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Abstract: In this article, we study the Lie supertriple system (LSTS) T over a field
K admitting a nondegenerate invariant supersymmetric bilinear form (call such a T
metrisable). We give the definition of T,;-extension of an LSTS T, prove a necessary
and sufficient condition for a metrised LSTS (7, ¢) to be isometric to a T"-extension
of some LSTS, and determine when two T™-extensions of an LSTS are “same”, i.e.,
they are equivalent or isometrically equivalent.
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1 Introduction

A Lie (super)triple system over a field K is called pseudo-metrisable if it admits an in-
variant nondegenerate bilinear form, and if further, the bilinear form can be chosen to be
(super)symmetric, then T is called metrisable. Recently, metrisable Lie (super)triple sys-
tems have attracted a lot of attention due to its applications in the areas of mathematics
and physics (see, for example, [1-6]).

The method of T*-extension of Lie algebras was first introduced by Bordemann!” in
1997 and this method is an important method for studying algebraic structures. In our
early paper, we investigated the T*-extension of Lie triple systems (see [6]). This paper is

devoted to transfer the T*-extension method to Lie supertriple systems.

Throughout this paper, all Lie supertriple systems considered are assumed to be of finite

dimension over a field K.
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2 Lie Supertriple Systems

In this section, we first briefly sketch the notion of a (pseudo-)metrisable Lie supertriple
system.
Let V = V5 ® Vi be a Zs-graded space over K, where V5 and Vi are called bosonic and
fermionic space, respectively, in physics literature. We denote the degree by
{ 0, ifzeVy
deg(z) = .
1, it x € V7.
and write (—1)%Y := (—1)des(@)deg(y),
Any element considered in this article is always assumed to be homogeneous, i.e., either
zeVyoraxeli.
Notice that the associate algebra EndV is a superalgebra EndV = EndgV ¢ End;V/,
End,V = {a € EndV | aV, C Viy, s=0,1}, a=0,1.

Definition 2.1 A Lie supertriple system (LSTS) is a Za-graded space T = T & T} over
K with a trilinear composition [+, -, -], satisfying the following conditions:
(1) deg([zyz]) = (deg(z) + deg(y) + deg(z))(mod 2);
(2) [yzz] = —(=1)"Y[zyz];
(3) ()" [zyz] + (-1)**[yzz] + (=1)*[zay] = 0;
4) [uwvlzy2]] = [[uvalyz] + (=1) % [fuvy] 2] + (—1) T [zyuvz]].

An ideal of an LSTS T is a graded subspace I for which [I,7,T] C I. Moreover, if
[TII] =0, then I is called an abelian ideal of T. T is called abelian if it is an abelian ideal
of itself. For any graded subspace V in T, the centralizer Z7 (V) of V in T is defined by

Zr(V)={z eT|[zvt] = [ztv] =0, forallt € T, v e V}.
In particular, Z7(T) is called the center of T' and denoted simply by Z(T). If T is an LSTS,
define the lower central series for 7' by 70 := T and T"*! := [T"TT] for n > 0. T is called
nilpotent (of nilindex m) if there is a (smallest) positive integer m such that 7 = 0. Put
TO© := T and TV .= [TTTM]. Then T is called solvable (of length k) if there is a
(smallest) positive integer & such that 7*) = 0.

Definition 2.2  If an LSTS T admits a nondegenerate bilinear form b satisfying condi-

tions
(1) b(z,y) =0 unless d(z) = d(y); (consistence)
(2) b([z,y,ul, v) = _(_1>(x+y)ub(ua [z,y,v]), (invariance)

then we call T pseudo-metrisable and the pair (T,b) a pseudo-metrised LSTS. If, in addition,
b satisfies also;

(3) b(z,y) = (—1)"¥b(y, z), (supersymmetry)
then we call T metrisable and the pair (T,b) a metrised LSTS.

Proposition 2.1 The following conditions are equivalent:
(]‘) b([x,yvu}, U) = 7(71)(1+y)ub(u’ [l’,y,’l)]);
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(2) b([:z:,y,u}, 1)) = _(_1)(u+v)yb($’ [U7U7yD;

(3) b(x’ [y,u,v]) = (_1)my+uvb(y7 [JJ,U,U]).

Define multiplication operators L(-, -), P(-,-), R(-, ) on T by

L(z,y)z = [1,y,2],  Ple,y)z:= (1) [z2g],  R(z,y)z:= (~)T[z,2,9].
Definition 2.3  Forz,y,z € T, f € T*, define the following dual multiplication operators
on T* by

(1) (L (z,y)f)(2) == (=)™ f(L(y, 2)(2));

(2) (P*(z,9)f)(2) == (=1)" f(P(y,z)(2));

B) (R (z,9)/)(2) :== (=1)"f(R(y,z)(2)).
Noticing that for any z,y,z € T, f € T*,

L (2,9)f)(2) = (=1)"f([yz2]) = (=1) "7 f([zay]) — (1) f([zya])
= [(R(z,y)(2)) = (=)™ f(R(y,2)(2)) = ()" R*(y,z) — R*(2,y)) f(2)

and

(P*(z,9)f)(2) = (=)™ f(P(y, 2)(2)) = (—1)"WF) f([yza])
= — (=1)"FTEIVE f([2ya]) = —(=1)™ f(R(y, 2)(2)) = (=R*(xy) f)(2),
we have

Lz, y) = (D" R"(y,x) = R*(z,y) ~ and  P*(z,y) = —R'(z,y).  (2.1)

Definition 2.4 A trilinear mapping w : T x T x T — T* is called a 3-supercocycle if it
satisfies the following conditions:
(1) w(y,z,2) = =(=1)™w(z,y, 2);
(2) (-1)"w(=,y,2)+ (=1)""w(y, z,z) + (-1)*w(z, z,y) = 0;
(3) (—1)FIEHEI L (w, v)w(e, y, 2) + w(u, v, [2yz])
= R*(y, z)w(u,v,z) + (1) P*(z, 2)w(u,v,y) + (71)($+y)zL*(x,y)w(u,v, 2)

+ w([woa], y,2) + (=) 0(@, [uvy], 2) + (=) E (@, y, fuoz)).

3 T -extension

Recall that if ¢ is a bilinear form on a vector space V, and W is a subspace of V', then
the right orthogonal space (resp. left orthogonal space) of W is given by W+ := {v € V|
d(w,v) =0, Yw € W} (resp. *W = {v € V| ¢(v,w) = 0, Yw € W}). The intersection
of 1V and V% is called the kernel Ny of ¢. The following lemma gives the basic results of
pseudo-metrised LSTS.

Lemma 3.1  Let (T, ¢) be a pseudo-metrised LSTS over a field K, and V be an arbitrary
vector subspace of T .

(i) Let I be an ideal of T. Then +1 and I+ are ideals of T and I+, +1 C Zz(I);

(ii) For arbitrary subspace V, Zp (V) = [VTT|*+ =+ [VIT). If V is an ideal, then Zz (V)
is an ideal,

(iii) In particular, Z(T) = (TMW)+ =+ (TMW) for T = [TTT).
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Now we consider the transfer of invariant bilinear forms from one LSTS to another. Let
T (resp. T') be an LSTS over a field K, f (resp. g) be an invariant bilinear form on T' (resp.
T"), and m : T — T’ be a homomorphism of LSTS. Then we have the following lemma.

Lemma 3.2  Under the above assumptions, we have

(i) The pull back m*g of g is again an invariant bilinear form on T}

(ii) Suppose that m is surjective and kerm is contained in the kernel of f. Then the
projection f™ of f is an invariant bilinear form on T';

(iii) If U is a subsystem of T, then U N U~ is an ideal of U. Letp:U — U/(UNU?L)
be the projection and fy be the restriction of f to U x U. Then the projection (fu)P is a
nondegenerate invariant bilinear form on the factor system U/(U NUY);

(iv) The bilinear form f L g is invariant on the direct sum T & T'. Moreover, f L g is
nondegenerate if and only if f and g are nondegenerate.

The proofs of both Lemmas 3.1 and 3.2 are similar to that of Lie triple systems, which
can be found in [6].
Now we generalize the notion of 7T*-extension of a Lie triple system to that of a Lie

supertriple system.

Definition 3.1  Let T be an LSTS, T* be the dual space of T, and w be a 3-supercocycle.
Define a ternary multiplication on IT;T =T & T* by
[+ f,y+g, z+h]
= [zy2]r + w(z,y, 2) + ()L (2, y)h + (=1)" P* (2, 2)g + R (y, 2) f
for all x,y,z € T, and f,g,h € T*, where x + f (resp. y+ g, z + h) is homogeneous of
degree deg(x) (resp. deg(y), deg(z)), and [xyz]r is the Lie superbracket in T

Lemma 3.3  Under the above definition, if deg(w) = 0, then T T is an LSTS, which is
called the T -extension of the LSTS T by means of w. In particular, if w =0, then T§T is
called the trivial T*-extension of T.

Proof. Here we only consider the last equation in the definition of LSTS. We need to
verify
[u+i,v+4, [+ f,y+g, 2+ h]
=[[ut+i,vtj e+ fl, y+g z+h+ (D f [uti, v+ 5, y+gl, 2+ R
+ (1) @FEHED [ 4 f g tog, [uti, v+, 2+ R
for u,v,z,y,z € T, i,5,f,9,h € T*. Expand this equation by Definition 3.1. Then all
items consist of the ternary compositions in 7" and the 3-supercocycle w are canceled by the
definitions of an LSTS and a 3-supercocycle. The items consisting of h reads
(—1)@tnzt(uto) @ty Ly ) L* (z, y)h
= (=D)L ([wva), y)h 4+ (1) (1)L (2 [uoy])h
+ (71)(quv)(a:+y)+(u+'u)z+(:r+y)(u+v+z)L*(I7 y)L* (u,v)h,



NO. 1 FENG J. Q. T*-EXTENSION OF LIE SUPERTRIPLE SYSTEMS 55

that is,
h((=1) I Ly, 2) L(v, w))
= h(=(=1)""WL(y, [vuz]) - L([vuy], =) + L(v,u)L(y, z)).
The above equation holds due to the last equation in the definition of an LSTS. Other items
consisting of 4, j, f or g can be verified similarly. This completes the proof.
By this lemma, we always suppose that the 3-supercocycle w satisfies deg(w) = 0.
It is clear from the definition that the subspace T* is an abelian ideal of 7)1 and T

is isomorphic to the factor supertriple system 7T /T*. Moreover, consider the following
consistent supersymmetric bilinear form ¢ on T;T defined for all z,y € T, f,g € T* by

ar(z+f, y+g) = f(y) + (=1)"g(x). (3.1)

We then have the following lemma.

Lemma 3.4 Let T, T*, w and qr be as above. Then qr is a nondegenerate supersym-
metric bilinear form on TT and the following conditions are equivalent:

(1) gr is invariant

(2) wiz,y,u)(v) = =(=1)"w(z,y,v)(u);

(3) w(z,y,u)(v) = —(=1)FNEHDH VG (0, 0, y) (2);

(4) w(y,u,v)(z) = (~1)WHeretiovtg @ v u)(y).
Hence (T, qr) is a metrised LSTS if and only if w satisfies one of (2)-(4).

Proof. If x + f is orthogonal to all elements of T;*T, then, in particular, f(y) = 0 for
all y € T and g(z) = 0 for all ¢ € T*, which implies that f = 0 and © = 0. So the
supersymmetric bilinear form ¢z is nondegenerate.
Now we consider the invariant property. Let z,y,u,v € T and f,g,p,q € T*. Then we
have
ar(fz+f, y+g, u+pl, v+q)
= qr([wyu] + w(z,y,u) + (=)L (2, y)p + (~1)"Y P*(x,u)g + R*(y,u) f, v +q)
= w(z,y,u)(v) + (=) FVP(L(y, x)o) + (=1)"0FT g(P(u, z)v) + (=1)¥" f(R(u, y)v)
+ (—D) g ([ayu))
= wla, 5 u)(v) + (=)D P([yau]) + (~1) G g ([uva]) + (—1)PEEEIY f([uy])
(1) fyu)).
On the other hand,
D (utp, [z+ f, y+g, v+q])
D@ g (u+ p, [wyo] +w(z,y,0) + (=)L (@, y)q
D™P*(x,v)g + R*(y,v)f)
1EP(leyo]) — (1) w(z,y,v)(w) — (=1 (L (2,9)q) (u)
1™ (P (@, 0)g) (u) — (=1)" (R (y,v) f) ()

+

- (=
- (=
(=
- (=
- (=
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= (-1 P([ya]) — (1) w(z, y, 0)(w) — (-
= (~L)rrEO g (oua]) — (<1)20F) f ([uvy)
= (-1 P([yao]) — (1) w(z, y, ) (w) + (-
+ (=17t g ([uva]) + (=1 f ([vuy)).

Comparing these results we get that g is invariant if and only if

w(x,y,u)(v) = 7(71)uvw(x7y7v)(u).

In a similar way, by the equivalence condition of Proposition 2.1, we can obtain also that

1)ty (fyzu))

)

D@0 g([ayul)

qr is invariant if and only if
w(z,y,u)(v) = —(=1)HVETG (v, y) ()
and if and only if
w(y, u,0)(z) = (~1)WHeETHReG () (y).

Thus the lemma is proved.

4 Metrisable LSTS

Lemma 4.1  Let (T, ¢) be a metrised LSTS of dimension n over a field K, and I be an
isotropic D _dimensional subspace of T. Then I is an ideal of T if and only if I satisfies

IW .= [TII] = 0. Hence I is an ideal if and only if I is an abelian ideal of T

Proof. Since dim I + dim I+ = n it follows that I = I+. If I is an ideal of T, then
o([TIT), I) = ¢([TIT), I") =0.
Hence ¢(T, [TII]) = 0, and the non-degeneracy property of ¢ implies 1Y) = [TTI] = 0.
Conversely, if () = [TTI] = 0, then
o(I, [ITT)) = ¢(IT1], T) = ¢([T11], T) = 0.
Hence [ITT] C I+ = I. This implies that I is an ideal of 7.

Theorem 4.1  Let (T, ¢) be a metrised LSTS of dimension n over a field K of charac-
teristic not equal to two. Then (T, @) is isometric to a T*-extension (TB, qp) if and only
if n is even and T contains an isotropic ideal I (i.e., I C I*+) of dimension 3 In this
case: B=T/I.

Proof. Sufficiency. Since dimB = dimB*, it is clear that dimT}} B is even. Moreover, it is
clear from the definition of the multiplication in Definition 3.1 that B* is an isotropic ideal
of half the dimension of T B

Necessity. Suppose that I is an g—dimensional isotropic ideal of T. Let B denote
the factor supertriple system 7'/I and p : T — B the canonical projection. Now, since
the characteristic K is not equal to 2, we can choose an isotropic complementary vector
subspace By to I in T, ie.,, T = By @ I and B = By. Denote by py (resp. p1) the
projection T — By (resp. T — I) along I (resp. along By). Moreover, let ¢! denote the
linear map I — B* : i — (pxr — ¢(i,x)). It is well-defined because ¢(I,I) = 0. Since ¢ is
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nondegenerate, I = I, and dim/ = g = dimB. It follows that ¢’ is a linear isomorphism.

Furthermore, ¢! has the following intertwining property: Let x,7,z € T and i € I. Then
¢! ([zyi]) (pz) = ([xyi], =)
= — (=), [wyz])
= — (=)L (i) ([pz, py, p2])
= — (=)L (py, pr)¢! (i) (p2)
= — (=)L (pz, py)¢’ (i) (p2).
Hence after a completely analogous computation one has the following
¢! ([zyi]) = —(~1) T L* (pz, py)e? (i),
¢! ([ziy]) = (1) P*(pz, py)¢' (i), (4.1)

¢! (lizy]) = R*(pz, py)¢' (i),
where z,y € T and ¢ € 1. We define the following trilinear map:

w: B x Bx B = B*: (pbo, pby, pby) — &' (p1[bo, b, 7)),
where by, by and b are in By. This is well-defined since the restriction of the projection p
to By is a linear isomorphism. Now, let m denote the following linear map

T — B® B* : by +1i — pby + ¢ (),
where by € B and i € I. Since p is restricted to By and ¢! are linear isomorphisms, the map

m is also a linear isomorphism. Moreover, m is an isomorphism of the metrised LSTS (T, ¢)
to the T*-extension (7% B, qg). Indeed, let bg, b)), by € B and 4,¢,i” € I. Then

m([(bo + 1) (b + i) (b +1")])
= m(po([bo, b, bg]) + pa([bo, by, 61) + [bo, bo, "] + [bo, 3", 5] + [i, by, b))
= p(po([bo, by, bg]) + & (p1([bo, bo, bG]) + [bo, by, "] + [bo, 7', b5] + [7, by, b))
= [pbo, pbly, pby] + w(pbo, pby, pby) + (=1) TP L (pbo, pbp)¢’ (")
+ (=1)""% P* (pbo, pb§)6" (i) + R* (pb, pbG)¢" (1)
= [pbo + 6" (1), pby + &' (i"), P + 6" (i")]
= [m(bo + 1), m(by +1i"), m(by +i")],
where we use the definition of w, the intertwining properties of ¢!, the fact that p is a

homomorphism, the definition of the product in T} B, lemma 4.1 and (4.1). In addition, we
have

(m*qg)(bo + i, by +14') = qu(pbo + &' (i), pby + &' (i)
= ¢’ (i) (pbo) + &' (') (pbo)
= (i, b)) + o(i', b)
= ¢(bo + 1, by +1'),
where the fact that By could be chosen to be isotropic entered in the last equation. Hence,
m*qp = ¢ which implies that gp is an invariant symmetric bilinear form on 7B or that
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w is cyclic. Therefore, (T, ¢) and (T;B, gp) are isomorphic as metrised algebras and the
theorem is proved.

The proof of this theorem shows that the trilinear map w depends on the choice of the
isotropic subspace By of T' complementary to the ideal I. Therefore, there may be different
T*-extensions describing the “same” metrised LSTS.

Definition 4.1  Let B;, © = 1,2, be two LSTS’s over a field K and w; : B; X B; x B; —
B}, i = 1,2 be two different 3-supercocycles. The T*-extension T}, B; of B; are said to be
equivalent if By = By = B and there exists an isomorphism of LSTS & : T}, By — T, By
which is the identity on the ideal B* and which induces the identity on the factor LSTS
T3 B1/B* = B = T} By/B*. The two T*-extensions T, B; are said to be isometrically
equivalent if they are equivalent and @ is an isometry.

Theorem 4.2  Let B be an LSTS over a field of characteristic not equal to 2, and fur-
thermore, let w;, 1 = 1,2 be two 3-supercocycles: B x B x B — B*.
(i) T, Bi are equivalent if and only if there is a linear map z : B — B* such that for
all a,b,c € B
w1(a,b,¢) —ws(a,b,c)
= (=D)L (a,b)z(c) + (=1)"P*(a,c)2(b) + R*(b,c)z(a) — z([abc]).  (4.2)
If this is the case, then the supersymmetric part zs of z which is defined by
2 (B)d) = SO + ()M =D),  bdeB
induces a symmetric invariant bilinear form on B, i.e.,
zg(a)([deb]) = (1)1 (d)([abc]), a,b,c,d € B.
(ii) T3 B; are isometrically equivalent if and only if there is a linear map z : B — B*
such that (4.2) holds for all a,b,c € B and, in addition, the supersymmetric part zs of z
vanishes.

Proof. (i) The equivalence between T3 By and T75, By holds if and only if there is a homo-
morphism of LSTS

b : leBl — Tw*232
satisfying
Pd(b+g)=b+=z2(b)+g, be B, g€ B*,
where z is the component of @ that maps B to B*. Indeed, by the definition, ¢ must be
the identity on B* and we must have

b= p(b) = p(&(b)) = z1(b),
where z1(b) is the component of @ that maps B to B. Clearly, @ is a linear isomorphism
for arbitrary z. Then for all a,b,c € B and f,g,h € B*, we have

O(la+ f, b+g, c+hl)
®([abc] + wi(a, b, ¢) + (=1)@FVL* (a, b)h + (=1)° P*(a,¢)g + R* (b, ¢) f)
— fabe] + =([abe]) + w1 (a,b,¢) + (~1) VL (@, b)h + (—1) P (a,c)g + R*(b,0)F,
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where the multiplication is formed in 77, B;. On the other hand,

[B(a+ f)P(b+g)P(c+ h)]
=la+z(a)+ f, b+ 2z(b) + g, c+ z(c) + A]
= [abc] + wa(a, b, ¢) + (—1)(“+b)CL* (a,b)h + (—1)(a+b)CL*(a, b)z(c)
+ (=1)®P*(a,c)g + (=1)®*P*(a, c)z(b) + R*(b,¢) f + R*(b, ¢)z(a),

where the multiplication is formed in T}, B. Hence @ is a homomorphism of LSTS if and

only if (4.2) holds. Now split z into its anti-supersymmetric part z, defined by

za(0)(d) = %(Z(b)(d) — (=)"x(d)(b)),  bdeB,

and its supersymmetric part z; defined above. Then z = z5 + z,. We see that the right
hand side of (4.2) evaluated on d € B has the following form:

(—1)2erPer ez (o) ([bad)) + (~1)*C+F Dz (b) ([eda]) + (—1)* 02, (a) ([ded])
+ (=D)IOFFD 2 (d) ([abe]) + (=1 Pz (0)([bad]) + (1) D2 (b) ([edal)
+ (1) (a)([deb]) — (—1)1F )z (d) ([abe]).
(

Writing the above summation as s(abed) and considering

(abcd) ( ) a(b+c+d)+b(c+d)+cd (dcba),

by Lemma 3.4(4), we get

zs(a)([deb]) = (=1)*"**¢z,(d)([abe]),

which proves the invariance of the supersymmetric bilinear form induced by z;.

(ii) Let the isomorphism ¢ be defined as in (i). Then, we have for all b,d € B and

f,g9 € B*

qB(@(b+ f), ¢(d+g)) =aqs(b+2(b) + f, d+ 2(d) + 9)
z(b)(d) + z(d)(b) + f(d) + g(b)
2(b)(d) + 2(d)(b) + (b + f, d+9),

from which it is clear that ¢ is an isometry if and only if z; = 0.
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