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Abstract. Ramp load/unload (L/UL) mechanisms are widely used to rest sliders
in hard disk drives (HDDs). Loading/unloading a slider swiftly and smoothly
is crucial in a HDD design. A novel, efficient simulation scheme is proposed to
investigate the behaviors of a head disk interface (HDI) in ramp unloading pro-
cesses. A dual scale model is enabled by decoupling the nano-meter scale change
of an air bearing and the micro- or milli-meter scale deformation of a suspension.
A modified Reynolds equation governing the air bearing was solved numerically.
The slider design was characterized with performance functions. Three stages in
an unloading process were analyzed with a lumped parameter suspension model.
Key parameters for the model were estimated with a comprehensive finite element
suspension model. Finally, simulation results are presented for a commercial HDI
design.

AMS subject classifications: 65P40

Key words: Hard disk drive, ramp, unloading, head-disk interface, suspension, Reynolds
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1 Introduction

Hard disk drives (HDDs) provide a major form for data storage. To address the seri-
ous tribological problems caused by the direct contact between the disk and the head,
floating sliders are designed to suspend the heads above the disk surfaces as the disks
passed by underneath. Nowadays, minimum flying height of a magnetic slider is ap-
proaching 5nm and even below. When a HDD is powered off, the rotational speed of
the disks slows down to stop, and therefore the dynamic air bearing supporting the
slider disappears. To avoid the direct slider-disk contact, the sliders should land on
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a non-data zone before the air bearing breaks down. Load/unload (L/UL) mecha-
nisms are widely adopted to resist wear and tolerate more start/stop cycle by resting
a slider on a ramp [1, 2]. A typical ramp L/UL mechanism is shown in Fig. 1. Cur-
rently, L/UL zone at the outer disk diameter is not used for data storage due to po-
tential loss of magnetic information caused by head-disk contact. If the slider can be
loaded/unloaded smoothly and swiftly, the L/UL zone can be minimized or even be
used for data storage, and then a larger storage area is available.

Figure 1: A typical load/unload mechanism in HDD.

Simulation provides an economical approach for a HDI design. In a conventional
dynamics analysis, the instantaneous attitude of a slider was calculated by solving a
modified Reynolds equation which was coupled through the air bearing force and the
moment with the dynamics of the suspension [3–5]. The historical behaviors in an un-
loading process were obtained by solving the coupled equations repeatedly. Despite
its precision, the traditional way is limited to examining only typical, individual cases
because of the intensive computation requirements.

In this work, an efficient scheme is proposed to analyze the behaviors of subambi-
ent pressure sliders in unloading processes. The studies on the sliders and the suspen-
sions are decoupled with a dual-scale model. The numerical solutions for a modified
Reynolds equation were fitted to characterize the performance of an air bearing de-
sign. A simplified lumped parameter model was constructed to study the behaviors
of a suspension in unloading processes. Key parameters of the suspension were es-
timated with a comprehensive finite element model and checked with experiments.
With the efficient scheme, an unloading simulation can be worked out with a very
short computation time [6, 7].

2 Analysis of an unloading process

2.1 Three stages in an unloading process

In modern HDDs, a head-gimbal assembly (HGA) is designed with several pieces
as shown in Fig. 2(a). The load beam helps position the slider. The gimbal allows the
flying slider to rotate about the dimple to accommodate surface variations. The limiter
is designed to limit the separation between the load beam and the slider. The lift tab
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Figure 2: Three stages in unloading processes.

attached to the end of a suspension moves along a ramp located at the outer edge of
the disk, enabling the loading and unloading processes of the slider.

In a normal operating condition, the slider is positioned at the nominal minimum
flying height. The spring force from the deformed load beam is balanced by the air
bearing force generated by a thin air layer squeezed into the narrow space between the
slider and the disk surface. Although it provides very low and stable flying heights,
the subambient pressure design negatively affects the performance of the sliders and
the suspensions during the L/UL processes [8].

A HGA may experience three stages in an unloading process as shown in Figs. 2(a)-
(d), namely the dimple engaged, the dimple separated, and the limiter engaged [9,10].
In the stage of dimple engaged, the dimple and gimbal take effect together. As the
ramp being raised up, the dimple separates from the slider and the gimbal takes effect
alone. When the gap between the slider and the suspension is stretched too much,
the limiter engages with the suspension. Thereafter, the limiter and the gimbal take
effect together till the air bearing breaks up. The slider separates from the disk. The
suspension exhibits different mechanical properties in each stage due to the different
combination of the components. An unloading time is defined as the time elapsed
between the instant when the lift-tab touches the ramp and the instant when the slider
separates from the disk. The unloading distance is defined as the lateral span that
the slider runs during the unloading time. The unloading status and the unloading
distance are shown in Fig. 3.

2.2 Air bearing constraint forces and transitional conditions for stages

A local lumped parameter model shown in Fig. 4 was constructed to study the condi-
tions for the stage transition.

In dimple engaged stage, the dimple and the gimbal together take effect to balance
the air bearing force. The air bearing force during the stage can be solved with Eq. (2.1)

Fs = kd(Ld − Ls)− kg(Ls − Lg), (2.1)
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Figure 3: Unloading distance.

Figure 4: A local lumped parameter suspension model.

where Fs is the air bearing force, kd and kg are the stiffnesses of the dimple and the
gimbal, respectively, Ls is the gap between the load beam and the slider, Ld and Lg are
the free lengths of the dimple and the gimbal, respectively.

After the dimple separates from the slider, only the gimbal takes effect to balance
the air bearing force. The air bearing force during the stage can be solved with Eq. (2.2)

Fs = −kg(Ls − Lg). (2.2)

After the limiter contacts the load beam, the limiter and the gimbal together take effect
to balance the air bearing force. The air bearing force during the stage can be solved
with

Fs = −kg(Ls − Lg)− kL(LL − Lh), (2.3)

where kL is the stiffnesses of the limiter, LL is the free lengths of the limiter, Lh is the
thickness of the slider.

The air bearing force will degrade from a positive value to a negative value in the
dimple engaged stage when Fs = 0. The gap Ls at the moment can be worked out with

Ls =
kdLd + kgLg

kg + kd
. (2.4)
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The dimple separates from the slider when Ld = Ls. The air bearing force at the
moment can be expressed with

Fs = −kg(Ld − Lg). (2.5)

The limiter engages with the load beam when LL = Ls + Lh. The air bearing force at
the moment can be expressed with

Fs = −kg(LL − Lh − Lg)− kL(LL − Lh). (2.6)

3 Three DOF suspension model and parameter estimation

3.1 A dual scale model for HDI

Compared with the vibration frequency of the slider and the suspension, an unloading
duration is long enough to be studied quasi-statically.

The forces and the moment on the key components can be calculated with
Fs − Fs0

Mθ − Mθ0
Fr − Fr0

 =

 kss ksθ ksr
kθs kθθ kθr
krs krθ krr


zs − zs0
θ − θ0

zr − zr0

 , (3.1)

where Fs and Mθ are the air bearing constraint force and moment on the slider, respec-
tively, Fr is the vertical force on the lift tab, zs and θ are the position and the attitude
of the slider, respectively, zr denotes the position of the lift tab, the subscript 0 denote
the values of each variable in the normal operating condition, kxx in the matrix denote
stiffness coefficients of the suspension.

In an unloading process, the change of the flying height can be 1000 times smaller
than the deformation of the suspension. When the suspension is studied, the air bear-
ing effect is represented by displacement constraints while the gap of an air bearing is
neglected. Thus, it is assumed that the slider makes completely contact with the disk
surface before the instant of air bearing separation as viewed from the suspension.
The instantaneous force and moment acting on the slider at this stage can be solely
determined from the deformations of the suspension expresses with{

Fs = ksr(zr − zr0) + Fs0,
Mθ = kθr(zr − zr0) + Mθ0.

(3.2)

3.2 Parameter estimation with FEM

ksr and kθr were estimated with a comprehensive finite element model (FEM). In the
FEM, solid elements were used to model the actuator arm, the dimple, the limiter
and the slider. Shell elements were used to model the hinge, the gimbal and the load
beam. Since the dimple may contact with the tongue of the gimbal while the limiter
may contact with the top surface of the load beam in an unloading process, contact
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pairs were included to model the contact interfaces. The limiter and the dimple were
modeled as the target surfaces while the top of the load beam and the back of the
gimbal were modeled as contact surfaces.

Figure 5: History of the force on the lift tab in the unloading process.

Static structural analyses were performed to determine the changes of the displace-
ments and the forces on the suspension. Nodal imposed (nonzero) displacements
were applied on the four corners of the slider and the lift tab. Their corresponding
nodal reaction forces were checked. By keeping the slider stationary, namely

zs − zs0 = 0 and θ − θ0 = 0,

and changing zr, ksr and kθr can be figured out with Eqs. (3.3a) and (3.3b), respectively.
The nodal imposed displacements and the DOF constraint were set up carefully to
mimic different states in unloading processes

ksr =
∆Fs

∆Zr
, (3.3a)

kθr =
∆Mθ

∆Zr
, (3.3b)

where ∆Fs and ∆Mθ are the changes of the constraint force and moment on the slider,
respectively. The values of ksr in dimple engaged, dimple separated, and limiter en-
gaged are −2470(N/m), −12(N/m) and −480(N/m), respectively. The values of kθr
in dimple engaged, dimple separated, and limiter engaged are 1.67 × 10−2(N/rad),
2.92× 10−3(N/rad) and 3.83× 10−1(N/rad), respectively. The history of Fr in the anal-
ysis is illustrated in Fig. 5. Graphically, the equivalent free lengths of the gimbal and
the limiter from the respective of the lift tab are 0.005mm and 0.175mm, respectively.

4 Air bearing model and performance functions

4.1 Air bearing model and numerical solution

In modern HDDs, a head-disk interface (HDI) is designed as an air bearing. Reynolds
equation yields accurate results when Kn is less than 0.001, which corresponds to the
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continuum flow regime. The Knudsen number which is the ratio of the mean free path
of gas molecules γ to the available range of movement h is used to measure the degree
of gas rarefaction at thin film thicknesses (Kn = γ/h). Nowadays, the air bearing gap
goes below ten nanometers and is smaller than the mean free path of the air (about
64nm under standard conditions). The gas in such a small gap loses its continuity
and slips against the surface [11]. Thus the HDI is modeled with a modified Reynolds
equation below, which cast a similar form to the Reynolds equation [12–16]

∂

∂X

(
QpPH3 ∂P

∂X
− ΛxPH

)
+

∂

∂Y

(
QpPH3 ∂P

∂Y
− ΛyPH

)
= σ

∂(PH)

∂T
, (4.1)

where P and H are the dimensionless pressure and distance between air bearing sur-
face and disk surface, normalized by pa and hm, respectively; T equals to ωt, σ denotes
the squeeze number.

Λx = (6µUxL)/(pah2
m), and Λy = (6µUyL)/(pah2

m)

are the bearing numbers in the x and y directions, respectively, σ = (12µωL2)/(pah2
m)

is the squeeze number. Ux and Uy are the disk velocity components in the x and y
direction, µ is the dynamic viscosity of the gas, L is the length scale of the slider, Qp is
a Poiseuille flow rate coefficient which reflects the type of slip correction.

Various slip correction models have been proposed. Burgdorfer raised a first-order
model by considering slipping and heat conduction. To increase the accuracy of the
slip-flow model, Hsia and Domoto derived a second-order modified Reynolds equa-
tion using slip-flow boundary conditions for both shear and pressure flows. Mitsuya
introduced the 1.5-order slip model in order to predict the load capacity more ac-
curately from the physical considerations that taking account of the accommodation
coefficient into account. Gans, who first treated the linearized Boltzmann equation
as a basic equation, derived the approximation lubrication equation analytical using
a successive approximation method. Fukui and kaneko started from the linearized
Boltzmann equation based on the BGK model and introduced the use of a Poiseuille
flow database to allow a quicker computation of a generalized lubrication equation
for high Kn number gas bearing [17].

The surface of a subambient slider is typically etched with embossed pads and re-
cessed cavities. Negative (subambient) pressure tends to be generated at the cavity
area and the positive (above-ambient) pressure forms at the pad areas in operation.
The geometrical (clearance) discontinuities of a slider profiles caused by Walls of the
recesses and pads lead numerical difficulty for finite difference methods based on the
differential form of the modified Reynolds equation. Finite volume method, instinc-
tively suitable for solving the modified Reynolds equation with discontinued profiles,
was adopted [18]. The key step is the integration of the modified Reynolds equation
over a two-dimensional control volume.

A typical subambient slider is shown in Fig. 6. Since the load/unload mechanism
situates at the out edge of the disk, the point of interest is set on a 1 inch disk at radius
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Figure 6: Surface profile of a slider.

of 11.682mm with skew angle of 9.861 degree. The disk rotational speed is 3600rpm.
The slider is considered flying with a zero roll angle. The air pressure distribution on
the surface of the subambient slider shown in Fig. 7 was solved with the FVM scheme
when hmin = 10nm and θ = 80µrad. The 1.5-order slip model is adopted.

We can observe the subambient pressure at the recess area and above ambient
pressure at the pad area. Considering the ambient pressure on both the reverse and
obverse sides of the slider, the total air bearing force on the slider is obtained by inte-
grating the pressure over the entire slider area on both sides with Eq. (4.2a). Moments
is calculated out with respect to the geometric center of the slider using Eq. (4.2b).

Fa =
∫∫ [

p(x, y)− 1
]
dxdy, (4.2a)

Ma =
∫∫ (

1 − x0

2

)[
p(x, y)− 1

]
dxdy, (4.2b)

where p(x, y) is the pressure on the nodes. x0 is the loading point.

4.2 Performance surfaces for air bearing design

The air bearing force and moment of the slider for an arbitrary attitude are obtained
by fixing the pitch angle and the minimal flying height and solving Eq. (4.1). For a

Figure 7: Surface profile of a slider.
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Figure 8: Fp vs h for varying pitch angles. Figure 9: Fn vs h for varying pitch angles.

positive pitch angle, the leading edge spacing is larger than the trailing edge spacing.
The positive forces and negative forces for the abovementioned slider with varying
attitudes were plotted in Figs. 8 and 9, respectively.

Generally, the discrete points for varying attitudes were fitted with performance
functions expressed in Eqs. (4.3) and (4.4), in which the minimum flying height h and
the pitch angle θ were chosen as the attitude variables

Fa(h, θ) = Fp(h, θ) + Fn(h, θ) = a(θ) · e−b(θ)hm
+ c(θ) · e−d(θ)hn

, (4.3)

where Fp, Fn and Fa are the positive force, negative force and total air bearing force,
respectively, a, b, c and d are variables for different subambient designs

Ma(h, θ) = Mp(h, θ) + Mn(h, θ) = f (θ) · e−u(θ)hi
+ w(θ) · e−v(θ)hj

, (4.4)

where Mp, Mn and Ma are the positive moment, negative moment and total moment,
respectively, f , u, w and v are variables for different subambient designs.

The performance force functions for the aforementioned subambient pressure slider
are expressed with Eqs. (4.5a), (4.5b) and (4.5c) are illustrated with Figs. 10, 11 and 12,

Figure 10: Performance surface of positive air
bearing force.

Figure 11: Performance surface of negative air
bearing force.
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Figure 12: Performance surface of total air bearing force.

respectively

Fp(h, θ) = 0.257e−0.015θ−(5.561×10−6θ2−0.002θ+0.341)h0.5
, (4.5a)

Fn(h, θ) = (6.182 × 10−5θ − 0.024)e−(1.101×10−5θ+0.008)h0.9
, (4.5b)

Fa(h, θ) = Fp(h, θ) + Fn(h, θ). (4.5c)

Similarly, the performance moment functions for the slider can be expressed with
Eq. (4.6a) to Eq. (4.6c)

Mp(h, θ) = (7.926 × 10−4)e−0.019θ−(4.1×10−5θ2−0.014θ+2.772)h0.2
, (4.6a)

Mn(h, θ) = −(2.572 × 10−5)e−0.012θ−(6.4×10−7θ2−1.8×10−4θ+0.021)h, (4.6b)
Ma(h, θ) = Mp(h, θ) + Mn(h, θ), (4.6c)

where Mp and Mn are the positive and the negative air bearing moment, respectively.

5 Simulation for an unloading process

Since Fs is identical to Fa while Mθ is identical to Ms before the air bearing separation,
the instantaneous h and θ can be obtained using the following equations in a very
short computational time: {

Fa(h, θ) = Fs,
Ma(h, θ) = Mθ .

(5.1)

5.1 Case studies with the efficient scheme

Simulations based on a commercial HDD are performed on a personal computer with
a 1.86-GHz Pentium processor and 1GB RAM. The histories of the forces are illus-
trated in Fig. 13. Notice that three stages are observed with the existing design. The
limiter engagement with the load beam helped to raise the slider. Lateral velocity was
given as 0.120m/s and the slope of the ramp is 12◦. The air bearing force reaches its
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Figure 13: Histories of the air bearing forces in an unloading process.

Figure 14: Fa vs h in an unloading process.

maximum suction force (the derivative of the curve equals to zero) when the minimal
flying height is 40.67nm as shown in Fig. 14. At the instant, the lift tab is still being
raised and there is no bigger air bearing force to hold the slider, the air bearing breaks
up. The pitch angle at the moment was 175µrad. The unloading time was 2.2ms.

The calculation for the unloading process (up to the air bearing separation) took
only tens of seconds or no more than one minute depending on the number of the
numerical steps and the parameters of the suspension, whereas it takes hours or even
days to figure it out using traditional methods.

The scheme is very efficient. As an example, the effects of varying stiffnesses of

Figure 15: The effects of the stiffnesses on the unloading time.
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the suspension on the unloading time are studied and shown in Fig. 15. By changing
the ratio of the stiffnesses, the trend of the unloading time can be figured out in tens of
minutes, much faster than using traditional schemes for HDI studies. The superscripts
(d), (g) and (L) denote the stages before dimple separation, after dimple separation
but before limiter engagement, and after limiter engagement, respectively.

6 Conclusions

An efficient simulation scheme for studying the performance of HDIs in unloading
processes was developed in the paper.

1. A dual scale model focusing on the slider and the lift tab was constructed to decouple
the studies on the air bearings and the suspensions. Three stages and transitional
conditions in an unloading process were discussed.

2. A lumped parameter suspension model focusing on key parameters was raised. A
comprehensive finite element model was constructed to estimate the values of the
parameters.

3. A general procedure for characterizing the subambient pressure slider designs with
performance functions and surfaces was presented. The instantaneous attitude of
a slider was obtained by solving a modified Reynolds equation with finite volume
method. The resulted forces and moments were fitted to form the performance
functions and surfaces. A commercial slider design was illustrated.

4. An efficient scheme was enabled by combining the performance functions with the
simplified suspension model. An unloading simulation was performance in a very
short computational time. The effects of the suspension stiffnesses were studied.
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