interval [2T, 3T ) into seven characteristic
subintervals. Line segments, from the bottom to the top, correspond to pattern
subsets Ω0,0,1, Ω0,1,0 for σ = (3Wu), Ω0,1,0 for σ = (2Wu), Ω1,0,2, Ω0,1,2, Ω1,1,1,
Ω0,2,1 and Ω1,2,0. The periodic pattern (2Wu1V ) coexists with the periodic pattern
(1Wd2Wu) in the subinterval τ ∈ [2T + TFR + T3, 2T + TFR + TFD + 2Tc). Pattern
transitions occur at critical values 2T + TFR − TFD, 2T + TFR, 2T + TFR + T1,
2T + TFR + T2 and 2T + TFR + T4. Multistability arises except in the subinterval
(2T +R1, 2T + TFR + T3] ∪ (2T +R2, 3T ).

Multistability occurs everywhere on the interval τ ∈ [3T, 4T ]. Figure 5 shows
six coexisting periodic patterns when τ ∈ [3T + TFR + T3, 3T + TFR + TFD + 2Tc):
(1Wu) with σ = (3Wu), (1Wu1V ), (2Wu2V ), (1Wd2Wu1V ), (2Wu1Wd1V ) and
(1Wu1Wd1Wu1V ). For each periodic pattern, the right-hand side is the blow-up
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Table 4. Pattern subsets, periodic patterns and the number of periodic patterns when τ ∈ [3T, 4T ),
where R = 3T + TFR, R2 = TFD + 2Tc.

τ Pattern subsets Patterns No.

[3T,R− TFD] Ω0,0,1 ∪ Ω0,1,0 (1V ), (1Wu) 2

(R− TFD, R] Ω0,1,0 ∪ Ω1,0,3 (1Wu), (1Wd3V ) 2

(R,R+ T1] Ω0,1,0 ∪ Ω0,1,3 (1Wu), (1Wu3V ) 2

(R+ T1, R+ T2] Ω0,1,0 ∪ Ω1,1,2 (1Wu), (1Wd1Wu2V ) 4

(1Wu1Wd2V ),(1Wd1V 1Wu1V )

(R+ T2, R+ T3] Ω0,1,0 ∪ Ω0,1,1 ∪ Ω0,2,2 (1Wu), (1Wu1V ), (2Wu2V ) 3

(R+ T3, R+R2] Ω0,1,0 ∪ Ω0,1,1 (1Wu), (1Wu1V ), (2Wu2V ), 6

∪Ω0,2,2 ∪ Ω1,2,1 (1Wd2Wu1V ), (2Wu1Wd1V ),

(1Wu1Wd1Wu1V )

(R+R2, R+ T4] Ω0,1,0 ∪ Ω1,2,1 (1Wd2Wu1V ), (2Wu1Wd1V ), 4

(1Wu), (1Wu1Wd1Wu1V )

(R+ T4, 4T ) Ω0,1,0 ∪ Ω0,3,1 (1Wu), (3Wu1V ) 2

of the solutions in a given period (not delay τ) to clearly illustrate the patterns of
solutions.
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Figure 5. Six periodic solutions when τ ∈ (3T + TFR + T3, 3T + TFR + TFD + 2Tc): (a) (1Wu) with
σ = (3Wu), (b) (1Wu1V ), (c) (2Wu2V ), (d) (1Wd2Wu1V ), (e) (2Wu1Wd1V ) and (f) (1Wu1Wd1Wu1V ).
For each periodic pattern, the right-hand side is the blow-up of the solutions in a given period (not delay
τ) to clearly illustrate the patterns of solutions.

6. Conclusions

In this first of a series of papers, we provided a rigorous and systematic qualitative
study of the coexistence and transition of periodic patterns in delayed recurrent
inhibitory loops. We focused on the case of short feedback duration, and we showed
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that there can only be one inhibitory feedback delivered between two consecutive
firing times and this feedback can generate three basic oscillations (V,Wd,Wu). In a
future study, we will consider the case of long feedback duration when we shall show
that there is an additional basic oscillation much ore complicated than illustrated
here.

Our approach is the segmentation of the trajectory into a sequence of symbols as
the three possible oscillation patters, and analytically derive the feedback-induced
action on a minimal segment of length larger than or equal to the delay. We de-
rived a set of equations or inequalities (3.4) to determine which types of periodic
patterns can be generated by recurrent inhibitory loops for a given time delay. We
proved that the periodic pattern set Ωm,h,j , composed of m Wd-oscillations, h Wu-
oscillations and j V -oscillations, can be one of the following forms: Ω0,0,1, Ω0,1,0,
Ω0,h,j (h, j ≥ 1) and Ω1,h,j (h, j ≥ 0 and h + j ≥ 1). Pattern transition occurs at
critical values of time delay, TFR − TFD, TFR, TFR + T1, TFR + T2 and TFR + T4.
Pattern transitions play an important role in determining the coexistence of mul-
tiple stable patterns. We calculated the domain τ ∈ (τmin, τmax) for the existence
of periodic patterns of Ωm,h,j . A detailed case study illustrated that multistability
always occurs.

The work is based on [17], a number of developments have already been made
based on this thesis. In particular, extensions of some of the ideas were made
to couple network of small number of neurons [19, 30]. Naturally the number of
stable periodic patterns can be futher increased when the number of neurons is
increased. This gives the potential that the delayed feedback can become an effective
mechanism to enhance the network’s capacity in terms of storing and retrieving
a large number of local attractors. Unfortunately, in these extensions involving
coupling and the explicit incorporation of the inhibitory neuron, much technical
details were involved and we hope this work focused on a single neuron may provide
better and clear insights into the fundamental issue how feedback delay is linked to
symbolic dynamics.
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