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Abstract: In this article, we study the Lie supertriple system (LSTS) T over a field

K admitting a nondegenerate invariant supersymmetric bilinear form (call such a T

metrisable). We give the definition of T ∗
ω -extension of an LSTS T , prove a necessary

and sufficient condition for a metrised LSTS (T, ϕ) to be isometric to a T ∗-extension

of some LSTS, and determine when two T ∗-extensions of an LSTS are “same”, i.e.,

they are equivalent or isometrically equivalent.
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1 Introduction

A Lie (super)triple system over a field K is called pseudo-metrisable if it admits an in-

variant nondegenerate bilinear form, and if further, the bilinear form can be chosen to be

(super)symmetric, then T is called metrisable. Recently, metrisable Lie (super)triple sys-

tems have attracted a lot of attention due to its applications in the areas of mathematics

and physics (see, for example, [1–6]).

The method of T ∗-extension of Lie algebras was first introduced by Bordemann[7] in

1997 and this method is an important method for studying algebraic structures. In our

early paper, we investigated the T ∗-extension of Lie triple systems (see [6]). This paper is

devoted to transfer the T ∗-extension method to Lie supertriple systems.

Throughout this paper, all Lie supertriple systems considered are assumed to be of finite

dimension over a field K.
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2 Lie Supertriple Systems

In this section, we first briefly sketch the notion of a (pseudo-)metrisable Lie supertriple

system.

Let V = V0̄ ⊕ V1̄ be a Z2-graded space over K, where V0̄ and V1̄ are called bosonic and

fermionic space, respectively, in physics literature. We denote the degree by

deg(x) =

{
0, if x ∈ V0̄;

1, if x ∈ V1̄.

and write (−1)xy := (−1)deg(x)deg(y).

Any element considered in this article is always assumed to be homogeneous, i.e., either

x ∈ V0̄ or x ∈ V1̄.

Notice that the associate algebra EndV is a superalgebra EndV = End0̄V ⊕ End1̄V ,

EndαV = {a ∈ EndV | aVs ⊆ Vs+α, s = 0̄, 1̄}, α = 0̄, 1̄.

Definition 2.1 A Lie supertriple system (LSTS) is a Z2-graded space T = T0̄ ⊕ T1̄ over

K with a trilinear composition [ · , · , · ], satisfying the following conditions:

(1) deg([xyz]) = (deg(x) + deg(y) + deg(z))(mod 2);

(2) [yxz] = −(−1)xy[xyz];

(3) (−1)xz[xyz] + (−1)yx[yzx] + (−1)zy[zxy] = 0;

(4) [uv[xyz]] = [[uvx]yz] + (−1)(u+v)x[x[uvy]z] + (−1)(u+v)(x+y)[xy[uvz]].

An ideal of an LSTS T is a graded subspace I for which [I, T, T ] ⊆ I. Moreover, if

[TII] = 0, then I is called an abelian ideal of T . T is called abelian if it is an abelian ideal

of itself. For any graded subspace V in T , the centralizer ZT (V ) of V in T is defined by

ZT (V ) = {x ∈ T | [xvt] = [xtv] = 0, for all t ∈ T, v ∈ V }.
In particular, ZT (T ) is called the center of T and denoted simply by Z(T ). If T is an LSTS,

define the lower central series for T by T 0 := T and Tn+1 := [TnTT ] for n ≥ 0. T is called

nilpotent (of nilindex m) if there is a (smallest) positive integer m such that Tm = 0. Put

T (0) := T and T (n+1) := [T (n)TT (n)]. Then T is called solvable (of length k) if there is a

(smallest) positive integer k such that T (k) = 0.

Definition 2.2 If an LSTS T admits a nondegenerate bilinear form b satisfying condi-

tions

(1) b(x, y) = 0 unless d(x) = d(y); (consistence)

(2) b([x, y, u], v) = −(−1)(x+y)ub(u, [x, y, v]), (invariance)

then we call T pseudo-metrisable and the pair (T, b) a pseudo-metrised LSTS. If, in addition,

b satisfies also;

(3) b(x, y) = (−1)xyb(y, x), (supersymmetry)

then we call T metrisable and the pair (T, b) a metrised LSTS.

Proposition 2.1 [1] The following conditions are equivalent:

(1) b([x, y, u], v) = −(−1)(x+y)ub(u, [x, y, v]);
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(2) b([x, y, u], v) = −(−1)(u+v)yb(x, [u, v, y]);

(3) b(x, [y, u, v]) = (−1)xy+uvb(y, [x, v, u]).

Define multiplication operators L( · , · ), P ( · , · ), R( · , · ) on T by

L(x, y)z := [x, y, z], P (x, y)z := (−1)yz[xzy], R(x, y)z := (−1)(x+y)z[z, x, y].

Definition 2.3 For x, y, z ∈ T, f ∈ T ∗, define the following dual multiplication operators

on T ∗ by

(1) (L∗(x, y)f)(z) := (−1)xyf(L(y, x)(z));

(2) (P ∗(x, y)f)(z) := (−1)xyf(P (y, x)(z));

(3) (R∗(x, y)f)(z) := (−1)xyf(R(y, x)(z)).

Noticing that for any x, y, z ∈ T, f ∈ T ∗,

L∗(x, y)f)(z) = (−1)xyf([yxz]) = (−1)(x+y)zf([zxy])− (−1)xy+(x+y)zf([zyx])

= f(R(x, y)(z))− (−1)xyf(R(y, x)(z)) = ((−1)xyR∗(y, x)−R∗(x, y))f(z)

and

(P ∗(x, y)f)(z) = (−1)xyf(P (y, x)(z)) = (−1)x(y+z)f([yzx])

= − (−1)xy+xz+yzf([zyx]) = −(−1)xyf(R(y, x)(z)) = (−R∗(xy)f)(z),

we have

L∗(x, y) = (−1)xyR∗(y, x)−R∗(x, y) and P ∗(x, y) = −R∗(x, y). (2.1)

Definition 2.4 A trilinear mapping ω : T × T × T → T ∗ is called a 3-supercocycle if it

satisfies the following conditions:

(1) ω(y, x, z) = −(−1)xyω(x, y, z);

(2) (−1)xzω(x, y, z) + (−1)yxω(y, z, x) + (−1)zyω(z, x, y) = 0;

(3) (−1)(u+v)(x+y+z)L∗(u, v)ω(x, y, z) + ω(u, v, [xyz])

= R∗(y, z)ω(u, v, x) + (−1)xyP ∗(x, z)ω(u, v, y) + (−1)(x+y)zL∗(x, y)ω(u, v, z)

+ ω([uvx], y, z) + (−1)(u+v)xω(x, [uvy], z) + (−1)(u+v)(x+y)ω(x, y, [uvz]).

3 T ∗
ω-extension

Recall that if ϕ is a bilinear form on a vector space V, and W is a subspace of V , then

the right orthogonal space (resp. left orthogonal space) of W is given by W⊥ := {v ∈ V |
ϕ(w, v) = 0, ∀w ∈ W} (resp. ⊥W := {v ∈ V | ϕ(v, w) = 0, ∀w ∈ W}). The intersection

of ⊥V and V ⊥ is called the kernel Nϕ of ϕ. The following lemma gives the basic results of

pseudo-metrised LSTS.

Lemma 3.1 Let (T, ϕ) be a pseudo-metrised LSTS over a field K, and V be an arbitrary

vector subspace of T .

(i) Let I be an ideal of T . Then ⊥I and I⊥ are ideals of T and I⊥, ⊥I ⊂ ZT (I);

(ii) For arbitrary subspace V, ZT (V ) = [V TT ]⊥ =⊥ [V TT ]. If V is an ideal, then ZT (V )

is an ideal;

(iii) In particular, Z(T ) = (T (1))⊥ =⊥ (T (1)) for T (1) = [TTT ].
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Now we consider the transfer of invariant bilinear forms from one LSTS to another. Let

T (resp. T ′) be an LSTS over a field K, f (resp. g) be an invariant bilinear form on T (resp.

T ′), and m : T → T ′ be a homomorphism of LSTS. Then we have the following lemma.

Lemma 3.2 Under the above assumptions, we have

(i) The pull back m∗g of g is again an invariant bilinear form on T ;

(ii) Suppose that m is surjective and kerm is contained in the kernel of f . Then the

projection fm of f is an invariant bilinear form on T ′;

(iii) If U is a subsystem of T , then U ∩ U⊥ is an ideal of U . Let p : U → U/(U ∩ U⊥)

be the projection and fU be the restriction of f to U × U . Then the projection (fU )
p is a

nondegenerate invariant bilinear form on the factor system U/(U ∩ U⊥);

(iv) The bilinear form f ⊥ g is invariant on the direct sum T ⊕ T ′. Moreover, f ⊥ g is

nondegenerate if and only if f and g are nondegenerate.

The proofs of both Lemmas 3.1 and 3.2 are similar to that of Lie triple systems, which

can be found in [6].

Now we generalize the notion of T ∗-extension of a Lie triple system to that of a Lie

supertriple system.

Definition 3.1 Let T be an LSTS, T ∗ be the dual space of T, and ω be a 3-supercocycle.

Define a ternary multiplication on T ∗
ωT = T ⊕ T ∗ by

[x+ f, y + g, z + h]

= [xyz]T + ω(x, y, z) + (−1)(x+y)zL∗(x, y)h+ (−1)xyP ∗(x, z)g +R∗(y, z)f

for all x, y, z ∈ T, and f, g, h ∈ T ∗, where x + f (resp. y + g, z + h) is homogeneous of

degree deg(x) (resp. deg(y), deg(z)), and [xyz]T is the Lie superbracket in T .

Lemma 3.3 Under the above definition, if deg(ω) = 0, then T ∗
ωT is an LSTS, which is

called the T ∗-extension of the LSTS T by means of ω. In particular, if ω = 0, then T ∗
0 T is

called the trivial T ∗-extension of T .

Proof. Here we only consider the last equation in the definition of LSTS. We need to

verify

[u+ i, v + j, [x+ f, y + g, z + h]]

= [[u+ i, v + j, x+ f ], y + g, z + h] + (−1)(u+v)x[x+ f, [u+ i, v + j, y + g], z + h]

+ (−1)(u+v)(x+y)[x+ f, y + g, [u+ i, v + j, z + h]]

for u, v, x, y, z ∈ T, i, j, f, g, h ∈ T ∗. Expand this equation by Definition 3.1. Then all

items consist of the ternary compositions in T and the 3-supercocycle ω are canceled by the

definitions of an LSTS and a 3-supercocycle. The items consisting of h reads

(−1)(x+y)z+(u+v)(x+y+z)L∗(u, v)L∗(x, y)h

= (−1)(u+v+x+y)zL∗([uvx], y)h+ (−1)(u+v)x(−1)(u+v+x+y)zL∗(x, [uvy])h

+ (−1)(u+v)(x+y)+(u+v)z+(x+y)(u+v+z)L∗(x, y)L∗(u, v)h,
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that is,

h((−1)(u+v)(x+y)L(y, x)L(v, u))

= h(−(−1)(u+v)yL(y, [vux])− L([vuy], x) + L(v, u)L(y, x)).

The above equation holds due to the last equation in the definition of an LSTS. Other items

consisting of i, j, f or g can be verified similarly. This completes the proof.

By this lemma, we always suppose that the 3-supercocycle ω satisfies deg(ω) = 0.

It is clear from the definition that the subspace T ∗ is an abelian ideal of T ∗
ωT and T

is isomorphic to the factor supertriple system T ∗
ωT/T

∗. Moreover, consider the following

consistent supersymmetric bilinear form qT on T ∗
ωT defined for all x, y ∈ T, f, g ∈ T ∗ by

qT (x+ f, y + g) = f(y) + (−1)xyg(x). (3.1)

We then have the following lemma.

Lemma 3.4 Let T, T ∗, ω and qT be as above. Then qT is a nondegenerate supersym-

metric bilinear form on T ∗
ωT and the following conditions are equivalent:

(1) qT is invariant;

(2) ω(x, y, u)(v) = −(−1)uvw(x, y, v)(u);

(3) ω(x, y, u)(v) = −(−1)(u+v)(x+y)+xyω(u, v, y)(x);

(4) ω(y, u, v)(x) = (−1)(y+u+v)x+(y+u)v+yuω(x, v, u)(y).

Hence (T ∗
ω , qT ) is a metrised LSTS if and only if ω satisfies one of (2)–(4).

Proof. If x + f is orthogonal to all elements of T ∗
ωT , then, in particular, f(y) = 0 for

all y ∈ T and g(x) = 0 for all g ∈ T ∗, which implies that f = 0 and x = 0. So the

supersymmetric bilinear form qT is nondegenerate.

Now we consider the invariant property. Let x, y, u, v ∈ T and f, g, p, q ∈ T ∗. Then we

have

qT ([x+ f, y + g, u+ p], v + q)

= qT ([xyu] + ω(x, y, u) + (−1)(x+y)uL∗(x, y)p+ (−1)xyP ∗(x, u)g +R∗(y, u)f, v + q)

= ω(x, y, u)(v) + (−1)(x+y)u+xyP (L(y, x)v) + (−1)x(y+u)g(P (u, x)v) + (−1)yuf(R(u, y)v)

+ (−1)(x+y+u)vq([xyu])

= ω(x, y, u)(v) + (−1)(x+y)u+xyP ([yxv]) + (−1)x(y+u+v)g([uvx]) + (−1)yu+(y+u)vf([vuy])

+ (−1)(x+y+u)vq([xyu]).

On the other hand,

− (−1)(x+y)uqT (u+ p, [x+ f, y + g, v + q])

= − (−1)(x+y)uqT (u+ p, [xyv] + ω(x, y, v) + (−1)(x+y)vL∗(x, y)q

+ (−1)xyP ∗(x, v)g +R∗(y, v)f)

= − (−1)(x+y)uP ([xyv])− (−1)uvω(x, y, v)(u)− (−1)(x+y+u)v(L∗(x, y)q)(u)

− (−1)xy+uv(P ∗(x, v)g)(u)− (−1)uv(R∗(y, v)f)(u)
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= (−1)(x+y)u+xyP ([yxv])− (−1)uvω(x, y, v)(u)− (−1)(x+y+u)v+xyq([yxu])

− (−1)x(y+v+u)+uvg([vux])− (−1)y(u+v)f([uvy])

= (−1)(x+y)u+xyP ([yxv])− (−1)uvω(x, y, v)(u) + (−1)(x+y+u)vq([xyu])

+ (−1)x(y+v+u)g([uvx]) + (−1)y(u+v)+uvf([vuy]).

Comparing these results we get that qT is invariant if and only if

ω(x, y, u)(v) = −(−1)uvω(x, y, v)(u).

In a similar way, by the equivalence condition of Proposition 2.1, we can obtain also that

qT is invariant if and only if

ω(x, y, u)(v) = −(−1)(u+v)(x+y)+xyω(u, v, y)(x)

and if and only if

ω(y, u, v)(x) = (−1)(y+u+v)x+(y+u)v+yuω(x, v, u)(y).

Thus the lemma is proved.

4 Metrisable LSTS

Lemma 4.1 Let (T, ϕ) be a metrised LSTS of dimension n over a field K, and I be an

isotropic
n

2
-dimensional subspace of T . Then I is an ideal of T if and only if I satisfies

I(1) := [TII] = 0. Hence I is an ideal if and only if I is an abelian ideal of T .

Proof. Since dim I + dim I⊥ = n it follows that I = I⊥. If I is an ideal of T , then

ϕ([TIT ], I) = ϕ([TIT ], I⊥) = 0.

Hence ϕ(T, [TII]) = 0, and the non-degeneracy property of ϕ implies I(1) = [TII] = 0.

Conversely, if I(1) = [TII] = 0, then

ϕ(I, [ITT ]) = ϕ([ITI], T ) = ϕ([TII], T ) = 0.

Hence [ITT ] ⊂ I⊥ = I. This implies that I is an ideal of T .

Theorem 4.1 Let (T, ϕ) be a metrised LSTS of dimension n over a field K of charac-

teristic not equal to two. Then (T, ϕ) is isometric to a T ∗-extension (T ∗
ωB, qB) if and only

if n is even and T contains an isotropic ideal I (i.e., I ⊂ I⊥) of dimension
n

2
. In this

case: B ∼= T/I.

Proof. Sufficiency. Since dimB = dimB∗, it is clear that dimT ∗
ωB is even. Moreover, it is

clear from the definition of the multiplication in Definition 3.1 that B∗ is an isotropic ideal

of half the dimension of T ∗
ωB.

Necessity. Suppose that I is an
n

2
-dimensional isotropic ideal of T . Let B denote

the factor supertriple system T/I and p : T → B the canonical projection. Now, since

the characteristic K is not equal to 2, we can choose an isotropic complementary vector

subspace B0 to I in T , i.e., T = B0 ⊕ I and B⊥
0 = B0. Denote by p0 (resp. p1) the

projection T → B0 (resp. T → I) along I (resp. along B0). Moreover, let ϕI denote the

linear map I → B∗ : i → (px → ϕ(i, x)). It is well-defined because ϕ(I, I) = 0. Since ϕ is
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nondegenerate, I⊥ = I, and dimI =
n

2
= dimB. It follows that ϕI is a linear isomorphism.

Furthermore, ϕI has the following intertwining property: Let x, y, z ∈ T and i ∈ I. Then

ϕI([xyi])(pz) = ϕ([xyi], z)

= − (−1)(x+y)iϕ(i, [xyz])

= − (−1)(x+y)iϕI(i)([px, py, pz])

= − (−1)(x+y)i+xyL∗(py, px)ϕI(i)(pz)

= − (−1)(x+y)iL∗(px, py)ϕI(i)(pz).

Hence after a completely analogous computation one has the following
ϕI([xyi]) = −(−1)(x+y)iL∗(px, py)ϕI(i),

ϕI([xiy]) = (−1)ixP ∗(px, py)ϕI(i),

ϕI([ixy]) = R∗(px, py)ϕI(i),

(4.1)

where x, y ∈ T and i ∈ I. We define the following trilinear map:

ω : B ×B ×B → B∗ : (pb0, pb
′
0, pb

′′
0) → ϕI(p1[b0, b

′
0, b

′′
0 ]),

where b0, b
′
0 and b′′0 are in B0. This is well-defined since the restriction of the projection p

to B0 is a linear isomorphism. Now, let m denote the following linear map

T → B ⊕B∗ : b0 + i → pb0 + ϕI(i),

where b0 ∈ B and i ∈ I. Since p is restricted to B0 and ϕI are linear isomorphisms, the map

m is also a linear isomorphism. Moreover, m is an isomorphism of the metrised LSTS (T, ϕ)

to the T ∗-extension (T ∗
ωB, qB). Indeed, let b0, b

′
0, b

′′
0 ∈ B and i, i′, i′′ ∈ I. Then

m([(b0 + i)(b′0 + i′)(b′′0 + i′′)])

= m(p0([b0, b
′
0, b

′′
0 ]) + p1([b0, b

′
0, b

′′
0 ]) + [b0, b

′
0, i

′′] + [b0, i
′, b′′0 ] + [i, b′0, b

′′
0 ])

= p(p0([b0, b
′
0, b

′′
0 ]) + ϕI(p1([b0, b

′
0, b

′′
0 ]) + [b0, b

′
0, i

′′] + [b0, i
′, b′′0 ] + [i, b′0, b

′′
0 ])

= [pb0, pb
′
0, pb

′′
0 ] + ω(pb0, pb

′
0, pb

′′
0) + (−1)(b0+b′0)b

′′
0 L∗(pb0, pb

′
0)ϕ

I(i′′)

+ (−1)b0b
′
0P ∗(pb0, pb

′′
0)ϕ

I(i′) +R∗(pb′0, pb
′′
0)ϕ

I(i)

= [pb0 + ϕI(i), pb′0 + ϕI(i′), pb′′0 + ϕI(i′′)]

= [m(b0 + i), m(b′0 + i′), m(b′′0 + i′′)],

where we use the definition of ω, the intertwining properties of ϕI , the fact that p is a

homomorphism, the definition of the product in T ∗
ωB, lemma 4.1 and (4.1). In addition, we

have

(m∗qB)(b0 + i, b′0 + i′) = qB(pb0 + ϕI(i), pb′0 + ϕI(i′))

= ϕI(i)(pb′0) + ϕI(i′)(pb0)

= ϕ(i, b′0) + ϕ(i′, b)

= ϕ(b0 + i, b′0 + i′),

where the fact that B0 could be chosen to be isotropic entered in the last equation. Hence,

m∗qB = ϕ which implies that qB is an invariant symmetric bilinear form on T ∗
ωB or that
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ω is cyclic. Therefore, (T, ϕ) and (T ∗
ωB, qB) are isomorphic as metrised algebras and the

theorem is proved.

The proof of this theorem shows that the trilinear map ω depends on the choice of the

isotropic subspace B0 of T complementary to the ideal I. Therefore, there may be different

T ∗-extensions describing the “same” metrised LSTS.

Definition 4.1 Let Bi, i = 1, 2, be two LSTS’s over a field K and ωi : Bi × Bi × Bi →
B∗

i , i = 1, 2 be two different 3-supercocycles. The T ∗-extension T ∗
ωi
Bi of Bi are said to be

equivalent if B1 = B2 = B and there exists an isomorphism of LSTS Φ : T ∗
ω1
B1 → T ∗

ω2
B2

which is the identity on the ideal B∗ and which induces the identity on the factor LSTS

T ∗
ω1
B1/B

∗ = B = T ∗
ω2
B2/B

∗. The two T ∗-extensions T ∗
ωi
Bi are said to be isometrically

equivalent if they are equivalent and Φ is an isometry.

Theorem 4.2 Let B be an LSTS over a field of characteristic not equal to 2, and fur-

thermore, let ωi, i = 1, 2 be two 3-supercocycles: B ×B ×B → B∗.

(i) T ∗
ωi
Bi are equivalent if and only if there is a linear map z : B → B∗ such that for

all a, b, c ∈ B

ω1(a, b, c)− ω2(a, b, c)

= (−1)(a+b)cL∗(a, b)z(c) + (−1)abP ∗(a, c)z(b) +R∗(b, c)z(a)− z([abc]). (4.2)

If this is the case, then the supersymmetric part zs of z which is defined by

zs(b)(d) :=
1

2
(z(b)(d) + (−1)bdz(d)(b)), b, d ∈ B

induces a symmetric invariant bilinear form on B, i.e.,

zs(a)([dcb]) = (−1)ab+bczs(d)([abc]), a, b, c, d ∈ B.

(ii) T ∗
ωi
Bi are isometrically equivalent if and only if there is a linear map z : B → B∗

such that (4.2) holds for all a, b, c ∈ B and, in addition, the supersymmetric part zs of z

vanishes.

Proof. (i) The equivalence between T ∗
ω1
B1 and T ∗

ω2
B2 holds if and only if there is a homo-

morphism of LSTS

Φ : T ∗
ω1
B1 → T ∗

ω2
B2

satisfying

Φ(b+ g) = b+ z(b) + g, b ∈ B, g ∈ B∗,

where z is the component of Φ that maps B to B∗. Indeed, by the definition, Φ must be

the identity on B∗ and we must have

b = p(b) = p(Φ(b)) = z1(b),

where z1(b) is the component of Φ that maps B to B. Clearly, Φ is a linear isomorphism

for arbitrary z. Then for all a, b, c ∈ B and f, g, h ∈ B∗, we have

Φ([a+ f, b+ g, c+ h])

= Φ([abc] + ω1(a, b, c) + (−1)(a+b)cL∗(a, b)h+ (−1)abP ∗(a, c)g +R∗(b, c)f)

= [abc] + z([abc]) + ω1(a, b, c) + (−1)(a+b)cL∗(a, b)h+ (−1)abP ∗(a, c)g +R∗(b, c)f,



NO. 1 FENG J. Q. T ∗-EXTENSION OF LIE SUPERTRIPLE SYSTEMS 59

where the multiplication is formed in T ∗
ω1
B1. On the other hand,

[Φ(a+ f)Φ(b+ g)Φ(c+ h)]

= [a+ z(a) + f, b+ z(b) + g, c+ z(c) + h]

= [abc] + ω2(a, b, c) + (−1)(a+b)cL∗(a, b)h+ (−1)(a+b)cL∗(a, b)z(c)

+ (−1)abP ∗(a, c)g + (−1)abP ∗(a, c)z(b) +R∗(b, c)f +R∗(b, c)z(a),

where the multiplication is formed in T ∗
ω2
B2. Hence Φ is a homomorphism of LSTS if and

only if (4.2) holds. Now split z into its anti-supersymmetric part za defined by

za(b)(d) :=
1

2
(z(b)(d)− (−1)bdz(d)(b)), b, d ∈ B,

and its supersymmetric part zs defined above. Then z = zs + za. We see that the right

hand side of (4.2) evaluated on d ∈ B has the following form:

(−1)ac+bc+abza(c)([bad]) + (−1)a(b+c+d)za(b)([cda]) + (−1)bc+bd+cdza(a)([dcb])

+ (−1)d(b+c+a)za(d)([abc]) + (−1)ac+bc+abzs(c)([bad]) + (−1)a(b+c+d)zs(b)([cda])

+ (−1)bc+bd+cdzs(a)([dcb])− (−1)d(b+c+a)zs(d)([abc]).

Writing the above summation as s(abcd) and considering

s(abcd)− (−1)a(b+c+d)+b(c+d)+cds(dcba),

by Lemma 3.4(4), we get

zs(a)([dcb]) = (−1)ab+bczs(d)([abc]),

which proves the invariance of the supersymmetric bilinear form induced by zs.

(ii) Let the isomorphism Φ be defined as in (i). Then, we have for all b, d ∈ B and

f, g ∈ B∗

qB(Φ(b+ f), Φ(d+ g)) = qB(b+ z(b) + f, d+ z(d) + g)

= z(b)(d) + z(d)(b) + f(d) + g(b)

= z(b)(d) + z(d)(b) + qB(b+ f, d+ g),

from which it is clear that ϕ is an isometry if and only if zs = 0.
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