COMMUNICATIONS IN MATHEMATICAL RESEARCH **29**(1)(2013), 41–50

# $\mathcal{F}$ -perfect Rings and Modules\*

#### Lu Bo

(College of Mathematics and Information Science, Northwest Normal University, Lanzhou, 730070)

#### Communicated by Du Xian-kun

**Abstract:** Let R be a ring, and let  $(\mathcal{F}, \mathcal{C})$  be a cotorsion theory. In this article, the notion of  $\mathcal{F}$ -perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right  $\mathcal{F}$ -perfect if F is projective relative to R for any  $F \in \mathcal{F}$ . We give some characterizations of  $\mathcal{F}$ -perfect rings. For example, we show that a ring R is right  $\mathcal{F}$ -perfect if and only if  $\mathcal{F}$ -covers of finitely generated modules are projective. Moreover, we define  $\mathcal{F}$ -perfect modules and investigate some properties of them.

 $\textbf{Key words:} \ \mathcal{F}\text{-perfect ring,} \ \mathcal{F}\text{-cover,} \ \mathcal{F}\text{-perfect module, cotorsion theory, projective}$ 

module

2000 MR subject classification: 16D50, 16D40, 16L30

Document code: A

Article ID: 1674-5647(2013)01-0041-10

### 1 Introduction

In 1953, Eckmann and Schopf<sup>[1]</sup> proved the existence of injective envelopes of modules over any associative ring. The dual problem, that is, the existence of projective covers was studied by  $Bass^{[2]}$  in 1960. In spite of the existence of injective envelopes over any ring, he proved that over a ring R, all right modules have projective covers if and only if R is a right perfect ring. In [3], a ring R is called right almost-perfect if every flat right R-module is projective relative to R, and proved that a ring is right almost-perfect if and only if flat covers of finitely generated modules are projective. In this article, we introduce the concept of  $\mathcal{F}$ -perfect rings. We give some characterizations of  $\mathcal{F}$ -perfect rings. For example, we show that a ring R is right  $\mathcal{F}$ -perfect if and only if  $\mathcal{F}$ -covers of finitely generated modules are projective.

<sup>\*</sup>Received date: Aug. 23, 2010.

Let  $\mathcal{X}$  be a class of R-modules. We denote

$${}^{\perp}\mathcal{X} = \ker \operatorname{Ext}^{1}(\cdot, X) = \{ M \mid \operatorname{Ext}^{1}(M, X) = 0, \ \forall X \in \mathcal{X} \},$$

$$\mathcal{X}^{\perp} = \ker \operatorname{Ext}^{1}(X, \cdot) = \{ N \mid \operatorname{Ext}^{1}(X, N) = 0, \ \forall X \in \mathcal{X} \}.$$

A pair  $(\mathcal{F}, \mathcal{C})$  of classes of R-modules is called a cotorsion theory if  $\mathcal{F}^{\perp} = \mathcal{C}$  and  $\mathcal{F} = {}^{\perp}\mathcal{C}$  (see [4]). A cotorsion theory  $(\mathcal{F}, \mathcal{C})$  is called complete if every R-module has a special  $\mathcal{C}$ -preenvelope (and a special  $\mathcal{F}$ -precover) (see [5]). A cotorsion theory  $(\mathcal{F}, \mathcal{C})$  is called perfect if every R-module has a  $\mathcal{C}$ -envelope and an  $\mathcal{F}$ -cover (see [6, 7]). A cotorsion theory  $(\mathcal{F}, \mathcal{C})$  is said to be hereditary if whenever  $0 \to L' \to L \to L'' \to 0$  is exact with  $L, L'' \in \mathcal{F}$  then L' is also in  $\mathcal{F}$ , or equivalently, if  $0 \to C' \to C \to C'' \to 0$  is exact with  $C', C \in \mathcal{C}$  then C'' is also in  $\mathcal{C}$  (see [8]).

Let R be a ring and  $\mathscr C$  be a class of R-modules which is closed under isomorphic copies. A  $\mathscr C$ -precover of an R-module M is a homomorphism  $\varphi: F \to M$  with  $F \in \mathscr C$  such that for any homomorphism  $\psi: G \to M$  with  $G \in \mathscr C$ , there exists  $\mu: G \to F$  such that  $\varphi \mu = \psi$ . A  $\mathscr C$ -precover  $\varphi: F \to M$  is said to be a  $\mathscr C$ -cover if every endomorphism  $\lambda$  of F with  $\varphi \lambda = \varphi$  is an automorphism of F. Dually, a  $\mathscr C$ -preenvelope and a  $\mathscr C$ -envelope of an R-module are defined.

In [4] a ring R is called right almost-perfect if every flat right R-module is projective relative to R; equivalently, flat covers of finitely generated right R-modules are projective. It was shown that right perfect rings are right almost-perfect, and right almost-perfect rings are semiperfect, but not conversely. In Section 2, we introduce the notion of  $\mathcal{F}$ -perfect rings as a generalization of the notion of almost-perfect rings, that is, we call a ring R  $\mathcal{F}$ -perfect in case F is projective relative to R for any  $F \in \mathcal{F}$ . We give some characterizations of  $\mathcal{F}$ -perfect rings. For example, in Theorem 2.1 we show that a ring R is right  $\mathcal{F}$ -perfect if and only if  $\mathcal{F}$ -covers of finitely generated modules are projective. And in Theorem 2.3 we prove that a ring R is right  $\mathcal{F}$ -perfect if and only if for every right R-modules F with  $F \in \mathcal{F}$ , if

$$F = P + U$$
.

where P is a finitely generated projective summand of F and  $U \leq F$ , then

$$F = P \oplus V$$
 for some  $V \leq U$ .

In Section 3, we introduce the notion of  $\mathscr{F}$ -perfect modules, that is, let  $(\mathcal{F}, \mathcal{C})$  be a perfect cotorsion theory. We call an R-module M  $\mathscr{F}$ -perfect in case the  $\mathscr{F}$ -cover of every factor module of M is projective. We show that  $\mathscr{F}$ -perfectness is closed under factor modules, extensions, and finite direct sums. Also some characterizations of  $\mathscr{F}$ -perfect modules are given.

Throughout this article, all rings are associative with identity, and all modules are unitary right modules unless stated otherwise. For a ring R, let J = J(R) be the Jacobson radical of R.  $(\mathcal{F}, \mathcal{C})$  denotes a cotorsion theory.  $\mathcal{F}$  (resp.,  $\mathcal{C}$ ) denotes the  $\mathcal{F}$  (resp.,  $\mathcal{C}$ ) of the cotorsion theory  $(\mathcal{F}, \mathcal{C})$  unless stated otherwise.

General background materials can be found in [4, 9–10].

### 2 $\mathcal{F}$ -perfect Rings

Let R be a ring, and  $(\mathcal{F}, \mathcal{C})$  be a cotorsion theory.

**Lemma 2.1**<sup>[11]</sup> Let U be an R-module.

- (1) If  $0 \to M' \to M \to M'' \to 0$  is an exact sequence of R-modules and U is M-projective, then U is projective relative to both M' and M''.
- (2) If U is projective relative to each R-module  $M_i$  ( $1 \le i \le n$ ), then U is  $\bigoplus_{i=1}^n M_i$ -projective.

Moreover, if U is finitely generated and  $M_{\alpha}$  ( $\alpha \in A$ ), then U is projective relative to  $\bigoplus_A M_{\alpha}$ .

**Definition 2.1** Let  $(\mathcal{F}, \mathcal{C})$  be a cotorsion theory. A ring R is called right  $\mathcal{F}$ -perfect if every right R-module F with  $F \in \mathcal{F}$  is projective relative to R. Left  $\mathcal{F}$ -perfect rings are defined similarly. If R is both left and right  $\mathcal{F}$ -perfect, then R is called an  $\mathcal{F}$ -perfect ring.

#### **Remark 2.1** Let R be a ring.

- (1) Let  $\mathcal{F}$  be the class of flat right R-modules. Then R is  $\mathcal{F}$ -perfect if and only if R is A-perfect.
- (2) Let  $\mathcal{F}$  be the class of right R-modules of flat dimension at most n. Then  $\mathcal{F}$ -perfect rings are A-perfect, but A-perfect rings are not necessarily  $\mathcal{F}$ -perfect.
- (3) Let  $\mathcal{F}$  be the class of n-flat right R-modules. If R is A-perfect, then R is  $\mathcal{F}$ -perfect (since  $(\mathcal{F}_n, \mathcal{C}_n)$  is a complete hereditary cotorsion, where  $\mathcal{F}_n$  (resp.,  $\mathcal{C}_n$ ) denotes the class of modules all n-flat (resp., n-cotorsion) right R-modules. And n-flat right R-modules is flat (see [12])). But if R is  $\mathcal{F}$ -perfect, then R is not necessarily A-perfect.
  - (4) Let R be a right coherent ring, and

$$\mathcal{F} = \mathcal{F}\mathscr{P}_n$$
.

where  $\mathcal{F}\mathscr{P}_n$  is the class of all right R-modules of FP-injective dimension at most n. Then  $(\mathcal{F}\mathscr{P}_n, \mathcal{F}\mathscr{P}_n^{\perp})$  is a perfect cotorsion theory (see [13]). But A-perfect rings are not necessarily  $\mathcal{F}$ -perfect and  $\mathcal{F}$ -perfect rings are not necessarily A-perfect.

**Lemma 2.2** Let  $(\mathcal{F}, \mathcal{C})$  be a cotorsion theory, and  $\phi : F \to M$  be an  $\mathcal{F}$ -cover of the R-module M. If F is projective, then  $\phi : F \to M$  is a projective cover of M.

*Proof.* Since  $\phi: F \to M$  is an  $\mathcal{F}$ -cover of the R-module M,  $\phi$  is an epimorphism. Now let  $L + \ker \phi = F$  with  $L \leq F$ . So  $\phi|_L: L \to M$  is an epimorphism. By the projectivity of F, there is  $\lambda: F \to L \subseteq F$  such that

$$\phi \lambda = \phi$$
.

Since  $\phi: F \to M$  is an  $\mathcal{F}$ -cover of the R-module M,  $\lambda$  is an automorphism of F, and hence L = F.

Therefore,

$$\ker \phi \ll F$$
,

and so  $\phi: F \to M$  is a projective cover of M.

**Lemma 2.3**<sup>[10]</sup> Let  $f: F \to M$  be an  $\mathcal{F}$ -cover of the R-module M, and  $K = \ker f$ . Then  $\operatorname{Ext}^1_R(G,K) = 0$  for any  $G \in \mathcal{F}$ .

**Theorem 2.1** Let R be a ring. For the following statements:

- (1) R is right  $\mathcal{F}$ -perfect;
- (2) R is semiperfect and F-covers of finitely generated R-modules are finitely generated;
- (3) Finitely generated  $\mathcal{F}$  right R-modules are projective and  $\mathcal{F}$ -covers of finitely generated right R-modules are finitely generated;
  - (4)  $\mathcal{F}$ -covers of finitely generated right R-modules are projective;
- (5)  $\mathcal{F}$ -covers of cyclic right R-modules are projective, we have  $(1) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$  and  $(1) \Rightarrow (2)$ .

*Proof.* (1) $\Rightarrow$ (2). Let M be a finitely generated right R-module and  $f: F \to M$  be an  $\mathcal{F}$ -covers of M. Suppose that  $g: R^n \to M$  is an epimorphism. Since F is R-projective, by Lemma 2.1, F is  $R^n$ -projective. So there exists  $h: F \to R^n$  such that

$$qh = f$$
.

As  $f: F \to M$  is a flat cover of M, there exists  $k: \mathbb{R}^n \to F$  such that

$$fk = g$$
.

Thus we have the following commutative diagram:



Therefore,

$$fkh = f$$
.

By the definition of an  $\mathcal{F}$ -cover, kh must be an automorphism of F. Thus  $k: \mathbb{R}^n \to F$  is a split epimorphism. That is, F is a finitely generated projective R-module. By Lemma 2.4,  $f: F \to M$  is a projective of M, and hence R is semiperfect.

 $(1)\Rightarrow(3)$ . By the proof of  $(1)\Rightarrow(2)$ ,  $\mathcal{F}$ -covers of finitely generated right R-modules are finitely generated. Now we show that finitely generated  $\mathcal{F}$  right R-modules are projective. Let M be a finitely generated right R-module with  $M\in\mathcal{F}$ . Then there exists a projective cover  $p:P\to M$  with P finitely generated. Since R is right  $\mathcal{F}$ -perfect, any  $F\in\mathcal{F}$  is P-projective by Lemma 2.1. That is, for any homomorphism  $f:F\to M$ , there exists  $g:F\to P$  such that

$$pg = f$$
.

So  $p: P \to M$  is an  $\mathcal{F}$ -cover of M, and hence  $K \in \mathcal{C}$  by Lemma 2.3. That is,

$$\operatorname{Ext}_{R}^{1}(M,K)=0,$$

the sequence  $0 \to K \to P \to M \to 0$  is split, and therefore M is projective.

 $(3)\Rightarrow(4)$  and  $(4)\Rightarrow(5)$  are clear.

 $(5)\Rightarrow(1)$ . Let  $F\in\mathcal{F}$ , I be an ideal of R,  $\pi:R\to R/I$  be the natural epimorphism and  $f:F\to R/I$  be a homomorphism,  $g:G\to R/I$  be a  $\mathcal{F}$ -cover of R/I. By hypothesis, G is projective, and hence there is  $h:G\to R$  such that  $g=\pi h$ . There exists  $k:F\to G$  such that f=gk by the definition of  $\mathcal{F}$ -cover.

$$G \stackrel{k}{\longleftarrow} F$$

$$\downarrow f$$

$$R \stackrel{\pi}{\longrightarrow} R/I$$

Put  $\bar{f} = hk$ . Then  $\pi \bar{f} h = \pi hk = f$ . Hence R is a right  $\mathcal{F}$ -perfect ring.

Corollary 2.1([3], Theorem 3.7) For a ring R, the following statements are equivalent:

- (a) R is right A-perfect;
- (b) R is semiperfect, and flat covers of finitely generated right R-modules are finitely generated;
- (c) Finitely generated flat right R-modules are projective, and flat covers of finitely generated right R-modules are finitely generated;
  - (d) Flat covers of finitely generated right R-modules are projective;
  - (e) Flat covers of cyclic right R-modules are projective.

**Lemma 2.4** Let  $f: F \to M$  be an  $\mathcal{F}$ -cover of the R-module M. If  $K \subseteq \ker f$  and  $F/K \in \mathcal{F}$ , then K = 0.

*Proof.* Suppose that  $K \leq \ker f$  and  $F/K \in \mathcal{F}$ . Let  $p: F \to F/K$  be the natural epimorphism. So f induces  $\bar{f}: F/K \to M$  such that

$$f = \bar{f}p$$
.

Since  $F/K \in \mathcal{F}$  and  $f: F \to M$  be an  $\mathcal{F}$ -cover of the R-module M, there exists  $q: F/K \to F$  with  $fq = \bar{f}$ . That is, we get the following commutative diagram:

$$F \xrightarrow{q} f$$

$$F \xrightarrow{q} M$$

Therefore,

$$f = \bar{f}p = fqp.$$

Thus qp is an automorphism of F and so

$$K = \ker p \subseteq \ker qp = 0.$$

**Theorem 2.2** Let R be a ring. Then R is right  $\mathcal{F}$ -perfect if and only if for any  $F \in \mathcal{F}$ , and  $K \leq F$  if F/K is cyclic (finitely generated), then  $F = P \oplus Q$  with  $Q \subseteq K$  and P is a projective R-module.

*Proof.* Suppose that R is right  $\mathcal{F}$ -perfect. Let F be a right R-module with  $F \in \mathcal{F}$  and  $K \leq F$  with F/K being cyclic (finitely generated). Suppose that  $g: P \to F/K$  is an  $\mathcal{F}$ -cover of F/K and  $f: F \to F/K$  is the natural epimorphism. Since R is right  $\mathcal{F}$ -perfect, P is projective, and so there is  $h: P \to F$  with fh = g. By the definition of the  $\mathcal{F}$ -cover, there exists  $k: F \to P$  with f = gk, i.e., we have the commutative diagram:

$$P \xrightarrow{k} \int_{f}^{F} f$$

Thus g = gkh. Therefore, kh is an automorphism of P, and so

$$F = \operatorname{im} h \oplus \ker k$$
.

Hence  $\operatorname{im} h \cong P$  is projective, and

$$\ker k \subseteq \ker f = K$$
.

Conversely, let M be a cyclic (finitely generated) R-module and  $f: F \to M$  be an  $\mathcal{F}$ -cover of M. Since  $F/\ker f \cong M$  is cyclic (finitely generated), by hypothesis,

$$F = P \oplus Q$$
.

where  $Q \subseteq K$ , and P is a projective R-module. So  $F/Q \cong P$  is projective. By Lemma 2.4, Q = 0. Therefore, F = P is projective, and so R is right  $\mathcal{F}$ -perfect by Theorem 2.1.

**Theorem 2.3** A ring R is right  $\mathcal{F}$ -perfect if and only if for every right R-module F with  $F \in \mathcal{F}$ ; if F = P + U, where P is a finitely generated projective summand of F and  $U \leq F$ , then

$$F = P \oplus V$$
 for some  $V < U$ .

*Proof.* Suppose that R is right  $\mathcal{F}$ -perfect. Let F be a right R-module with  $F \in \mathcal{F}$  and F = P + U, where P is a finitely generated projective summand of F and  $U \leq F$ . Assume that  $F = P \oplus Q$ , and  $p: P \to F/U$  and  $q: Q \to F/U$  be the canonical mappings. Since  $Q \in \mathcal{F}$  and R is right  $\mathcal{F}$ -perfect, by Lemma 2.1, Q is P-projective. So there exists  $f: Q \to P$  such that

$$pf = q$$
,

that is, we have the following commutative diagram:

$$P \xrightarrow{f} Q$$

$$\downarrow^{q}$$

$$P \xrightarrow{p} F/U$$

This means that for any  $x \in Q$ ,

$$x + U = f(x) + U,$$

and hence  $(1-f)(Q) \subseteq U$ .

Now we show that

$$F = P \oplus (1 - f)Q$$
.

We have

$$F = P + Q \subseteq P + f(Q) + (1 - f)(Q) = P + (1 - f)(Q).$$

Now let  $x \in P \cap (1 - f)(Q)$ . So

$$x = (1 - f)(y)$$
 for some  $y \in Q$ .

Thus

$$y = x + f(y) \in P \cap Q = 0$$
,

and so x=0.

Conversely, let  $G \in \mathcal{F}$ . We show that G is R-projective, and so R is right  $\mathcal{F}$ -perfect. Suppose that  $p: R \to W$  is an epimorphism and  $g: G \to W$  is an homomorphism. Let

$$F = G \oplus R \in \mathcal{F}$$

and

$$U = (x, y) \in F : g(x) + p(y) = 0.$$

Since p is epimorphism,

$$U + R = F$$
.

By hypothesis,

$$F = V \oplus R$$
 for some  $V \subseteq U$ .

Let  $f: F \to R$  be the projection with respect to the decomposition

$$F = V \oplus R$$
.

Let  $h = f|_G : G \to R$ . Since

$$(1-f)(G) \subseteq (1-f)(F) = V \subseteq U,$$

for any  $x \in G$ , we have

$$(1-h)(x) = (x, -h(x)) \in U$$
,

and so

$$g(x) - ph(x) = 0,$$

that is,

$$q = ph$$

i.e., we have the following commutative diagram:



Consequently, R is right  $\mathcal{F}$ -perfect.

**Proposition 2.1** Let F be an R-module with  $F \in \mathcal{F}$  and  $f : F \to M$  be an epimorphism. If  $\ker f \in \mathcal{C}$ , then  $f : F \to M$  is an  $\mathcal{F}$ -precover of M.

*Proof.* Since  $f: F \to M$  is an epimorphism, the sequence

$$0 \to \ker f \to F \to M \to 0$$

is exact. This induces the exact sequence

$$\operatorname{Hom}_R(X,F) \to \operatorname{Hom}_R(X,M) \to \operatorname{Ext}^1_R(X,\ker f)$$

for any  $X \in \mathcal{F}$ . By hypothesis,

$$\operatorname{Ext}_{R}^{1}(X, \ker f) = 0,$$

and so

$$\operatorname{Hom}_R(X,F) \to \operatorname{Hom}_R(X,M) \to 0$$

is exact. Hence  $f: F \to M$  is an  $\mathcal{F}$ -precover of M.

**Theorem 2.4** Let R be a ring and I any right ideal of R. Let  $(\mathcal{F}, \mathcal{C})$  be a cotorsion theory such that if  $C \in \mathcal{C}$  as an R/I-module, then  $C \in \mathcal{C}$  as R-module. Then R is right  $\mathcal{F}$ -perfect if and only if  $I \in \mathcal{C}$ .

*Proof.* Let F be a right R-module with  $F \in \mathcal{F}$ , and I be a right ideal of R. The exact sequence

$$0 \to I \to R \to R/I \to 0$$

induces the exact sequence

$$0 \to \operatorname{Hom}_R(F, I) \to \operatorname{Hom}_R(F, R) \to \operatorname{Hom}_R(F, R/I) \to \operatorname{Ext}^1_R(F, I).$$

Since  $I \in \mathcal{C}$ ,

$$\operatorname{Ext}_R^1(F, I) = 0,$$

and so  $\operatorname{Hom}_R(F,R) \to \operatorname{Hom}_R(F,R/I)$  is an epimorphism. Therefore, F is projective relative to R, and hence R is right  $\mathcal{F}$ -perfect.

Conversely, suppose that R is right  $\mathcal{F}$ -perfect. Let J = J(R). By Theorem 2.1,  $\mathcal{F}$ -covers of cyclic right R-modules are projective, and hence  $\mathcal{F}$ -covers and projective covers of cyclic right R-modules are the same. Since the natural map  $p: R \to R/J$  is the projective cover of the cyclic right R-module R/J, it is also its  $\mathcal{F}$ -cover. Thus, by Lemma 2.3,

$$J = \ker p \in \mathcal{C}$$
.

Furthermore, R/J is a semisimple ring, and so R/J is injective as an R/J-module. By hypothesis, R/J is injective as an R-module, and so  $R/J \in \mathcal{C}$  as a right R-module. Now consider the exact sequence

$$0 \to J \to R \to R/J \to 0.$$

Since C is closed under extensions,  $R \in C$ . Let I be a proper right ideal of R, and let  $F \in \mathcal{F}$ . The exact sequence

$$0 \to I \to R \to R/I \to 0$$

induces the exact sequence

$$\operatorname{Hom}_R(F,R) \to \operatorname{Hom}_R(F,R/I) \to \operatorname{Ext}^1_R(F,I) \to \operatorname{Ext}^1_R(F,R) = 0.$$

Since R is right  $\mathcal{F}$ -perfect,  $\operatorname{Hom}_R(F,R) \to \operatorname{Hom}_R(F,R/I)$  is an epimorphism. Therefore,

$$\operatorname{Ext}_{R}^{1}(F, I) = 0,$$

and hence  $I \in \mathcal{C}$ .

## 3 $\mathcal{F}$ -perfect Modules

In this section, we assume that  $(\mathcal{F}, \mathcal{C})$  is a perfect cotorsion theory.

**Definition 3.1** Let M and N be R-modules. Then N is said to be M-cyclic (respectively, finitely M-generated) if there is an epimorphism  $M \to N$  (respectively,  $M^n \to N$  for some  $n \ge 1$ ).

**Definition 3.2** We call an R-module M  $\mathcal{F}$ -perfect if  $\mathcal{F}$ -cover of every M-cyclic R-module is projective.

**Proposition 3.1** Let M be an R-module. Then M is  $\mathcal{F}$ -perfect if and only if every R-module  $F \in \mathcal{F}$  is M-projective and the  $\mathcal{F}$ -cover of M is projective.

*Proof.* Suppose that M is  $\mathcal{F}$ -perfect. Let F be an R-module with  $F \in \mathcal{F}$ . We show that F is M-projective. Let  $p: M \to N$  be an epimorphism, and  $f: F \to N$  be a homomorphism. Suppose that  $g: G \to N$  is an  $\mathcal{F}$ -cover of N. So there is  $h: F \to G$  with gh = f. Since M is  $\mathcal{F}$ -perfect, G is projective. Thus there is  $g: G \to M$  with pq = g. Therefore,

$$pqh = gh = f$$
.

So F is M-projective. It is easy to prove that the  $\mathcal{F}$ -cover of M is projective.

Conversely, let N be an M-cyclic R-module and  $f: F \to N$  be an  $\mathcal{F}$ -cover of N. We want to show that F is projective. Let  $p: M \to N$  be an epimorphism and  $g: G \to M$  be an  $\mathcal{F}$ -cover of M. There is  $h: G \to F$  such that fh = pg (by the definition of  $\mathcal{F}$ -cover), that is, we have the commutative diagram:



Since every  $F \in \mathcal{F}$  is M-projective, there exists  $q: F \to M$  with pq = f. Again by the definition of flat cover, there exists  $k: F \to G$  with gk = q. Thus

$$f = pq = pgk = fhk,$$

i.e., we have the commutative diagram:

$$G \overset{k}{\longleftarrow} F$$

$$g \downarrow q \qquad \downarrow f$$

$$M \xrightarrow{p} N$$

Therefore, hk is an automorphism of F, and hence F is isomorphic to a summand of G. Since G is projective, F is also projective. Consequently, M is  $\mathcal{F}$ -perfect.

**Corollary 3.1** The class of  $\mathcal{F}$ -perfect modules is closed under factor modules and extensions. In particular, for modules  $M_1, M_2, \dots, M_n$ , the sum  $\bigoplus_{i=1}^n M_i$  is  $\mathcal{F}$ -perfect if and only if each  $M_i$  is  $\mathcal{F}$ -perfect.

*Proof.* By the definition of  $\mathcal{F}$ -perfect modules and Proposition 3.1 the proof is clear.

**Proposition 3.2** An R-module M is  $\mathcal{F}$ -perfect if and only if for any R-module  $F \in \mathcal{F}$  and any submodule K of F, if F/K is finitely M-generated (or M-cyclic), then  $F = P \oplus Q$  with P projective and  $Q \subseteq K$ .

*Proof.* The proof is similar to that of Theorem 2.2.

### References

- [1] Eckmann B, Schopf A. Über injektive moduln. Archiv. Math., 1953, 4: 75–78.
- [2] Bass H. Finitistic dimension and a homological generalization of semi-primary rings. *Trans. Amer. Math. Soc.*, 1960, **95**: 466–488.
- [3] Amini A, Ershad M, Sharif H. Rings over which flat covers of finitely generated modules are projective. Comm. Algebra, 2008, 36: 2862-2871.
- [4] Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin: Walter de Gruyter, 2000.
- [5] Trlifaj J. Covers, Envelopes, and Cotorsion Theories: Lecture Notes for the Workshop, Homological Methods in Module Theory. Cortona, September 10–16, 2000.
- [6] Enochs E E, Jenda O M G, Torrecillas B, Xu J. Torsion Theory with Respect to Ext. Research Report 98–11. Department of Mathematics, University of Kentucky, May, 1998.
- [7] García Rozas J R. Covers and Envelopes in the Category of Complexes of Modules. Boca Raton, FL: Chapman & Hall/CRC, 1999.
- [8] Enochs E E, Jenda O M G, Lopez-Ramos J A. The existence of Gorenstein flat covers. *Math. Scand.*, 2004, **94**: 46–62.
- [9] Rotman J J. An Introduction to Homological Algebra. New York: Academic Press, 1979.
- [10] Xu J Z. Flat Covers of Modules: Lecture Notes in Math. 1634. New York: Spring-Verlag, 1996.
- [11] Anderson F W, Fuller K R. Rings and Categories of Modules. New York: Spring-Verlag, 1992.
- [12] Mao L X, Ding N Q. Relative cotorsion modules and relative flat modules. Comm. Algebra, 2006, 34: 2303–2317.
- [13] Mao L X, Ding N Q. Envelopes and covers by modules of finite FP-injective and flat dimensions. Comm. Algebra, 2007, 35: 833–849.