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Bifurcation of a Modified Leslie-Gower System
with Discrete and Distributed Delays∗
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Abstract A modified Leslie-Gower predator-prey system with discrete and
distributed delays is introduced. By analyzing the associated characteristic
equation, stability and local Hopf bifurcation of the model are studied. It is
found that the positive equilibrium is asymptotically stable when τ is less than
a critical value and unstable when τ is greater than this critical value and the
system can also undergo Hopf bifurcation at the positive equilibrium when
τ crosses this critical value. Furthermore, using the normal form theory and
center manifold theorem, the formulae for determining the direction of periodic
solutions bifurcating from positive equilibrium are derived. Some numerical
simulations are also carried out to illustrate our results.
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1. Introduction

Recently, the dynamics (including stability, persistence, periodic oscillation, bifur-
cation and chaos, etc.) of predator-prey system has long been one of the dominant
themes in mathematical ecology due to its universal existence and importance (for
example, see [1, 7, 9, 11, 19, 26, 29]). [14] first proposed and discussed the following
predator-prey system ẋ(t) = x(a− bx)− p(x)y,

ẏ(t) = y[s(1− hy
x

)],
(1.1)

where p(x) is the predator functional response to prey, a, s are the intrinsic growth
rate of prey x(t) and predator y(t), respectively, b measures the strength of compe-
tition among individuals of species x(t), a

b is the environmental carrying capacity
for the prey, the environmental carrying capacity of predator Ky is a function of the
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available prey quantity, where Ky = x
h . The predator subsistence exclusively de-

pendent on prey population in system (1.1). However, in the case of severe scarcity
of the prey x, the predator y can switch to other population, but its growth will
be limited . By adding a positive constant to the Ky, that is, Ky = x+c

h , then in
this case, a modified Leslie-Gower predator-prey system with functional response
can be described by the following systemẋ(t) = x(a− bx)− p(x)y,

ẏ(t) = y[s(1− h y

x+ c
)].

(1.2)

The system (1.2) have been studied by many authors(for example, see [3,4,25,30]).
When p(x) is Holling type II functional response, then system (1.2) can be written
as 

ẋ(t) = x(t)(a1 − bx(t)− c1y(t)

x(t) + k1
),

ẏ(t) = y(t)(a2 −
c2y(t)

x(t) + k2
).

(1.3)

For system (1.3), [2] investigated the boundedness of solution, existence of an at-
tracting set and global stability of the coexisting interior equilibrium.

Time delays in mathematical models of population dynamics are usually due to
gestation time, maturation time, capturing time or some other reasons. Therefore,
a more realistic predator-prey system should be described by delay differential equa-
tions. In fact, delay differential equations are capable of generating rich effective
and accurate dynamics compared to ordinary differential equations (for example,
see [5,6,8,10,15–17,20,22–24,27,31]). [18] investigated the following delayed Leslie-
Gower predator-prey system

ẋ(t) = x(t)(a1 − bx(t)− c1y(t)

x(t) + k1
),

ẏ(t) = y(t)(a2 −
c2y(t− τ)

x(t− τ) + k2
).

(1.4)

For system (1.4), Nindjin et al. investigated the permanence and global stability of
positive equilibrium without considering the effects of time delays on the prey. [4]
studied the following Leslie-Gower predator-prey system with delay and investigated
Hopf bifurcations at the positive equilibrium

ẋ(t) = x(t)(a1 − bx(t)− c1y(t− τ)

x(t− τ) + k1
),

ẏ(t) = y(t)(a2 −
c2y(t− τ)

x(t− τ) + k2
).

(1.5)

Based on the above, in this paper, we will investigate the following modified
Leslie-Gower predator-prey model with discrete and distributed time delays

ẋ(t) = x(t)(a1 − b
∫ t

−∞
f(t− s)x(s)ds− c1y(t)

x(t) + k1
),

ẏ(t) = y(t)(a2 −
c2y(t− τ)

x(t− τ) + k2
),

(1.6)
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where x(t) is the population density of the prey and y(t) is the population density of
the predator at time t. The parameters a1, a2, b, c1, c2, k1, k2 are positive constants:
a1, a2 are the intrinsic growth rate of prey x(t) and predator y(t), respectively,
b measures the strength of competition among individuals of species x(t), a1

b is

the environmental carrying capacity for the prey, a2(x(t−τ)+k2)
c2

denote the prey-
dependent carrying capacity for the predator, c1 is the maximum value of the per
capita reduction rate of x(t) due to y(t), and c2 has a similar meaning as c1. k1, k2

measure the extent to which environment provides protection to prey x(t) and
to predator y(t), respectively. the nonnegative constant τ can be interpreted as
the hunting delay of the predator population. We consider that past prey x(s)
has negative effect on the present prey x(t)(t ≥ s), such as consumption of food
resources, the delay kernel function f(t) is the weight given to the population x(t)
at t time units ago. Under the assumption that f(t) ≥ 0 for all t ≥ 0 and the
normalized condition ∫ +∞

0

f(t)dt = 1.

The rest of this paper is organized as follows. In Section 2, by analyzing the
associated characteristic equation, the asymptotic stability of the equilibria and
the existence Hopf bifurcations at the positive equilibrium are investigated. In
Section 3, the formulae for determining the direction of the Hopf bifurcation and
the stability of bifurcation periodic solutions are given by using the normal form
method and center manifold theorem introduced by [12]. In Section 4, numerical
simulations are performed to support our theoretical results. A brief conclusion is
given in last section.

2. Stability of equilibria and existence of local Hopf
bifurcation

For system (1.6), the delay kernel function f(t) take the weak generic kernel func-
tion f(t) = σe−σt(σ > 0), where weak generic kernel function implies that the
importance of the event decrease exponentially with t. we define a new variable

u(t) =

∫ t

−∞
σe−σ(t−s)x(s)ds. (2.1)

Taking the derivative of u(t) with respect to t in (2.1), we have

u(t) = σx(t)− σu(t). (2.2)

Then the system (1.6) is equivalent to the following system
ẋ(t) = x(t)(a1 − bu(t)− c1y(t)

x(t) + k1
),

u̇(t) = σx(t)− σu(t),

ẏ(t) = y(t)(a2 −
c2y(t− τ)

x(t− τ) + k2
).

(2.3)
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The initial conditions for systems (2.3) take the form

x(θ) = φ(θ), u(θ) = ϕ(θ), y(θ) = ω(θ),

φ(θ) ≥ 0, ϕ(θ) ≥ 0, ω(θ) ≥ 0, θ ∈ [−τ, 0),

φ(0) > 0, ϕ(0) > 0, ω(0) > 0,

(2.4)

where φ(θ), ϕ(θ), ω(θ) are continuous and bounded functions in [−τ, 0).
It is easy to see that the system (2.3) has a unique solution (x(t), u(t), y(t)) sat-

isfying initial conditions (2.4), and we know from [13] that the solutions of system
(2.3) corresponding to initial conditions (2.4) remain positive for all t ≥ 0. Further-
more, for any positive solution (x(t), u(t), y(t)) of system (2.3), there exsist a T ≥ 0
such that

0 ≤ x(t) ≤ a1

b
, 0 ≤ u(t) ≤ a1

b
, 0 ≤ y(t) ≤

a2(k2 +
a1

b
)

c2
ea2τ , t ≥ T,

similarly to the proofs in [18].
Obviously, system (2.3) always has three feasible boundary equilibria E1(0, 0, 0),

E2(a1b , a1b , 0), E3(0, 0, a2k2c2
). From the biological viewpoint, we are more interested

in the positive equilibrium. To guarantee that system (2.3) has always a positive
equilibrium, we assume that the coefficients of system (2.3) satisfy the following
condition

(H1)
a1k1

c1
>
a2k2

c2
.

Under the hypothesis (H1), system (2.3) has a unique positive equilibrium

E(x∗, x∗, y∗), where y∗ =
a2

c2
(x∗ + k2) and x∗ is the positive root of the follow-

ing equation

bx2 + (bk1 − a1 +
a2c1
c2

)x+ (
a2c1k2

c2
− a1k1) = 0.

2.1. Stability of the boundary equilibria

Proposition 2.1. The boundary equilibria E1, E2 are unstable for all τ ≥ 0.

Proof. Linearizing system (2.3) at E1, E2, we obtain characteristic equations

(λ− a1)(λ+ σ)(λ− a2) = 0

and
(λ2 + σλ+ a1σ)(λ− a2) = 0,

respectively, the characteristic equations exist at least one positive root, respectively,
thus E1, E2 are unstable for all τ ≥ 0.

Proposition 2.2. (i) If
a1k1

c1
>
a2k2

c2
,

then E3 is unstable for all τ ≥ 0;
(ii) If

a1k1

c1
<
a2k2

c2
,

then E3 is asymptotically stable for τ ∈ [0, τs) , where τs =
π

2a2
.



Bifurcation of a modified Leslie-Gower system. . . 77

Proof. Linearizing system (2.3) at E3, we obtain characteristic equation

(λ− a1 +
c1a2k2

k1c2
)(λ+ σ)(λ+ a2e

−λτ ) = 0.

(i) If
a1k1

c1
>
a2k2

c2
,

then this characteristic equations exists at lest one positive root, thus E3 is unstable
for all τ ≥ 0.
(ii) If

a1k1

c1
<
a2k2

c2
,

in the case of τ = 0, all roots of this characteristic equation are negative. Then E3

is asymptotically stable. Now, we suppose τ > 0 and let λ = iω(ω > 0) is a purely
imaginary root of equation

λ+ a2e
−λτ = 0,

which implies that {
cos(ωτ) = 0,

ω − a2 sin(ωτ) = 0,

then 
ω = a2,

τ =
π

2a2
+

2kπ

a2
, k = 0, 1, 2, · · · .

Define τs = min{τ},that is, τs = π
2a2

, thus E3 is asymptotically stable for τ ∈ [0, τs).
This completes the proof.

2.2. Stability of the positive equilibrium and existence of local
Hopf bifurcation

Let x = x−x∗, u = u−x∗, y = y−y∗. Dropping the bars, ignoring the higher order
terms, then from system (2.3) we obtain the following linear system

ẋ(t)

u̇(t)

ẏ(t)

 = A


x(t)

u(t)

y(t)

+B


x(t− τ)

u(t− τ)

y(t− τ)

 , (2.5)

where

A =


c1x
∗y∗

(x∗ + k1)2
−bx∗ − c1x

∗

x∗ + k1

σ −σ 0

0 0 0

 , B =


0 0 0

0 0 0

a2
2

c2
0 −a2

 .

The characteristic equation of system (2.5) is det(λI −A−Be−λτ ) = 0, i.e.

λ3 + d1λ
2 + d2λ+ (d3λ

2 + d4λ+ d5)e−λτ = 0, (2.6)
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where d1 = σ − c1x
∗y∗

(x∗ + k1)2
, d2 = − σc1x

∗y∗

(x∗ + k1)2
+ bx∗σ, d3 = a2, d4 = σa2 −

a2
c1x
∗y∗

(x∗ + k1)2
+

c1x
∗

(x∗ + k1)

a2
2

c2
, d5 = bx∗σa2 − a2σ

c1x
∗y∗

(x∗ + k1)2
+ σ

c1x
∗

(x∗ + k1)

a2
2

c2
.

The characteristic equation of system (2.5) without time delay is

λ3 + (d1 + d3)λ2 + (d4 + d5)λ+ d5 = 0. (2.7)

(H2) (d1 + d3) > 0, d5 > 0, (d1 + d3)(d4 + d2)− d5 > 0.
By (H2) and the Routh-Hurwitz criterion, we know that all the roots of Eq.(2.7)

have negative real parts, i.e., positive equilibrium E(x∗, x∗, y∗) is locally asymptot-
ically stable.

When τ > 0, noting that iω(ω > 0) is a root of Eq.(2.6), separating real and
imaginary parts, we have

(d5 − d3ω
2) cosωτ + d4ω sinωτ = d1ω

2,

− (d5 − d3ω
2) sinωτ + d4ω cosωτ = ω3 − d2ω.

(2.8)

Squaring and adding the two Eqs.(2.8) we obtain

ω6 + (−2d2 + d2
1 − d2

3)ω4 + (d2
2 − d2

4 + 2d3d5)ω2 − d2
5 = 0. (2.9)

Obviously, (2.9) has at least one positive real root. Without loss of generality, as-
suming that it has six positive real roots, denoted by ωi(i = 1, 2, · · · , 6) respectively.
So we have

cosωiτ =
d1ω

2
i (d5 − d3ω

2
i ) + d4ω(ω3

i − d2ωi)

(d5 − d3ω2
i )2 + (d4ωi)2

(i = 1, 2, · · · , 6).

Thus, denoting

τ ji =
1

ωi
arccos{d1ω

2
i (d5 − d3ω

2
i ) + d4ω(ω3

i − d2ωi)

(d5 − d3ω2
i )2 + (d4ωi)2

+ 2πj}(j = 0, 1, · · · ).

Then ±iωi is a pair of purely imaginary roots of (2.6) with τ = τ ji . Define

τ0 = τ0
i0 = min

i∈{1,2,3,··· ,6}
{τ0
i }, ω0 = ωi0.

Taking the derivative of λ with respect to τ in (2.6), it is easy to have

(3λ2 + 2d1λ+ d2)
dλ

dτ
+ (2d3λ+ d4)e−λτ

dλ

dτ
− (d3λ

2 + d4λ+ d5)e−λτ (τ
dλ

dτ
+ λ) = 0,

(
dλ

dτ
)−1 =

(3λ2 + 2d1λ+ d2) + (2d3λ+ d4)e−λτ

(d3λ2 + d4λ+ d5)e−λτλ
− τ

λ
.

To simplify our expression, we denote ω0, τ0 by ω, τ respectively, then

(
dλ

dτ
)−1 =

(−3ω2 + 2d1iω + d2) + (2d3iω + d4)(cosωτ − i sinωτ)

(−d3ω2 + d4iω + d5)(cosωτ − i sinωτ)iω
− τ

iω
.

Let A = −3ω2+d2+2d3ω sinωτ+d4 cosωτ, B = 2d1ω+2d3ω cosωτ−d4 sinωτ, C =
ω((−d3ω

2 +d5) sinωτ −d4ω cosωτ), D = ω((−d3ω
2 +d5) cosωτ +d4ω sinωτ), then

(
dλ

dτ
)−1 =

A+ iB

C + iD
− τ

iω
.
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Let Q = C2 +D2 > 0, then QRe(
dλ

dτ
)−1 = AC +BD. Noting that

sign[Re(
dλ

dτ
) |τ=τ0 ] = sign[Re(

dλ

dτ
)−1 |τ=τ0 ].

To obtain the transversal condition, we also need the condition as following

(H3) sign[Re(
dλ

dτ
) |τ=τ0 ] > 0, i.e., AC +BD > 0.

From Corollary 2.4 [21], it is easy to obtain the following theorem.

Theorem 2.1. Assume that (H1)− (H3) hold, then the following results hold:
(i) The positive equilibrium E(x∗, x∗, y∗) of system (2.3) is locally asymptotically

stable for τ ∈ [0, τ0);
(ii) System (2.3) undergoes a Hopf bifurcation when τ = τ0. That is, system

(2.3) has a branch of periodic solutions bifurcating from the positive equilibrium
E(x∗, x∗, y∗) near τ = τ0.

3. Direction and stability of Hopf bifurcation

In the previous section, we studied mainly the stability of the positive equilib-
rium E(x∗, x∗, y∗) and the existence of Hopf bifurcation at the positive equilibrium
E(x∗, x∗, y∗). In this section, we study the direction of bifurcation and stability
of bifurcating periodic solutions arising through Hopf bifurcation by applying the
normal form theory and center manifold theorem introduced by [12]. Throughout
this section, we always assume that system (2.3) undergoes Hopf bifurcation at the
positive equilibrium E(x∗, x∗, y∗) for τ = τ0, at which the characteristic Eq.(2.6)
has a pair of imaginary roots ±iω0.

Now we re-scale the time by t = sτ, x̂(s) = x(sτ)−x∗, û(s) = u(sτ)−x∗, ŷ(s) =
y(sτ)− y∗, τ = τ0 +µ, and still denote by x(t) = x̂(s), u(t) = û(s), y(t) = ŷ(s), then
system (2.3) can be written as

ϕ̇(t) = Lµ(ϕt) + f(µ, ϕt), (3.1)

where ϕ(t) = (x, u, y)T , ϕt(θ) = ϕ(t + θ), θ ∈ [−1, 0], for φ = (φ1, φ2, φ3) ∈
C([−1, 0], R3),

Lµ(φ)

=(τ0+µ)




c1x
∗y∗

(x∗ + k1)2
−bx∗ − c1x

∗

x∗ + k1

σ −σ 0

0 0 0



φ1(0)

φ2(0)

φ3(0)

+


0 0 0

0 0 0

a2
2

c2
0 −a2



φ1(−1)

φ2(−1)

φ3(−1)


 ,

and

f(µ, φ) = (τ0 + µ)


∑

i+j+k≥2

1

i!j!k!
f

(1)
ijkφ

i
1(0)φj2(0)φk3(0)

0∑
i+j+k≥2

1

i!j!k!
f

(2)
ijkφ

i
1(−1)φj3(−1)φk3(0)

 ,
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where f (1) = x(t)(a1 − bu(t) − c1y(t)

x(t) + k1
), f (2) = y(t)(a2 −

c2y(t− τ)

x(t− τ) + k2
), f

(1)
ijk =

∂i+j+kf (1)

∂xi∂uj∂yk

∣∣∣∣
(x∗,x∗,y∗)

, f
(2)
ijk =

∂i+j+kf (2)

∂xi∂uj∂yk

∣∣∣∣
(x∗,x∗,y∗)

. By the Riesz representation the-

orem, there exists a 3 × 3 matrix function η(θ, µ), θ ∈ [−1, 0], whose elements are
functions of bounded variation, such that

Lµ(φ) =

∫ 0

−1

dη(θ, µ)φ(θ).

In fact, we can choose

η(θ, µ) = (τ0+µ)




c1x
∗y∗

(x∗ + k1)2
−bx∗ − c1x

∗

x∗ + k1

σ −σ 0

0 0 0

 δ(θ)−


0 0 0

0 0 0

a2
2

c2
0 −a2

 δ(θ + 1)

 .

For φ ∈ C1([−1, 0], R3), define

A(µ)φ =


dφ

dθ
, θ ∈ [−1, 0),∫ 0

−1

dη(s, µ)φ(s), θ = 0,

and R(µ)φ =

{
0, θ ∈ [−1, 0),

f(µ, φ), θ = 0.
(3.2)

Then system (3.1) is equivalent to the following abstract ODE

ϕ̇t = A(µ)ϕt +R(µ)ϕt, (3.3)

where ϕt(θ) = ϕ(t + θ) for θ ∈ [−1, 0]. For ψ ∈ C1([0, 1], (C3)∗) , where(C3)∗ is
3-dimensional complex row vector. The adjoint operator A∗ of A(0) is defined as

A∗ψ(s) =


− dψ

ds
, s ∈ (0, 1],∫ 0

−1

ψ(−t)dη(t, 0), s = 0.

(3.4)

For ψ ∈ C1([0, 1], (C3)∗), φ ∈ C1([−1, 0], C3) , we define a bilinear inner product

< ψ(s), φ(θ) >= ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (3.5)

where η(θ) = η(θ, 0), which meets < ψ,Aφ >=< A∗ψ, φ >. By the discussion in
Section 2 and transformation t = sτ , we know that ±iω0τ0 are eigenvalues of A(0).
Thus,they are also eigenvalues of A∗. Next we need to calculate the eigenvector
of A(0) and A∗ corresponding to iω0τ0 and −iω0τ0, respectively. Suppose that
q(θ) = (1, α, β)T eiω0τ0θ is the eigenvector of A(0) corresponding to iω0τ0, from the
definition of A(0), we have

τ0


iω0 −

c1x
∗y∗

(x∗ + k1)2
bx∗

c1x
∗

x∗ + k1

−σ iω0 + σ 0

−a
2
2e
−iω0τ0

c2
0 iω0 + a2e

−iω0τ0

 q(0) = 0.
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Thus, we get

α =
σ

iω + σ
, β =

a2
2e
−iω0τ0

c2(iω0 + a2e−iω0τ0)
.

Suppose that q∗(θ) = D(1, α∗, β∗)eiω0τ0θ is the eigenvector of A∗ corresponding to
−iω0τ0, from the definition of A∗ , we have

τ0


−iω0 −

c1x
∗y∗

(x∗ + k1)2
−σ −a

2
2e
iω0τ0

c2

bx∗ −iω0 + σ 0
c1x
∗

x∗ + k1
0 −iω0 + a2e

iω0τ0




1

α∗

β∗

 = 0.

Thus, we obtain

α∗ =
bx∗

iω − σ
, β∗ =

c1x
∗

x∗ + k1

iω0 − a2eiω0τ0
.

Since

< q∗(s), q(θ) >= D̄(1, ᾱ∗, β̄∗)(1, α, β)T

−
∫ 0

−1

∫ θ
ξ=0

D̄(1, ᾱ∗, β̄∗)e−iω0τ0(ξ−θ)dη(θ)(1, α, β)T eiω0τ0ξdξ

= D̄{1 + αᾱ∗ + ββ̄∗ −
∫ 0

−1
(1, ᾱ∗, β̄∗)θeiω0τ0θdη(θ)(1, α, β)T }

= D̄{1 + αᾱ∗ + ββ̄∗ + τ0(
a2

2β̄
∗

c2
− a2β̄∗β)e−iω0τ0}.

In order to assure < q∗(s), q(θ) >= 1 and < q∗(s), q̄(θ) >= 0, we choose

D̄ =
1

1 + αᾱ∗ + ββ̄∗ + τ0(
a2

2β̄
∗

c2
− a2β̄∗β)e−iω0τ0

.

In the following part of this section, we use the theory by [12] to compute the
coordinates describing center manifold C0 at µ = 0. Define

z(t) =< q∗, ϕt >,W (t, θ) = ϕt(θ)− 2Re{z(t)q(θ)}. (3.6)

On the center manifold C0 , we have W (t, θ) = W (z(t), z̄(t), θ) where

W (z(t), z̄(t), θ) = W20
z2

2
+W11zz̄ +W02

z̄2

2
+ · · · , (3.7)

z and z̄ are local coordinates for the center manifold C0 in the direction of q∗ and
q̄∗. Note that W is real if ϕt is real, we are only interested in real solutions. For
the solution ϕt ∈ C0 of (3.3), since µ = 0, which together with (3.2) − (3.6) imply
that

ż(t) = < q∗, ϕ̇t >=< q∗, A(0)ϕt > + < q∗, R(0)ϕt >

= iω0τ0z(t) + q̄∗(0)f(0,W (z(t), z̄(t), 0) + 2Re{z(t)q(0)})

= iω0τ0z(t) + g(z, z̄),

(3.8)
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where

g(z, z̄) = q̄∗(0)f(0,W (z(t), z̄(t), 0) + 2Re{z(t)q(0)}) def= q̄∗(0)f0(z, z̄)

= g20
z2

2 + g11zz̄ + g02
z̄2

2
+ g21

z2z̄
2 + · · · .

(3.9)

From(3.6) and (3.7), we know that ϕt(θ) = (ϕ1t(θ), ϕ2t(θ), ϕ3t(θ))
T = W (t, θ) +

z(t)q(θ) + z̄(t)q̄(θ), q(θ) = (1, α, β)T eiω0τ0θ, and

ϕ1t(0) = W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ z + z̄ + · · · ,

ϕ2t(0) = W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ αz + αz + · · · ,

ϕ3t(0) = W
(3)
20 (0)

z2

2
+W

(3)
11 (0)zz̄ +W

(3)
02 (0)

z̄2

2
+ βz + βz + · · · ,

ϕ1t(−1) = W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄+W

(1)
02 (−1)

z̄2

2
+ e−iω0τ0z+ eiω0τ0 z̄+ · · · ,

ϕ3t(−1) = W
(3)
20 (−1)

z2

2
+W

(3)
11 (−1)zz̄+W

(3)
02 (−1)

z̄2

2
+e−iω0τ0βz+eiω0τ0 β̄z̄+· · · .

According to (3.8) and (3.9), we obtain

g(z, z̄) =q̄∗(0)f0(z, z̄)

=τ0D̄(1, ᾱ∗, β̄∗)


∑

i+j+k≥2

1

i!j!k!
f

(1)
ijkϕ

i
1t(0)ϕj2t(0)ϕk3t(0)

0∑
i+j+k≥2

1

i!j!k!
f

(2)
ijkϕ

i
1t(−1)ϕj3t(−1)ϕk3t(0)


=τ0D̄{z2[

f
(1)
200

2
+ f

(1)
110α+ f

(1)
101β + f

(1)
011αβ + β̄∗(

f
(2)
200

2
e−2iω0τ0 + f

(2)
110βe

−2iω0τ0

+ f
(2)
101βe

−iω0τ0 + f
(2)
011β

2e−iω0τ0)]

+ zz̄[f
(1)
200 + f

(1)
110(α+ ᾱ) + f

(1)
101(β + β̄) + f

(1)
011(αβ̄ + ᾱβ) + β̄∗(f

(2)
200

+ f
(2)
110(β + β̄) + f

(2)
101(β̄e−iω0τ0 + βeiω0τ0) + f

(2)
011ββ̄(eiω0τ0 + e−iω0τ0))]

+ z̄2[
f

(1)
200

2
+ f

(1)
110ᾱ+ f

(1)
101β̄ + f

(1)
011ᾱβ̄ + β̄∗(

f
(2)
200

2
e2iω0τ0 + f

(2)
110β̄e

2iω0τ0

+ f
(2)
101β̄e

iω0τ0 + f
(2)
011β̄

2eiω0τ0)]

+ z2z̄{[f
(1)
200

2
(W

(1)
20 (0) + 2W

(1)
11 (0))

+
f

(1)
110

2
(W

(1)
20 (0)ᾱ+ 2W

(1)
11 (0)α+W

(2)
20 (0) + 2W

(2)
11 (0))

+
f

(1)
101

2
(W

(1)
20 (0)β̄ + 2W

(1)
11 (0)β +W

(3)
20 (0) + 2W

(3)
11 (0))

+
f

(1)
011

2
(W

(2)
20 (0)β̄ +W

(3)
20 (0)ᾱ+ 2W

(2)
11 (0)β + 2W

(3)
11 (0)α)]

+ β̄∗[
f

(2)
200

2
(W

(1)
20 (−1)eiω0τ0 + 2W

(1)
11 (−1)e−iω0τ0)

+
f

(2)
110

2
(W

(1)
20 (−1)β̄eiω0τ0 +2W

(1)
11 (−1)βe−iω0τ0 +W

(3)
20 (−1)eiω0τ0
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+ 2W
(3)
11 (−1)e−iω0τ0)

+
f

(2)
101

2
(W

(1)
20 (−1)β̄ + 2W

(1)
11 (−1)β +W

(3)
20 (0)eiω0τ0 + 2W

(3)
11 (0)e−iω0τ0)

+
f

(2)
011

2
(W

(3)
20 (−1)β̄ +W

(3)
20 (0)β̄eiω0τ0 + 2W

(3)
11 (−1)β

+ 2W
(3)
11 (0)βe−iω0τ0)] +

f
(1)
300

2
+
f

(1)
201

2
(β̄ + 2β)

+
f

(1)
210

2
(ᾱ+ 2α) + f

(1)
111(αβ̄ + ᾱβ + αβ) + β̄∗[

f
(2)
300

2
e−iω0τ0

+
f

(2)
201

2
(β̄e−2iω0τ0 + 2β) +

f
(2)
210

2
e−iω0τ0(β̄ + 2β)

+ f
(2)
111(ββ̄ + β2 + β̄βe−2iω0τ0)]}+ · · · }.

Comparing the coefficients of (3.9) with the above equality, we get

g20 =2τ0D̄[
f

(1)
200

2
+ f

(1)
110α+ f

(1)
101β + f

(1)
011αβ

+ β̄∗(
f

(2)
200

2
e−2iω0τ0 + f

(2)
110βe

−2iω0τ0 + f
(2)
101βe

−iω0τ0 + f
(2)
011β

2e−iω0τ0)],

g11 =τ0D̄[f
(1)
200 + f

(1)
110(α+ ᾱ) + f

(1)
101(β + β̄) + f

(1)
011(αβ̄ + ᾱβ) + β̄∗(f

(2)
200

+ f
(2)
110(β + β̄) + f

(2)
101(β̄e−iω0τ0 + βeiω0τ0) + f

(2)
011ββ̄(e−iω0τ0 + eiω0τ0))],

g02 =2τ0D̄[
f

(1)
200

2
+ f

(1)
110ᾱ+ f

(1)
101β̄ + f

(1)
011ᾱβ̄ + β̄∗(

f
(2)
200

2
e2iω0τ0 + f

(2)
110β̄e

2iω0τ0

+ f
(2)
101β̄e

iω0τ0 + f
(2)
011β̄

2eiω0τ0)],

g21 =2τ0D̄{[
f

(1)
200

2
(W

(1)
20 (0)+2W

(1)
11 (0))+

f
(1)
110

2
(W

(1)
20 (0)ᾱ+2W

(1)
11 (0)α+W

(2)
20 (0)

+ 2W
(2)
11 (0)) +

f
(1)
101

2
(W

(1)
20 (0)β̄ + 2W

(1)
11 (0)β +W

(3)
20 (0) + 2W

(3)
11 (0))

+
f

(1)
011

2
(W

(2)
20 (0)β̄ +W

(3)
20 (0)ᾱ+ 2W

(2)
11 (0)β + 2W

(3)
11 (0)α)]

+ β̄∗[
f

(2)
200

2
(W

(1)
20 (−1)eiω0τ0 + 2W

(1)
11 (−1)e−iω0τ0) +

f
(2)
110

2
(W

(1)
20 (−1)β̄eiω0τ0

+ 2W
(1)
11 (−1)βe−iω0τ0 +W

(3)
20 (−1)eiω0τ0 + 2W

(3)
11 (−1)e−iω0τ0)

+
f

(2)
101

2
(W

(1)
20 (−1)β̄ + 2W

(1)
11 (−1)β +W

(3)
20 (0)eiω0τ0 + 2W

(3)
11 (0)e−iω0τ0)

+
f

(2)
011

2
(W

(3)
20 (−1)β̄ +W

(3)
20 (0)β̄eiω0τ0 + 2W

(3)
11 (−1)β + 2W

(3)
11 (0)βe−iω0τ0)]

+
f

(1)
300

2
+
f

(1)
201

2
(β̄ + 2β) +

f
(1)
210

2
(ᾱ+ 2α) + f

(1)
111(αβ̄ + ᾱβ + αβ)

+ β̄∗[
f

(2)
300

2
e−iω0τ0 +

f
(2)
201

2
(β̄e−2iω0τ0 + 2β) +

f
(2)
210

2
e−iω0τ0(β̄ + 2β)

+ f
(2)
111(ββ̄ + β2 + β̄βe−2iω0τ0)]}.



84 Z. Guo, H. Huo, Q. Ren & H. Xiang

Now we compute W20(θ) and W11(θ). In view of (3.3) and (3.6), we obtain

Ẇ = ϕ̇t − żq − ˙̄zq̄ =

{
AW − 2Re{q̄∗(0)f0q(θ)}, θ ∈ [−1, 0),

AW − 2Re{q̄∗(0)f0q(θ)}+ f0, θ = 0,

def
= AW + h(z, z̄, θ),

(3.10)
where

h(z, z̄, θ) = h20(θ)
z2

2
+ h11(θ)zz̄ + h02(θ)

z̄2

2
+ · · · .

(3.11)

Taking the derivative of W with respect to t, we have

Ẇ = Wz ż +Wz̄ ˙̄z.

By (3.7), (3.8) and (3.11), comparing the corresponding coefficient, we obtain

(A− 2iω0τ0)W20(θ) = −h20(θ), (3.12)

AW11(θ) = −h11(θ). (3.13)

By (3.10) we know that for θ ∈ [−1, 0),

h(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ) = −gq(θ)− ḡq̄(θ).

Comparing the coefficients with (3.11) gives that

h20(θ) = −g20q(θ)− ḡ02q̄(θ), h11(θ) = −g11q(θ)− ḡ11q̄(θ). (3.14)

According to (3.12), (3.13), (3.14) and the definition of A, we know

Ẇ20(θ) = 2iω0τ0W20(θ) + g20q(θ) + ḡ02q̄(θ), Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ).

Noting q(θ) = q(0)eiω0τ0θ, so

W20(θ) =
ig20

ω0τ0
q(0)eiω0τ0θ +

iḡ02

3ω0τ0
q̄(0)e−iω0τ0θ + Ee2iω0τ0θ, (3.15)

W11(θ) =
−ig11

ω0τ0
q(0)eiω0τ0θ +

iḡ11

ω0τ0
q̄(0)e−iω0τ0θ + F, (3.16)

where F,E ∈ R3 is a constant vector. By (3.12), (3.13) and the definition of A in
(3.2), we have ∫ 0

−1

dη(θ, 0)W20(θ) = 2iω0τ0W20(0)− h20(0), (3.17)

and ∫ 0

−1

dη(θ, 0)W11(θ) = −h11(0). (3.18)

From (3.10), (3.14) and the definition of f0, we have

h20(0) = −g20q(0)− ḡ02q̄(0) + 2τ0(d1, 0, d2)T , (3.19)

and
h11(0) = −g11q(0)− ḡ11q̄(0) + τ0(d3, 0, d4)T , (3.20)
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where

d1 =
f

(1)
200

2
+ f

(1)
110α+ f

(1)
101β + f

(1)
011αβ,

d2 = (
f

(2)
200

2
+ f

(2)
110β)e−2iω0τ0 + (f

(2)
101β + f

(2)
110β

2)e−iω0τ0 ,

d3 = f
(1)
200 + f

(1)
110(α+ ᾱ) + f

(1)
101(β + β̄) + f

(1)
011(αβ̄ + ᾱβ),

d4 = f
(2)
200 + 2f

(2)
110Re(β) + 2f

(2)
101Re(βe

iω0τ0) + 2f
(2)
011ββ̄Re(e

iω0τ0).

Substituting (3.15) and (3.19) into (3.17) and noticing that

(iω0τ0I −
∫ 0

−1

eiω0τ0θdη(θ))q(0) = 0 and (−iω0τ0I −
∫ 0

−1

e−iω0τ0θdη(θ))q(0) = 0,

we obtain

(2iω0τ0I −
∫ 0

−1

e2iω0τ0θdη(θ))E = 2τ0(d1, 0, d2)T ,

which indicates that
2iω0 −

c1x
∗y∗

(x∗ + k1)2
bx∗

c1x
∗

x∗ + k1

−σ 2iω0 + σ 0

−a
2
2e
−2iω0τ0

c2
0 2iω0 + a2e

−2iω0τ0

E = 2(d1, 0, d2)T ,

it follows that

E = 2


2iω0 −

c1x
∗y∗

(x∗ + k1)2
bx∗

c1x
∗

x∗ + k1

−σ 2iω0 + σ 0

−a
2
2e
−2iω0τ0

c2
0 2iω0 + a2e

−2iω0τ0


−1

d1

0

d2

 .

Similarly, Substituting (3.16) and (3.20) into (3.18), we have

−
∫ 0

−1

dη(θ)F = τ0(d3, 0, d4)T ,

leads to 
− c1x

∗y∗

(x∗ + k1)2
bx∗

c1x
∗

x∗ + k1

−σ σ 0

−a
2
2

c2
0 a2

F =


d3

0

d4

 ,

it follows that

F =


− c1x

∗y∗

(x∗ + k1)2
bx∗

c1x
∗

x∗ + k1

−σ σ 0

−a
2
2

c2
0 a2


−1

d3

0

d4

 .
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Thus, we can determine W20(θ),W11(θ), Therefore, each gij in (3.9) is determined
by the parameters of system (2.3). Thus, we can evaluate the following values

c1(0) =
i

2ω0τ0
(g20g11 − 2|g11|2 −

1

3
|g02|2) +

g21

2
,

µ2 = − Rec1(0)

Reλ′(τ0)
,

τ2 = −Imc1(0) + µ2Imλ
′
(τ0)

τ0ω0
,

β2 = 2Rec1(0),

which determine the qualities of bifurcating periodic solution in the center manifold
at the critical value τ0; such that µ2 determines the direction of Hopf bifurcation:
if µ2 > 0(µ2 < 0), then the Hopf bifurcation is supercritical(subcritical) and the
bifurcating periodic solution exists for τ > τ0(τ < τ0); β2 determines the stability of
the bifurcating periodic solution: if β2 < 0(β2 > 0), the bifurcating periodic solution
is stable(unstable); and τ2 determines the period of the bifurcating periodic solution:
if τ2 > 0(τ2 < 0), the period increases(decreases).

4. Numerical simulations

In this section, we present some numerical simulation to verify the main results
by using MATLAB programming. We simulate the system (2.3) by choosing the
parameters a1 = 1.5, a2 = 0.5, b = 10, c1 = 1.5, c2 = 1.5, k1 = 10, k2 = 10, σ = 2,
some of the parameters are taken from the published theoretical results (see [4,28]),
then the system (2.3) has boundary equilibria E1(0, 0, 0), E2(0.15, 0.15, 0),
E3(0, 0, 3.3333) and one positive equilibrium E(0.1000, 0.1000, 3.3667) , since 10 =
k1a1
c1

> k2a2
c2

= 10
3 , then E1, E2, E3 are unstable (see Fig1, Fig2, Fig3). By al-

gorithms in the previous sections, we obtain ω0 = 0.5024, τ0 = 3.1235, c1(0) =
−281.9900 − 258.2700i, µ2 = 1294.1000, τ2 = 236.0245, β2 = −563.9860, the hy-
pothesis of (H1) − (H3) hold. Thus, E is stable whenτ ∈ [0, τ0), as depicted in
Fig.4 and Fig.5. When τ pass through the critical value τ0, E loss its stability and
Hopf bifurcation occurs at τ = τ0 = 3.1235, as depicted in Fig.6 and Fig.7. From
Fig.8 and Fig.9, it is evident that the system (2.3) undergoes a Hopf bifurcation
at E whenτ = τ0 = 3.1235. Since µ2 > 0, β2 < 0, τ2 > 0 the Hopf bifurcation is
supercritical and the direction of bifurcation is τ > τ0 and the bifurcating periodic
solution is stable and the period increases.

5. Conclusion

In this paper, a modified Leslie-Gower predator-prey system with the Holling-II
functional response and discrete and distributed delays is investigated. By choosing
the discrete delay τ as the bifurcation parameter and analyzing the corresponding
characteristic equation, the sufficient conditions for the local stability of the positive
equilibrium and the existence of Hopf bifurcation are obtained. By using the normal
form method and center manifold theorem, the explicit formulas which determine
the direction, stability, and other properties of bifurcating periodic solutions are
derived. Finally, numerical simulations are given to verify the theoretical analysis.
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Figure 1. The trajectory of prey and predator density versus time with different initial conditions near
E1. E1 is unstable.
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Figure 2. The trajectory of prey and predator density versus time with different initial conditions near
E2. E2 is unstable.
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Figure 3. The trajectory of prey and predator density versus time with different initial conditions near
E3. E3 is unstable.
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Figure 4. The trajectory of prey and predator
density versus time with the initial condition
(x0, u0, y0) = (0.01, 0.01, 2). When τ = 3 <
τ0, the equilibrium point E is asymptotically
stable.
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From these waveforms and the phase trajectories above, it is shown that these
results are in accord with the theoretical analysis.

From the research results of this paper, for the modified Leslie-Gower predator-
prey system with discrete and distributed delays, we can predict the dynamical
behavior of system by choosing parameter τ . If time delays are small enough,
the interior equilibrium of system will keep stable in the long run, which indicates
the state of ecological balance; if time delays are large enough, system becomes
unstable, which suggests that the densities of the predator and prey population
will periodic oscillation in a range and predator and prey population may become
extinct, as depicted in Fig.6. Therefore, when the predator survival is threatened,
his evolution may tend to shorten the hunting delay τ , such as predator run faster
to keep the species survival.

In this paper, Holling type-II functional response is considered, if Holling type-II
functional response is changed into Holling type-III, IV functional response, what
will the dynamical behavior of system is? This is very valuable from the perspective
of biological diversity, and we leave it as the future work.
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