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Abstract. A scheme is developed to study numerical solution of the time-fractional
shock wave equation and wave equation under initial conditions by the homotopy
perturbation method (HPM). The fractional derivatives are taken in the Caputo
sense. The solutions are given in the form of series with easily computable terms.
Numerical results are illustrated through the graph.
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1 Introduction

In recent years, considerable interest has been devoted to the study of the fractional
calculus during the past decades and their numerous applications in the area of physics
and engineering. Many important phenomena in electromagnetics, acoustics, vis-
coelasticity, electrochemistry and material science, probability and statistics, electro-
chemistry of corrosion, chemical physics, and signal processing are well described by
differential equations of fractional order [1–3]. The HPM is the new method for find-
ing the approximate analytical solution of linear and nonlinear problems [4, 5] and
successfully applied to solve nonlinear wave equation. The fractional diffusion equa-
tion with absorbent term and external force through HPM is analyzed in [6]. The proof
of the existence of the attractor for the one-dimensional viscous Fornberg-Whitham
equation is studied by [7]. The solution of shock wave equation is examined by ADM
and HPM in [8, 9]. In 2010, Golbabai and Sayevand [10] applied the HPM to solve the
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multi-order time fractional differential equations and space-time fractional solidifica-
tion in a finite slab solved by Singh et al. [11]. Recently, Gupta and Singh [12] used the
HPM to solve the time-fractional Fornberg-Whitham equation. Recently, many new
approaches for finding the exact solutions to nonlinear equations have been proposed,
for example, Exp-function method [13], homotopy analysis method [14], and reduced
differential transform method [15] and so on. All methods, mentioned above, have
limitations in their applications.

In present article, we implement the Homotopy perturbation method for obtaining
analytical and numerical solutions of the shock wave equation with time-fractional
derivatives. This equation can be written in operator form as [16–18]

uα
t (x, t) =

( 1
c0

− γ + 1
2

u
c2

0

)
ux = 0, t > 0, x ∈ R, 0 < α ≤ 1, (1.1)

with initial condition

u0(x, 0) = exp
(
− x2

2

)
, (1.2)

where c0 is constant and γ is specific heat.
In [8, 9], it is shown that if c0 ≥ (γ + 1)u/2 then a series solution can be obtained

and it is given by

u(x, t) =
∞

∑
0

(n + 1)
n
2

(n + 1)!
Hn

(√
n + 1

)
exp

[
−1

2

(
x − t

2

)2
(n + 1)

]
, (1.3)

where B = (γ + 1)/2c2
0 and Hn(·) is the Hermit polynomial of order n.

2 Preliminaries and notations

In this section, we have given some definitions and properties of the fractional calcu-
lus [1] which are used further in this paper.

Definition 2.1. A real function f (t), t > 0 is said to be in the space Cµ, µ ∈ R, if there exists
a real number p > µ, such that f (t) = tp f1(t), where f1(t) ∈ C(0, ∞), and it is said to be in
the space Cn

µ if and only if h(n) ∈ Cµ, n ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral operator (Jα
t ) of order α ≥ 0, of a

function f ∈ Cµ, µ ≥ −1 is defined as [2]

Jα
t f (t) =

1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ)dξ, α > 0, t > 0,

J0
t f (t) = f (t),

where Γ(α) is the well-known gamma function. Some of the properties of the operator Jα
t , which

we will need here, are as follows: for f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and γ ≥ −1,
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(1) Jα
t Jβ

t f (t) = Jα+β
t f (t),

(2) Jα
t Jβ

t f (t) = Jβ
t Jα

t f (t),

(3) Jα
t tγ = Γ(γ+1)

Γ(α+γ+1) tα+γ.

Definition 2.3. The fractional derivative (Dα
t ) of f (t), in the Caputo sense is defined as

Dα
t f (t) =

1
Γ(n − α)

∫ t

0
(t − ξ)n−α−1 f (n)(ξ)dξ,

for n − 1 < α < n, n ∈ N, t > 0, f ∈ Cn
−1. The following are two basic properties of the

Caputo fractional derivative [1] and [3]

(1) Let f ∈ Cn
−1, n ∈ N, then Dα

t f , 0 ≤ α ≤ n is well defined and Dα
t f ∈ C−1.

(2) Let n − 1 ≤ α ≤ n, n ∈ N and f ∈ Cn
µ, µ ≥ −1. Then

(Jα
t Dα

t ) f (t) = f (t)−
n−1

∑
k=0

f (k)(0+)
tk

k!
.

3 Solution of the first problem

We first consider the following time-fractional shock waves equation

Dα
t u −

( 1
c0

− γ + 1
2

u
c2

0

)
Dxu = 0, (3.1)

with initial condition is

u0(x, 0) = exp
(
− x2

2

)
. (3.2)

According to the HPM [19–21] construct the following homotopy

Dα
t u = p

( 1
c0

− γ + 1
2

u
c2

0

)
Dxu, (3.3)

where the homotopy parameter p is considered as a small parameter (p ∈ [0, 1]).
Now applying the classical perturbation technique, we can assume that the solution
of Eq. (3.1) can be expressed as a power series in p as given below

u = u0 + pu1 + p2u2 + p3u3 + · · · . (3.4)

When p → 1, Eq. (3.3) corresponding to Eqs. (3.1) and (3.4) becomes the approximate
solution of (1.3), that is, of Eq. (1.1). Substituting Eq. (3.4) in Eq. (3.3) and comparing
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the like powers of p, we obtain the following set of linear differential equations

p0 : Dα
t u0 = 0, (3.5a)

p1 : Dα
t u1 =

( 1
c0

− γ + 1
2

u0

c2
0

)
Dxu0, (3.5b)

p2 : Dα
t u2 = −γ + 1

2
u1

c2
0

Dxu0 +
( 1

c01
− γ + 1

2c2
0

)
Dxu1, (3.5c)

p3 : Dα
t u3 =

( 1
c01

− γ + 1
2c2

0

)
Dxu2 −

γ + 1
2

u2

c2
0

Dxu0 −
γ + 1

2
u1

c2
0

Dxu1, (3.5d)

and so on.
The method is based on applying the operator jα

t (the inverse operator of Caputo
derivative Dα

t ) on both sides of Eqs. (3.5a)-(3.5d), then we get

u0(x, t) = e−
x2
2 , (3.6a)

u1(x, t) = f1(x)
tα

Γ(α + 1)
, (3.6b)

u2(x, t) = f2(x) f1x(x)
t2α

Γ(2α + 1)
, (3.6c)

u3(x, t) =
(γ + 1

2c2
0

xe−x2
f2(x) +

( 1
c0

− γ + 1
2c2

0

)
f2x −

γ + 1
2c2

0
f1(x) f1x(x)

) t3α

Γ(3α + 1)
, (3.6d)

where

f1(x) = −
( 1

c0
− γ + 1

2c2
0

exp
(−x2

2

))
x exp

(−x2

2

)
,

f2(x) =
γ + 1
2c2

0

( 1
c0

− γ + 1
2c2

0

)( 1
c0

− γ + 1
2c2

0
exp

(−x2

2

))
x exp(−x2).

Proceeding in this manner, the rest of the components un can be obtained and the
series solutions are thus entirely determined.

Finally, we approximate the analytical solution u(x, t) by the truncated series

u(x, t) = lim
N→∞

ΨN(x, t), (3.7)

where

ΨN(x, t) =
N−1

∑
0

un(x, t).

The above series solutions generally converge very rapidly. A classical approach of
convergence of this type of series is already presented by Abbaoui and Cherruaul [22].

4 Second problem

We consider time-fractional wave equation in the following form [9]

uα
t + uux − uxxt = 0, (4.1)
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with initial condition as

u(x, 0) = 3 sec h2
( x − 15

2

)
. (4.2)

The exact solution of Eq. (4.1) in the closed form is

u(x, t) = 3 sec h2
( x − 15 − t

2

)
at α = 1. (4.3)

4.1 Solution of second problem

We second consider the following time-fractional shock wave equation

Dα
t u + uDxu − Dxxtu = 0, (4.4)

with initial condition is

u(x, 0) = 3 sec h2
( x − 15

2

)
. (4.5)

We construct homotopy in the following equation

Dα
t u = p

[
− uDxu + Dxxtu

]
, (4.6)

where the homotopy parameter p is considered as a small parameter (p ∈ [0, 1]). Ap-
plying the classical perturbation scheme, we can assume that the solution of Eq. (4.6)
can be expressed as a power series in p as given below

u = u0 + pu1 + p2u2 + p3u3 + · · · , (4.7a)

p0 : Dα
t u0 = 0, (4.7b)

p1 : Dα
t u1 = −u0Dxu0, (4.7c)

p2 : Dα
t u2 = −u1Dxu0 − u0Dxu1 + Dxxtu1, (4.7d)

p3 : Dα
t u3 = −u0Dxu2 − u2Dxu0 − u1Dxu1 + Dxxtu2, (4.7e)

and so on. The method is based on applying the operator jα
t (the inverse operator of

Caputo derivative Dα
t ) on both sides of Eqs. (4.7b)-(4.7e), then we obtain

u(x, 0) = 3 sec h2
( x − 15

2

)
, (4.8a)

u1(x, t) = −u0u0x
tα

Γ(α + 1)
, (4.8b)

u2(x, t) = g1(x)
t2α

Γ(2α + 1)
+ g2(x)

t2α

Γ(α + 1)
, (4.8c)

u3(x, t) = g3(x)
t3α

Γ(3α + 1)
+ (g4(x) + 2αg1xx(x))

t2α

Γ(3α + 1)
+ αg2xx(x)

tα

Γ(3α + 1)
, (4.8d)
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(a) (b)

(c) (d)
Figure 1: Explicit numerical solutions of Eq. (1.1) for u(x, t) as in Eq. (3.7) at (a) α = 1, γ = 1.4; (b)
α = 1/2, γ = 1.4; (c) α = 1/4, γ = 1.4; (d) α = 4/5, γ = 1.4 with c0 = 2.

(a) (b)

(c) (d)
Figure 2: Explicit numerical solutions of Eq. (1.1) for u(x, t) as in Eq. (3.7) at (a) α = 1, γ = 1.67; (b)
α = 1/2, γ = 1.67; (c) α = 1/4, γ = 1.67; (d) α = 4/5, γ = 1.67 with c0 = 2.
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(a) (b)

(c) (d)
Figure 3: Explicit numerical solutions of Eq. (1.1) for u(x, t) as in Eq. (3.7) at (a) α = 1, γ = 1.4; (b)
α = 1/2, γ = 1.4; (c) α = 1/4, γ = 1.4; (d) α = 4/5, γ = 1.4 with c0 = 1.5.

(a) (b)

(c) (d)
Figure 4: Explicit numerical solutions of Eq. (1.1) for u(x, t) as in Eq. (3.7) at (a) α = 1, γ = 1.67; (b)
α = 1/2, γ = 1.67; (c) α = 1/4, γ = 1.67; (d) α = 4/5, γ = 1.67 with c0 = 1.5.
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where

g1(x) = u0(2u2
0x + u0), g2(x) = (u0u0x)xx,

g3(x) = −g1xu0 − u0xg1 − u0u0x(u0u0x)x, g4(x) = −g2xu0 − u0xg2,

and so on. The approximate solution can be obtained by setting p = 1, in (4.7a) yields

u(x, t) = u1 + u2 + u3 + · · · . (4.9)

This series has the closed form.
The evolution results for the exact solution

u(x, t) = 3 sec h2 (x − 15 − t)
2

,

and the approximate solution (4.9), for the special case α = 1. Then, we may conclude
that we have achieved a good approximation with the exact solution of the equation
by using the first few terms only of the linear equations derived above. It is evident
that the overall errors can be made smaller by adding new terms of the decomposition
series (4.9).

Figure 5: Plots of u(x, t) vs. x at t = 3 the green line at α = 1/4 and red line at α = 1/4 with γ = 1.4,
c0 = 2.

Figure 6: Plots of u(x, t) vs. x at t = 3 the green line at α = 1/4 and red line at α = 1/4 with γ = 1.67,
c0 = 2.
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5 Results and discussion

In this section, the numerical results of u(x, t) for different time-fractional Brownian
motions α = 1/2, 1/4, 4/5 and standard α = 1 with γ = 1.4, 1.67 and c0 = 1.5,
2.0 are calculated for various values of x and t from Eqs. (3.7) and (4.9) by software
MATHEMATICA 6.0. Here initial condition is taken as u(x, 0) = exp(−x2)/2 for time-
fractional shock wave equation and u(x, 0) = 3 sec h2(x − 15)/2 for time-fractional
wave equation. The numerical results of u(x, t) for various values of x and t with
γ = 1.4, 1.67 and c0 = 1.5, 2.0 are illustrated through the Fig. 1(a)-Fig. 4(d) and those
for different values of x, α, γ and c0 are given in Figs. 5 and 6. It is seen from Figs. 1(a)-
(d) the values of u(x, t) decrease corresponding to α decreases with γ = 1.4 and u(x, t)
decrease corresponding to γ increases with α = 1/2, 1/4, 4/5.

6 Conclusions

In this paper, the homotopy perturbation method is directly applied to derive approx-
imate solutions of the fractional coupled nonlinear differential equations. We choose
time-fractional shock equation and wave equation with initial conditions to illustrate
our method. As results, we obtain the approximate solutions of fractional shock wave
equation and also wave equation with high accuracy. The obtained results demon-
strate the reliability of the algorithm and its wider applicability to nonlinear fractional
differential equations. The HPM contains the homotopy parameter p, which provides
us with a simple way to control the convergence region of solution series for large
values of t. It is obvious to see that the HPM is a very powerful, easy and efficient
technique for solving various kinds of nonlinear problems in science and engineering
without many assumptions and restrictions.
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