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Abstract: Let R be a commutative Noetherian ring, I and J be two ideals of R, and
M be an R-module. We study the cofiniteness and finiteness of the local cohomology
module Hj ;(M) and give some conditions for the finiteness of Hompg(R/I, Hj ;(M))
and Extp(R/I, Hj ;(M)). Also, we get some results on the attached primes of
HiFM(M).
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1 Introduction

Throughout this paper, we always assume that R is a commutative Noetherian ring, I and J
are two ideals of R, and M is an R-module. Takahashi et al.l'] introduced the concept of local
cohomology module Hj ;(M) with respect to a pair of ideals (I, .J). The set of elements x of
M such that I C Ann(z) + J for some integer n > 1 is said to be (I, J)-torsion submodule
of M and is denoted by I'; j(M). For an integer ¢ > 0, the local cohomology functor H} J
with respect to (I, J) is defined to be the i-th right derived functor of I'; ;. Note that, if
J =0, then Hj ;(-) coincides with H}(-). When M is finitely generated, we know that
H}"J(M) =0 for ¢ > dimM from Theorem 4.7 in [1].
Hartshornel?! defined an R-module M to be I-cofinite if

SuppM C V(I)  and  Exth(R/I, M)
is finitely generated for all 4 > 0. Also, he asked the following question:

Question If M is finitely generated, when is Extg%(R/I , Hi(M)) finitely generated for
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all i > 0 and j > 0 (considering Supp(H:(M)) C V(I), so Ext’(R/I, Hi(M)) is finitely
generated if and only if H(M) is I-cofinite).

Hartshornel? showed that if (R, m) is a complete regular local ring and M is finitely
generated, then H:(M) is I-cofinite in two cases:

(a) I is a non-zero principal ideal;

(b) I is a prime ideal with dimR/I = 1.

Yoshidal®!, Delfino and Marley!* extended (b) to all dimension one ideals I of any local
ring R, and Kawasakil® proved (a) for any ring R.

Let

W(I,J)={p € Spec(R) | I" C J + p for an integer n > 1}.

As a generalization of I-cofinite module, we give the following definition:

Definition 1.1  An R-module M is said to be (I,J)-cofinite if SuppM C W(I,J) and
Extb(R/I, M) is finitely generated for all i > 0.

For an R-module M, the cohomological dimension of M with respect to I and J is
defined as

Cd(Iv JvM) = Sup{i €Z | H},](M) 7£ O}

When J = 0, then c¢d(I, J, M) coincides with ed(I, M).
In this paper, we mainly consider the (I, .J)-cofiniteness of Hj ;(M). Since
Supp(Hj ;(M)) € W(I,J),
we focus on the finiteness of Ext%(R/I, Hj ;(M)).

In Section 2, we discuss the finiteness of Hompg(R/I, Hj ;(M)) (see Theorem 2.1), which
generalizes Theorem 2.1 in [6] and Theorem B(3) in [7]. n addition, when M is finitely
generated and I is a principal ideal or c¢d(Z,J, M) = 1, we get the (I, J)-cofiniteness of
H}', 5 (M) for all ¢ > 0, which generalizes the corresponding results in [5] and [9], respectively.
In Proposition 2.3(iii) of [10], it is proved that if

Hi{(M)=0, 0<i<s,
then
Hom(R/I, Hj(M)) = Ext3,(R/I, M).

In this paper, we get the corresponding result for the local cohomology module with re-
spect to (I,J). In Section 3, we prove the (I,J)-cofiniteness of H{" (M), which is a
generalization of Theorem 3 in [4].

2 The Cofiniteness of Hj ;(M)

First, we give a theorem which is a generalization of Theorem 2.1 in [6] and Theorem B(f)

in [7]. It is also a main result of this paper.
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Theorem 2.1  Assume that M is an R-module, and s is a non-negative integer, such
that Extyp(R/I, M) is finitely generated. If Hy ;(M) is (I,.J)-cofinite for all i < s, then
Hompg(R/I, Hj ;(M)) is finitely generated. In particular, Ass(Hj ;(M)) NV (I) is a finite

set.

Proof.  We use induction on s. Let s = 0. Then
Homp(R/I,H} ;(M)) = Hompg(R/I, M).
This result is clear. Now we assume that s > 0, and the result has been proved for smaller
values of s. Since H} ;(M) is (I, J)-cofinite, Exth(R/I, H} ;(M)) is finitely generated for
all i > 0. The short exact sequence
0— H} ;(M)— M — M/H} ;(M)—0
induces the exact sequence
Exty(R/I, M) — Exth(R/I, M/H} ;(M)) — Ext}; ' (R/I, H} ;(M)).
Then we get that Extyz(R/I, M/H} ;(M)) is finitely generated.
It is easy to see that
H?,J(M/H?,J(M)) =0, H}J<M/H?J(M)) = H;,J<M)7 i > 0.
So, we may assume that
H} (M) =0.
Then
HY(M) =0.
Let E be an injective hull of M and put N = E/M. Then
H} ;(E)=0 and  Homg(R/I,E)=0.
From the short exact sequence
0—-M—FE—N—Q0,
we have that

Exth(R/I, N) = Ext'y (R/I, M)
and
Hp;(N) = H T} (M), 20,
Applying the inductive hypothesis to N, it yields the finiteness of Homp(R/I ,Hi}l(N ).
Hence Homg(R/I, H; ;(M)) is finitely generated. It follows that Ass(Hy ;(M)) N V(1) is
a finite set.

Proposition 2.1  Assume that M is an R-module, and s is a non-negative integer, such
that Ext?'l(R/I, M) is finitely generated. IfExt‘;%H_i(R/I, H}J(M)) is finitely generated
for alli < s, then ExtR(R/I, Hj ;(M)) is finitely generated.

Proof.  We prove the result by induction on s. When s = 0, from the short exact sequence
0— H} ;(M)— M — M/H} ;(M) — 0,
we get the exact sequence
0 =Homp(R/I, M/HY} ;(M)) — Extp(R/I, H} ;(M)) — Extp(R/I, M) — 0.
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Then we have that Extp(R/I, HY ;(M)) is finitely generated.

Now we suppose that s > 0, and the claim has been proved for smaller values of s. From
the exact sequence

Exti ' (R/I, M) — Ext3 ' (R/I, M/HY ;(M)) — Ext5;*(R/I, HY ;(M)),
we get that Ext3, ' (R/I, M/ H} ;(M)) is finitely generated. By using the similar argument
to that of Theorem 2.1 and setting N = E(M)/M, we get that Exti(R/I, N) is finitely
generated and
ExtyU(R/I, Hj ,(N) = Exty " (R/1, HI} (M), i<s—1.

So Ext};i(R/ 1, Hf:]l (N)) is finitely generated by the inductive hypothesis. Therefore, we
get that Exth(R/1, Hj ;(M)) is finitely generated.

Proposition 2.2  Assume that M is finitely generated, and s is a mon-negative integer,
such that H} ;(M) is Artinian for all i < s. Then Hj ;(M) is (I,.J)-cofinite for all i < s.

Proof.  We use induction on i. When i = 0, since M is finitely generated, the result is clear.
Now we suppose that ¢ > 0, and the result has been proved for smaller values of 7. By the
inductive hypothesis, H},(M) is (I, J)-cofinite for all j < i. Hence, HomR(R/I7H}7J(M))
is finitely generated by Theorem 2.1, that is, O : Hi (M) 1 is finitely generated, and thus
/\(0 :H}',J(]W)I) < Q.
Since Hj ;(M) is an (I, J)-torsion, we have that
MNH"(ay, a9, az, H}J(M))) < 00,
where I = (a1, a2, ,a¢) for all & > 0 by Theorem 5.1 in [8]. By the same proof with
Theorem 5.5 in [9], we deduce that
ANExtR(R/I,H] ;(M)) <oo,  k>0.
Hence Hj ;(M) is (I,.J)-cofinite. Therefore, we get that Hj ;(M) is (I, .J)-cofinite for all
1< 8.
By Theorem 2.1 and Proposition 2.2, we have the following results.

Proposition 2.3  Assume that M is finitely generated, and s is a mon-negative integer,
such that Hj ;(M) is Artinian for all i < s. Then Homg(R/I, H} ;(M)) is finitely gener-
ated. In particular, Ass(H} ;(M)) NV (I) is a finite set.

Proposition 2.4  Assume that M is an R-module, and s is a non-negative integer, such
that Extg%(R/lL H},(M)) is finitely generated for all i and j (respectively for i < s and all
j). Then Ext'm(R/I, M) is finitely generated for all i (respectively for i < s).

Proof.  The case s = 0 is clear. Now we suppose that s > 0 and the case s — 1 is settled.
Set N = M/HY ;(M). Then we have the long exact sequence
-+ = ExtRQ(R/I, HY ;(M)) — Extiz(R/I, M) — ExtR{(R/I, N) — -
and
0, i=0;

H! (N) ,
1.7(N) {H}!J(M), i>0.
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So we assume that H7 ;(M) = 0. By the same proof as in Theorem 2.1 and setting L =
E(M)/M, we get

Extyp(R/I, L) = Extyy ' (R/I, M), Hj ;(L)=H;H (M), i>0.
Furthermore, we get the finiteness of Ext's(R/I, L) for all i (respectively for i < s — 1) by
the inductive hypothesis. So Ext:(R/I, M) is finitely generated for all i (respectively for
1 < s). The proof is completed.

Corollary 2.1  Assume that M is an R-module, and s is a non-negative integer, such
that Hy ;(M) is (I, J)-cofinite for all i (respectively for all i < s). Then Ext%(R/I, M) is
finitely generated for all i (respectively for all i < s).

Proposition 2.5  Assume that M is an R-module, s is a non-negative integer, such that
Ext}(R/I, M) is finitely generated for alli > 0, and H}ﬁ(M) is (I, J)-cofinite for all i # s.
Then Hj ;(M) is (I, J)-cofinite.

Proof.  We prove the result by induction on s. Let N = M/ H?J(M ). Then we have that
i ] 0 1 =0
A5 (N) = { Hi (M), i>0.
When s = 0, H} ;(N) is (I, .J)-cofinite for all i > 0. Then Exti(R/I, N) is finitely generated
for all ¢ > 0 by Corollary 2.1. From the short exact sequence
0— H} ;(M)— M — N — 0,
we get the following long exact sequence:
- = Bxtp(R/I, HY ;(M)) = ExtR(R/I, M) — Exth(R/I, N) — -,
which implies that Extiz(R/I, HY ;(M)) is finitely generated for all i > 0, that is, HY ;(M)
is (I, J)-cofinite. 7 ’

Now we assume that s > 0 and the claim holds for s — 1. We see that Ext%(R/I, N) is
finitely generated for all 7 > 0. By using the above long exact sequence and similar argument
to that of Theorem 2.1 and letting L = E(M)/M, we can get

Extyr(R/I, L) = Exty ' (R/I, M), Hj,(L)=H} (M), i>0.
So Hf}l(L) is (1, J)-cofinite by the inductive hypothesis. Then Hj ;(M) is (I, J)-cofinite.
The proof is completed.

Corollary 2.2 Assume that M is a finitely generated R-module, and cd(I,J, M) = 1.
Then H} ;(M) is (I,.J)-cofinite for all i > 0.

Proposition 2.6  Assume that M is a finitely generated R-module, and I is a principal
ideal. Then Hj ;(M) is (I,.J)-cofinite for alli > 0.

Proof.  Note that Hj ;(M) =0 for all i > ara(IR) by Proposition 4.11 in [1], where
R=R/VJ+ AnnM.

So when [ is a principal ideal, H},J(M) =0forall7 > 1. Since H?_’J(M) is finitely generated,

Hj ;(M) is (I, J)-cofinite for all i # 1. The result is clear.
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Proposition 2.7  Assume that M is an R-module. Then we have
Hom(R/I, Hj ;(M)) = Extp(R/I, M/Hj ;(M)).

Proof.  Let E be the injective hull of M/H} ;(M). Put N = E/(M/H} ;(M)). Since
H?,J(M/H?,J(M)) =0,
we have
H} ;(E)=0 and Homg(R/I, E)=0.
From the exact sequence
0— M/H} ;(M) - E — N —0,

we have
Hom(R/I, N) = Exty(R/I, M/H} ;(M)),
and
H} ;(N) = Hp ;(M/H} ;(M)).
Hence

Hom(R/I, Hy ;(M)) = Hom(R/I, Hj ;(M/H] ;(M)))
=~ Hom(R/I, HY ;(N))
>~ Hom(R/I, N)
~ Extp(R/I, M/HY ;(M)).

Next we give a proposition, which generalizes Proposition 2.3(iii) of [10].

Proposition 2.8  Assume that M is an R-module, and s is a positive integer such that
Hj ;(M) =0, 0<i<s.
Then
Hom(R/I, Hj ;(M)) = Extr(R/I, M).

Proof.  When s =1, H ;(M) = 0. The result is clear, since
Hom(R/I, HY ,(M)) = Homp(R/1, M).
Suppose that s > 1 and the claim holds for s — 1. Let E be an injective hull of M. Put
N = E/M. Since H} ;(M) =0, we have H} ;(E) = 0. By the exact sequence
0—-M-—>FE—N—Q0,

we have
Extyy '(R/I, N) = ExtR(R/I, M), Hj(N)=H;i ;(M), i>0.
So
Hj ;(N)=0, 0<i<s-—1L1
Thus

Hom(R/I, Hj}'(N)) = Ext}; '(R/I, N)

by the induction hypothesis. Hence
Hom(R/I, Hf ;(M)) = Extp(R/I, M).
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3 The Cofiniteness of H{"" (M)

In this section, we always assume that (R, m) is a commutative Noetherian local ring, I and
J are two ideals of R, and M is an R-module.

Assume that M is finitely generated. We know that H }%“M (M) is Artinian by Theorem
2.1 in [11]. Next, we discuss Att(H}{i“]nM (M)) and the cofiniteness of H}{if,"M (M).

Lemma 3.11"21  Suppose that M is a non-zero finitely generated R-module of dimension
n. Then
Att(HT ;(M)) = {p € AssM | cd(I, R/p)=n, J Cp}.

Next, we show the cofiniteness of H}{if]’“M (M). The following proposition is the key for
this fact.

Proposition 3.1  Assume that R is a complete ring and M 1is a finitely generated R-

module of dimension n. Then
Att(HY ;(M)) = {p € V(Ann(M)) | dimR/p=n, /I +p=m, J C p}.

Proof.  Since H7 (M) is Artinian, we have
Att(HF(M)) = AssD(H} (M)) = Coass(Hf (M)).
Hence
{p € AssM | cd(I, R/p) =n} = {p € V(Aun(M)) | dimR/p =n, \/T+p=m}
by Theorem A in [13] and Lemma 3 in [4], therefore
{p € AssM | c¢d(I,R/p) =n, J C p}

= {p e V(Ann(M)) | dimR/p =n,/I +p=m,J C p}.
Now the result is clear by Lemma 3.1.
Next, we give the main result of this section.

Theorem 3.1  Assume that M is a finitely generated R-module of dimension n. Then
HY ;(M) is (I, J)-cofinite. In fact, Exth(R/I, HY ;(M)) has finite length for all i > 0.

Proof.  Considering that H7 ;(M) is Artinian, we know that Ext%(R/I, HY ;(M))is Ar-
tinian and
Extn(R/I, Hf ;(M)) = Extp(R/IR, H}jy (M), i>0.
So we assume that R is complete. We know that D(H} ;(M)) is finitely generated and
Att(HT ;(M)) is a finite set. Suppose that
Att(Hf (M) = {p1,- -+, pr}-
Then
SuppD(HT, ;(M)) = V(p10--- N pg).

From Matlis Duality Theorem, we get
ANExty(R/I, H} ;(M))) < 0o < AD(Extl(R/I, H} ;(M)))) < .
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Since

D(Exty(R/I, H} ;(M))) = Torf (R/I, D(H} ;(M)))

by Theorem 11.57 in [14], it is enough for us to show that

SuppTor] (R/I, D(H} ;(M))) C {m}.

In fact

SuppTorZR(R/I7 D(H?J(M))) cv(n SuppD(HﬁJ(M))
V)N V(pt N Npr)
V(

I+pin---Npg)

= {m}
by Proposition 3.1.
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