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Abstract. Observations are reported on thermoplastic elastomer (ethylene-octene
copolymer) melt in small-amplitude shear oscillatory tests and start-up shear tests
with various strain rates in the interval of temperatures between 120 and 210 ◦C.
Based on the concept of heterogeneous non-affine polymer networks, constitutive
equations are developed for the thermo-mechanical behavior of a melt at three-
dimensional deformations with finite strains. Adjustable parameters in the stress–
strain relations are found by fitting the experimental data. The model is applied to
the analysis of Poiseuille flow. The effects of temperature and pressure gradient on
the steady velocity profile are studied numerically.
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1 Introduction

This paper deals with the experimental investigation and constitutive modeling of
the nonlinear thermo-viscoelastic response of thermoplastic-elastomer (TPE) melts at
three-dimensional deformations with finite strains. Modeling the time–dependent be-
havior of polymer melts has been a focus of attention in the past three decades. Among
constitutive equations for the viscoelastic and viscoplastic responses of polymer melts,
it is worth mentioning (i) the Leonov model [1], (ii) the Johnson–Segalman model [2],
(iii) the Phan Thien–Tanner model [3], (iv) the Wagner model (a modification of the
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K–BKZ constitutive equations) [4], (v) the Giesekus model [5], (vi) the finitely exten-
sible nonlinear elastic (FENE) network model [6], (vii) the pom–pom model [7], (viii)
the reptation model with incorporation of segmental stretching [8], and (ix) molecular
stress function model [9], to mention a few.

The present study focuses on the nonlinear thermo-viscoelastic behavior of a ther-
moplastic elastomer (ethylene-octene random copolymer) melt in conventional (i) os-
cillatory shear tests with small amplitudes and (ii) start-up shear tests with constant
strain rates at various temperatures. Rheology of ethylene-octene copolymer melts
has attracted substantial attention in the past decade (see [10]– [19]) for two reasons.
First, these polymers with large concentrations of higher olefin comonomers (above
20 wt.-%) are widely used as rubber modifiers for thermoplastics [15]. Secondly, ethy-
lene copolymers produced by metallocene catalysis have relatively low polydispersity
and contain long chain branches that strongly affect their properties. In particular, (i)
the zero-shear viscosity and (ii) the apparent flow activation energy of polyethylenes
with long-chain branches noticeably exceed those of conventional polyethylenes with
similar molecular weights.

There are two ways to model viscoelasticity of a polymer melt. According to the
first (which goes back to [20,21]), the melt is treated as a transient network of strands,
and its time-dependent response is associated with rearrangement of chains in the net-
work (separation of active strands from temporary junctions and attachment of dan-
gling chains to the network). According to the other approach [2,3], the melt is thought
of as a permanent, but non-affine network of chains. The non-affinity means that junc-
tions between chains slide with respect to their reference positions under deformation,
and the deformation gradient for sliding (plastic flow) of junctions differs from that for
macro-deformation. Following the latter concept, we treat a thermoplastic-elastomer
melt as an incompressible, inhomogeneous, non-affine network of chains linked by
junctions (entanglements and physical cross-links). Heterogeneity of the network is
induced by local density fluctuations. To account for the inhomogeneity, a melt is
thought of as an ensemble of meso-regions with various activation energies for slid-
ing. Distribution of meso-regions is assumed to be independent of temperature and
mechanical factors.

Stress–strain relations for a polymer melt and kinetic equations for sliding (plastic
flow) of junctions are developed by using the laws of thermodynamics. The conven-
tional method of derivation is grounded on the assumption that the plastic vorticity
tensor vanishes. A novelty of our approach is that the constitutive equations are de-
duced without any hypothesis regarding this tensor.

An advantage of the constitutive model is that it involves a small number of ad-
justable parameters (5 for an isothermal loading and 8 for arbitrary non-isothermal
deformations) with transparent physical meaning. These quantities are determined
by fitting the experimental data in shear tests with small and large strains. Not more
than 3 constants are found by approximation of observations in each test, which en-
sures that material parameters are determined with a high level of accuracy. Ability
of the constitutive equations to describe the mechanical response of TPE melts is ex-
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amined by comparison of the model predictions with experimental data in additional
start-up shear tests with relatively large strain rates.

The stress–strain relations are applied to study the Poiseuille flow of TPE melt in a
channel. Analysis of the Poiseuille flow of viscoelastic fluids has attracted noticeable
attention in the past two decades for this type of flow (i) allows constitutive models
to be tested under a spatially inhomogeneous deformation program, and (ii) reveals
a number of interesting phenomena (melt fracture, wall slip, secondary flows) whose
modeling remains a subject of debate [23–26]. Poiseuille flow has been investigated
in [27–29] for polymer fluids described by simple differential models in nonlinear vis-
coelasticity, in [30] for the Wagner model, in [31,32] for the Johnson–Segalman model,
in [33–36] for the Giesekus model, in [36,37] for the Leonov model, in [38] for the Phan-
Thien–Tanner model, in [39, 40] for the FENE model, in [41–44] for viscoelastic-plastic
fluids, and in [45] for viscoelastic fluids with pressure-dependent viscosity. We con-
centrate on combined effects of temperature and pressure gradient on steady velocity
profile.

The objective of the present study is three-fold:
1. To report experimental data in oscillatory shear tests with small amplitudes

and start-up shear tests with finite strains at various temperatures on ethylene-octene
copolymer melt.

2. To derive constitutive equations in finite thermo-viscoelasticity of polymer melts
and to find adjustable parameters in the stress–strain relations by fitting the observa-
tions.

3. To analyze the influence of temperature and pressure gradient on the velocity
profile for Poiseuille flow of the TPE melt.

The exposition is organized as follows. Experimental data are presented in Sec-
tion 2. Kinematic relations for an incompressible heterogeneous non-affine polymer
network are derived in Section 3. Constitutive equations for a polymer melt are de-
veloped in Section 4 by using the laws of thermodynamics. The stress–strain relations
are applied to the analysis of simple shear in Section 5. Adjustable parameters in the
constitutive equations are found in Section 6 by fitting the experimental data. Ability
of the model to predict observations in shear tests with large strain rates and to follow
the Cox–Merz rule is examined in Section 7. The Poiseuille flow of TPE melt is studied
in Section 8. Concluding remarks are formulated in Section 9.

2 Experimental procedure

Thermoplastic elastomer Engage 8101 (ethylene-octene copolymer with 31 wt.-% of
comonomer) was supplied by DuPont–Dow Elastomers. Rheological tests were per-
formed by using rheometric mechanical spectrometer Paar Physica MCR 500 in the
cone–plate mode with a diameter of the disk 25 mm and 2◦ probe.

Two series of experiments were conducted at the temperatures T=120, 130, 150,
170, 190, and 210 ◦C. The lowest temperature T=120 ◦C was chosen from the condition
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that torque in small-amplitude oscillatory tests did not exceed its critical value at the
highest frequency. The highest temperature T=210 ◦C was chosen to ensure that no
noticeable degradation of samples occurred during shear oscillatory tests with a du-
ration of 25 min (pronounced degradation was observed in dynamic tests at Td=230
◦C).

The first series involved small-amplitude shear oscillatory tests (in the frequency-
sweep mode) with an amplitude of 0.05 and angular frequencies ranging from 0.1 to
100 rad/s. In an oscillatory test, a sample was equilibrated at a required temperature,
and the storage modulus G′ and loss modulus G′′ were measured at various frequen-
cies ω beginning from the largest one. Each test was conducted on a new sample. The
experimental data are depicted in Figs. 1 and 2 in the form of the standard double-
logarithmic plots with log=log10.

The other series of experiments involved start-up shear tests with constant shear
rates k̇. At a given temperature, four tests were conducted with the strain rates k̇=1,
2, 5, and 10 s−1. Each tests was performed on a new specimen. The experimental
data are presented in Figs. 3–8, where the shear stress Σ is plotted versus shear k. We
confined ourselves to the interval 0 ≤ k ≤ 10, as steady shear flow was established
within this interval at all temperatures.

The following conclusion are drawn from Figs. 1–8:

1. Given a temperature T, the storage and loss moduli monotonically increase with
frequency of oscillations.

2. Given an angular frequency ω, the storage and loss moduli decrease with tem-
perature. The curves G′′(ω) measured at various temperatures are practically parallel
to each other, whereas shape of the curves G′(ω) changes, and the dependence G′(ω)
becomes steeper at elevated temperatures.

3. Given a temperature T, the shear stress Σ in start-up tests strongly grows with
shear rate.

4. Given a shear rate k̇, the shear stress in start-up tests decreases pronouncedly
with temperature.

5. When the temperature T exceeds 130 ◦C, the dependencies Σ(k) are monotonous
at all strain rates under consideration. At the lowest temperature T=120 ◦C, stress
overshoot is observed at relatively high shear rates.

3 Kinematics of a non-affine network

A thermoplastic-elastomer melt is modeled as an incompressible heterogeneous non-
affine polymer network, where junctions between chains slide with respect to their
reference positions. The inhomogeneity of the network is induced by local density
fluctuations. To account for this phenomenon, we treat the melt as an ensemble of
meso-regions, where sliding (plastic flow) of junctions occurs with various rates. Each
meso-region is characterized by some energy of inter-chain interaction ū. The rate of
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sliding Γ is expressed in terms of ū by means of the Eyring formula [46]

Γ = γ exp
(
− ū

kBT0

)
, (3.1)

where T0 stands for some reference temperature, and the pre-factor γ depends (in
general) on absolute temperature T and mechanical factors. By introducing the di-
mensionless energy

u =
ū

kBT0
,

we present Eq. (3.1) in the form

Γ(t, u) = γ(t) exp(−u), (3.2)

where an explicit dependence of γ on time reflects evolution of this quantity driven
by deformation.

Distribution of meso-regions with various energies is determined by (i) the number
n(u) of chains (per unit volume) that belong to a meso-region with dimensionless
energy u, and (ii) the entire number of chains per unit volume of the melt

n0 =
∫ ∞

0
n(u)du. (3.3)

The distribution function of chains belonging to meso-regions with various u is given
by

f (u) =
n(u)

n0
. (3.4)

The function f (u) and the number of chains per unit volume n0 are assumed to
be independent of deformation. Constitutive equations are derived for an arbitrary
distribution function f (u). To fit experimental data, we adopt the random energy
model [47] with

f (u) = f0 exp
(
− u2

2σ2

)
, (u ≥ 0), f (u) = 0, (u < 0), (3.5)

where the pre-factor f0 is determined by the normalization condition. An advantage
of Eq. (3.5) is that it involves the only material constant σ > 0.

At time t ≥ 0, macro-deformation of the melt is characterized by the deformation
gradient F(t), and sliding of junctions in a meso-region with energy u is described
by the deformation gradient Fs(t, u). The incompressibility condition implies that the
third principal invariants of the tensors F(t) and Fs(t, u) equal unity.

The velocity gradient for the sliding process ls(t, u) reads

ls =
∂Fs

∂t
· F−1

s , (3.6)
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where the dot stands for inner product. The rate-of-strain tensor ds(t, u) and the vor-
ticity tensor ws(t, u) for sliding of junctions are given by

ds =
1
2
(ls + l>s ), ws =

1
2
(ls − l>s ), (3.7)

where > stands for transpose. It follows from Eq. (3.7) that

ls = ds + ws. (3.8)

The deformation gradient for elastic deformation Fe(t, u) in a meso-region with energy
u is determined by

Fe = F · F−1
s . (3.9)

Differentiating Eq. (3.9) with respect to time, applying Eqs. (3.6) and (3.9), and keeping
in mind the formula

L =
dF
dt
· F−1 (3.10)

for the velocity gradient for macro-deformation, we find that

∂Fe

∂t
= Le · Fe, (3.11)

where
Le = L− Ls, Ls = Fe · (ds + ws) · F−1

e . (3.12)

The rate-of-strain tensors for macro-deformation, D, and elastic deformation, De, read

D =
1
2
(L + L>), De =

1
2
(Le + L>e ). (3.13)

It follows from Eqs. (3.12) and (3.13) that

De = D−Ds, (3.14)

where

Ds =
1
2

(
Fe · ds · F−1

e + Fe ·ws · F−1
e + F−>e · ds · F>e − F−>e ·ws · F>e |

)
. (3.15)

The left, Be, and right, Ce, Cauchy–Green tensors for elastic deformation are given by

Be = Fe · F>e , Ce = F>e · Fe. (3.16)

Differentiating Eq. (3.16) with respect to time and taking into account Eqs. (3.12) and
(3.14), we arrive at

∂Be

∂t
= L · Be + Be · L> − (Ls · Be + Be · L>s ), (3.17)

∂Ce

∂t
= 2F>e ·D · Fe − 2F>e ·Ds · Fe. (3.18)



Drozdov, Jensen, Christiansen / Adv. Appl. Math. Mech., 1 (2010), pp. 1-31 7

It follows from Eqs. (3.12), (3.15), and (3.16) that

Ls · Be + Be · L>s = 2Fe · ds · F>e ,
2F>e ·Ds · Fe = Ce · ds + ds · Ce + Ce ·ws −ws · Ce.

Insertion of these expressions into Eq. (3.18) results in

∂Be

∂t
= L · Be + Be · L> − 2Fe · ds · F>e , (3.19)

∂Ce

∂t
= 2F>e ·D · Fe − (Ce · ds + ds · Ce)− (Ce ·ws −ws · Ce). (3.20)

The first principal invariant of the tensor Ce is given by

Je1 = Ce : I, (3.21)

where I is the unit tensor, and the colon stands for convolution. Differentiating Eq.
(3.21) with respect to time, using Eq. (3.20), and bearing in mind that the tensors D
and ds are traceless, we find that

∂Je1

∂t
= 2(B′e : D− C′

e : ds), (3.22)

where the prime stands for the deviator of a tensor.

4 Constitutive equations

The strain energy of a polymer chain at time t in a meso-region with dimensionless
energy u is determined by the classical formula for a neo-Hookean medium

w(t, u) =
1
2

µ̃
(

Je1(t, u)− 3
)

, (4.1)

where µ̃ stands for rigidity. The strain energy density per unit volume of a network
W(t) equals the sum of strain energies of chains belonging to meso-regions with vari-
ous energies u,

W(t) =
∫ ∞

0
w(t, u)n(u)du. (4.2)

Combination of Eqs. (4.1) and (4.2) results in

W(t) =
1
2

µ
∫ ∞

0

(
Je1(t, u)− 3

)
f (u)du, (4.3)

where we introduced the notation µ = µ̃n0. Differentiating Eq. (4.3) with respect to
time and using Eq. (3.22), we obtain

dW
dt

(t) = µ

[∫ ∞

0
B′e(t, u) f (u)du : D(t)−

∫ ∞

0
C′

e(t, u) : ds(t, u) f (u)du
]

. (4.4)
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At isothermal deformation of an incompressible medium, the Clausius–Duhem in-
equality reads

Q(t) = −dW
dt

(t) + Σ′(t) : D(t) ≥ 0, (4.5)

where Q stands for internal dissipation per unit volume and unit time, and Σ is the
Cauchy stress tensor. Substitution of expression (4.4) into Eq. (4.5) implies that

Q(t) =
[
Σ(t)− µ

∫ ∞

0
Be(t, u) f (u)du

]′
: D(t)

+ µ
∫ ∞

0
C′

e(t, u) : ds(t, u) f (u)du ≥ 0. (4.6)

Inequality (4.6) is satisfied for an arbitrary deformation program, provided that the
stress tensor is given by

Σ(t) = −p(t)I + µ
∫ ∞

0
Be(t, u) f (u)du, (4.7)

where p(t) is an unknown pressure, and the rate-of strain tensor ds obeys the kinetic
equation

ds(t, u) = Γ(t, u)C′
e(t, u). (4.8)

Eq. (4.8) may be treated as a definition of the rate of sliding of junctions Γ in a meso-
region with energy u.

To rearrange Eq. (3.19) for the tensor Be, we present Eq. (4.8) in the form

ds = Γ(Ce − 1
3

Je1I). (4.9)

It follows from Eqs. (3.16), (3.19) and (4.9) that

∂Be

∂t
= L · Be + Be · L> − 2Γ(B2

e −
1
3

Je1Be). (4.10)

The initial condition for Eq. (4.10)

Be(0, u) = I, (4.11)

means that elastic strains vanish in the reference state.
To complete description of the constitutive model, a dependence of the rate γ

should be established on temperature T and intensity of elastic deformations. We
postulate that

γ = γ̃(T)ψ(Be), (4.12)

where γ̃ and ψ are given functions, and adopt the Arrhenius dependence of γ̃ on
temperature

γ̃ = γ0 exp
(
− Ea

RT

)
, (4.13)
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where γ0 is a constant pre-factor, Ea stands for an apparent activation energy, and R
denotes the universal gas constant.

The effect of deformation of the rate of sliding is described by the formula

ψ = 1− a
[
1− exp

(
−g(Je2 − 3)

)]
, (4.14)

where a and g are positive dimensionless constants, and Je2 stands for the second
principal invariant of the tensor Be. Eq. (4.14) implies that the function ψ equals unity
at infinitesimal deformations, decreases monotonically with deformation, and reaches
its ultimate value 1− a at large strains.

Formulas (3.2), (3.5), (4.7), and (4.10)–(4.14) provide stress–strain relations for a
polymer melt. Given a temperature T, the constitutive equations involve 5 material
parameters:

1. the modulus µ characterizes elastic properties of the melt,
2. the rate γ̃ describes viscoplastic flow of junctions at small strains,
3. σ reflects local heterogeneity of the polymer network,
4. a and g account for the effect of strain on flow of junctions.

To describe the effect of temperature on the mechanical response, it is postulated that
in the interval of temperatures under consideration, i.e. above the melting tempera-
ture Tm and below the temperature Td at which noticeable degradation of TPE melt
occurs:

1. The dimensionless parameters a and σ are independent of temperature.
2. The elastic modulus µ linearly grows with temperature

µ = µ0 + µ1T, (4.15)

where µ0 and µ1 are positive coefficients. Eq. (4.15) is in accord with the statistical
theory of rubber elasticity that presumes the strain energy of a polymer chain, and, as
a consequence, its elastic modulus, to be proportional to temperature.

3. The dimensionless parameter g linearly increases with temperature,

g = g0 + g1T, (4.16)

where g0 and g1 are constants.
The set of governing equations for an arbitrary non-isothermal deformation of a

polymer melt involves 8 material constants a, Ea, g0, g1, γ0, µ0, µ1, σ.
The stress–strain relations (4.7) and (4.10)–(4.14) belong to a class of multi-mode

Leonov models. The following issues distinguish these equations from the Leonov
model [1] and its previous modifications:

1. Within conventional multi-mode models, the relaxation spectrum of a melt is
described by means of a set of characteristic relaxation times and appropriate elastic
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moduli. A shortcoming of that approach is that it (i) requires a large number of ad-
justable parameters to be determined simultaneously by fitting observations in small-
amplitude oscillatory tests, and (ii) leads to unphysical oscillations when the steady
extensional viscosity is calculated as a function of elongation rate [48]. In the present
model, the relaxation spectrum is determined by two adjustable parameters, γ0 and σ,
which ensures that these quantities are found with a high level of accuracy by match-
ing observations.

2. The constitutive equations do not presume separation of the effects of tempera-
ture and material nonlinearity of the mechanical response, since Eqs. (4.10), (4.12) and
(4.16) account for an increase in parameter g with temperature. The latter means that
the influence of nonlinearity on the time-dependent behavior of TPE melt becomes
more pronounced with growth of temperature.

3. In contradiction with traditional models, Eq. (4.14) implies that the rate of slid-
ing of junctions decreases with elastic strains. This hypothesis is confirmed in Sec-
tion 6 by comparison of results of numerical simulation with experimental data. This
”anomalous” behavior of ethylene-octene copolymer melt (slowing down of the vis-
coplastic flow of junctions with deformation) may be attributed to interaction between
long branched chains and formation of temporary physical cross-links with relatively
short life-times.

5 Simple shear

Macro-deformation at simple shear of an incompressible medium is described by the
equations

x1 = X1 + k(t)X2, x2 = X2, x3 = X3, (5.1)

where {Xi} and {xi} are Cartesian coordinates in the initial and actual states, respec-
tively, and k(t) stands for shear. Eqs. (5.1) imply that

F(t) = e1e1 + e2e2 + e3e3 + k(t)e1e2,

where em (m = 1, 2, 3) are basic vectors of the coordinate frame {Xm}. Insertion of this
expression into Eq. (3.10) yields

L(t) = k̇(t)e1e2, (5.2)

where k̇ = dk/dt.
We search the deformation gradient Fe(t, u) in the form

Fe = p1e1e1 + p2e2e2 + p3e3e3 + φe1e2, (5.3)

where φ(t, u) and pm(t, u) (m = 1, 2, 3) are scalar functions to be found. These func-
tions obey the incompressibility condition

p1 p2 p3 = 1. (5.4)
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Eq. (5.3) means that elastic deformation of a melt is treated as superposition of shear
and three-dimensional extension. Combination of Eqs. (3.16) and (5.3) results in

Be = (p2
1 + φ2)e1e1 + p2

2e2e2 + p2
3e3e3 + p2φ(e1e2 + e2e1). (5.5)

Eqs. (5.4) and (5.5) imply that

Je1 = p2
1 + p2

2 + p2
3 + φ2, Je2 =

1
p2

1
+

1
p2

2
+

1
p2

3
+ p2

3φ2. (5.6)

Insertion of Eqs. (5.2), (5.5), and (5.6) into Eq. (4.10) yields

∂

∂t
(p2

1 + φ2) = 2k̇p2φ− 2Γ
[1

3
(p2

1 + φ2)(2p2
1 − p2

2 − p2
3 + 2φ2) + p2

2φ2
]
, (5.7a)

∂

∂t
(p2φ) = k̇p2

2 −
2
3

Γp2φ(2p2
1 + 2p2

2 − p2
3 + 2φ2), (5.7b)

∂

∂t
(p2

2) = −2
3

Γp2
2(−p2

1 + 2p2
2 − p2

3 + 2φ2), (5.7c)

∂

∂t
(p2

3) = −2
3

Γp2
3(−p2

1 − p2
2 + 2p2

3 − φ2). (5.7d)

The last two equations in Eqs. (5.7) read

∂p2

∂t
= −1

3
Γp2(−p2

1 + 2p2
2 − p2

3 + 2φ2), (5.8)

∂p3

∂t
= −1

3
Γp3(−p2

1 − p2
2 + 2p2

3 − φ2). (5.9)

It follows from the second equation in Eqs. (5.7) and (5.8)-(5.9) that

∂φ

∂t
= k̇p2 − 1

3
Γφ(5p2

1 + 2p2
2 − p2

3 + 2φ2). (5.10)

Rearrangement of the first equation in Eqs. (5.7) with the help of Eq. (5.10) yields

∂p1

∂t
= −1

3
Γp1(2p2

1 − p2
2 − p2

3 − φ2). (5.11)

Eqs. (5.9)–(5.11) with the initial conditions

φ(0, u) = 0, pm(0, u) = 1, (m = 1, 2, 3), (5.12)

determine evolution of the functions pm and φ with time. In accord with Eqs. (3.2),
(4.12), (4.14), and (5.6), the coefficient Γ reads

Γ = γ̃ψ exp(−u), (5.13a)

ψ = 1− a
[
1− exp

(
−g(p−2

1 + p−2
2 + p−2

3 + p2
3φ2 − 3)

)]
. (5.13b)

Insertion of Eq. (5.5) into Eq. (4.7) results in the formula for shear stress

Σ(t) = µ
∫ ∞

0
p2(t, u)φ(t, u) f (u)du. (5.14)

Eqs. (3.5) and (5.9)–(5.14) describe simple shear of a melt for an arbitrary deformation
program k(t).
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5.1 Shear oscillations with a small amplitude

To examine the linear viscoelastic response of TPE melt, we suppose that |k| ¿ 1 and
present the functions φ and pm in the form

φ(t, u) = ∆φ(t, u), pm(t, u) = 1 + ∆pm(t, u), (m = 1, 2, 3), (5.15)

where |∆φ| ¿ 1 and |∆pm| ¿ 1. Inserting expressions (5.15) into Eqs. (5.9)–(5.11) and
(5.13a) and disregarding terms beyond the first order of smallness, we obtain

∂∆p1

∂t
= −2

3
γ̃ exp(−u)(2∆p1 − ∆p2 − ∆p3), (5.16)

∂∆p2

∂t
= −2

3
γ̃ exp(−u)(−∆p1 + 2∆p2 − ∆p3), (5.17)

∂∆p3

∂t
= −2

3
γ̃ exp(−u)(−∆p1 − ∆p2 + 2∆p3), (5.18)

∂∆φ

∂t
= k̇− 2γ̃ exp(−u)∆φ, (5.19)

With the required level of accuracy, initial conditions (5.12) read

∆pm(0, u) = 0, ∆φ(0, u) = 0. (5.20)

Solutions of linear homogeneous differential equations (5.18) with initial conditions
(5.20) are given by

∆pm(t, u) = 0 (m = 1, 2, 3).

Substituting Eq. (5.15) into Eq. (5.14) and neglecting terms beyond the first order of
smallness, we find that

Σ(t) = µ
∫ ∞

0
∆φ(t, u) f (u)du. (5.21)

Eqs. (5.19) and (5.21) describe the shear stress Σ as a function of time t in a shear test
with small strains.

To derive explicit expressions for the storage and loss moduli of a polymer melt
measured in an oscillatory test with small amplitude, we consider the deformation
program

k(t) = k0 exp(ıωt), (5.22)

where ı =
√−1, k0 stands for amplitude, and ω denotes angular frequency. A steady-

state solution of Eq. (5.19) is searched in the form

∆φ(t, v) = ∆φ0 exp(ıωt), (5.23)

where ∆φ0 is an unknown coefficient. Insertion of Eqs. (5.22) and (5.23) into Eq. (5.19)
results in

∆φ0 =
k0ıω

2γ̃ exp(−u) + ıω
. (5.24)
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Substitution of Eqs. (5.22)–(5.24) into Eq. (5.21) implies that

Σ(t) = µk(t)
∫ ∞

0

ıω
2γ̃ exp(−u) + ıω

f (u)du. (5.25)

Introducing the notation
Σ
k

= G′(ω) + ıG′′(ω),

where G′ and G′′ stand for storage and loss moduli, we find from Eq. (5.25) that

G′(ω) = µ
∫ ∞

0

ω2

4γ̃2 exp(−2u) + ω2 f (u)du, (5.26)

G′′(ω) = µ
∫ ∞

0

2γ̃ω exp(−u)
4γ̃2 exp(−2u) + ω2 f (u)du. (5.27)

Eqs. (5.26) and (5.27) describe the storage, G′, and loss, G′′, moduli as functions of
frequency of oscillations ω.

5.2 Steady shear flow with a constant strain rate

We proceed with the study of simple shear with a constant strain rate and determine
the steady shear viscosity η as a function of shear rate k̇. Assuming the functions pm(t)
(m = 1, 2, 3), φ(t) and ψ(t) to approach their limiting values pm0, φ0 and ψ0 as time
tends to infinity, we find from Eqs. (5.9)–(5.11) and (5.13a) that the quantities pm0, φ0
and ψ0 obey the nonlinear equations

2p2
10 − p2

20 − p2
30 − φ2

0 = 0, (5.28a)

−p2
10 + 2p2

20 − p2
30 + 2φ2

0 = 0, (5.28b)

−p2
10 − p2

20 + 2p2
30 − φ2

0 = 0, (5.28c)

(5p2
10 + 2p2

20 − p2
30 + 2φ2

0)φ0 =
3k̇

γ̃ψ0
p20 exp(u), (5.28d)

ψ0 = 1− a
[
1− exp

(
−g(p−2

10 + p−2
20 + p−2

30 + p2
30φ2

0 − 3)
)]

. (5.28e)

Subtracting the third equality in Eq. (5.28) from the first, we obtain

p2
30 = p2

10. (5.29)

Substitution of Eq. (5.29) into the second equality in Eq. (5.28) results in

p2
10 = p2

20 + φ2
0. (5.30)

Combination of Eqs. (5.4), (5.29), and (5.30) yields

p2
20 + φ2

0 =
1

p20
. (5.31)
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It follows from Eqs. (5.29)–(5.31) that

1
p2

10
+

1
p2

20
+

1
p2

30
+ p2

30φ2
0 = p20 +

2
p2

20
. (5.32)

Substituting Eq. (5.32) into the last equality in Eq. (5.28), we find that

ψ0(p20) = 1− a + a exp
[
−g

(
p20 + 2p−2

20 − 3
)]

. (5.33)

Combination of Eqs. (5.29)–(5.31) with the fourth equation in Eq. (5.28) implies that

φ0 = K
p2

20
ψ0

, (5.34)

where

K =
k̇ exp(u)

2γ̃
. (5.35)

Insertion of Eq. (5.34) into Eq. (5.31) results in the nonlinear algebraic equation for p20,

p3
20 +

K2

ψ2
0

p5
20 − 1 = 0. (5.36)

It follows from Eqs. (5.14) and (5.34) that the steady shear stress Σ0 reads

Σ0 = µ
∫ ∞

0
K(u)

p3
20(u)

ψ0(p20(u))
f (u)du. (5.37)

The steady shear viscosity is defined as

η =
Σ0

k̇
.

Substituting Eq. (5.37) into this equation and using Eq. (5.35), we arrive at

η =
µ

2γ̃

∫ ∞

0

p3
20(u)

ψ0(p20(u))
exp(u) f (u)du. (5.38)

Eqs. (5.33), (5.35), (5.36) and (5.38) determine the steady shear viscosity η as a function
of shear rate k̇.

6 Fitting of observations

Adjustable parameters in the constitutive equations are found by fitting the experi-
mental data reported in Section 2 with the help of the following algorithm.
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6.1 Small-amplitude shear oscillatory tests

Each set of data depicted in Figs. 1 and 2 (for the shear modulus G′(ω) and the loss
modulus G′′(ω) at a given temperature T) is matched separately.

To determine the best-fit parameters µ, γ̃ and σ, we begin with approximation of
the experimental data at the temperature T=130 ◦C. We fix some intervals [0, γmax]
and [0, σmax], where the quantities γ̃ and σ are assumed to be located, and divide
these intervals into J=10 subintervals by the points γ(i)=i∆γ and σ(j)=j∆σ (i, j =
1, . . . , J − 1) with ∆γ=γmax/J and ∆σ=σmax/J. For each pair {γ(i), σ(j)}, the integrals
in Eq. (5.27) are evaluated numerically by the Simpson method with N=400 points
and the step ∆v=3.5 · 10−2. The modulus µ is found by the least-squares technique
from the condition of minimum of the function

H = ∑
m

[
log G′

exp(ωm)− log G′
num(ωm)

]2
+

[
log G′′

exp(ωm)− log G′′
num(ωm)

]2
,

where the sum is calculated over all frequencies ωm at which the experimental data
are reported, G′

exp and G′′
exp are the dynamic moduli measured in a test, and G′

num

and G′′
num are given by Eq. (5.27). After finding the best-fit values γ(i) and σ(j), this

procedure is repeated twice for the new intervals [γ(i−1), γ(i+1)] and [σ(j−1), σ(j+1)], to
ensure an acceptable accuracy of fitting.

When the best-fit value of σ is found (it is reported in Table 1), we fix this parameter
and approximate observations at other temperatures by means of the above algorithm
with two adjustable constants, µ and γ̃, only. Figs. 1 and 2 demonstrate excellent
agreement between the experimental data and the results of numerical simulation.

After determination of modulus µ at each temperature T separately, the depen-
dence µ(T) is plotted in Fig. 9. The experimental data are matched by Eq. (4.15),
where the coefficients µ0 and µ1 are found by the least-squares technique (these pa-
rameters are collected in Table 1). Fig. 9 shows that Eq. (4.15) correctly approximates

Figure 1: Storage modulus G′ versus frequency ω.
Symbols: experimental data on TPE melt at vari-
ous temperatures T ◦C. Solid lines: results of nu-
merical simulation.

Figure 2: Loss modulus G′′ versus frequency ω.
Symbols: experimental data on TPE melt at vari-
ous temperatures T ◦C. Solid lines: results of nu-
merical simulation.
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Table 1: Adjustable parameters for thermoplastic elastomer.

Parameter Unit Value
µ0 kPa 2.61 · 10−1

µ1 kPa/K 1.08 · 10−3

Ea kJ/mol 43.02
γ0 s−1 9.61 · 108

σ 2.10
a 0.91
g0 −6.99 · 10−1

g1 6.30 · 10−3

the observations. The modulus µ linearly increases with temperature, and its values
belong to the interval between 0.4 and 0.5 MPa at all temperatures under considera-
tion. This interval is close to the interval between 0.42 and 0.72 MPa which was calcu-
lated for the ultimate elastic modulus of an ethylene-octene copolymer with a similar
molecular weight (at T = 190 ◦C) based on various approaches to the assessment of
elastic moduli [16].

The dependence of γ̃ on temperature T is depicted in Fig. 10. The data are fitted
by Eq. (4.13), which is presented in the form

ln γ̃ = c0 − c1

RT
, (6.1)

with
c0 = ln γ0, and c1 =

Ea

R
.

The coefficients c0 and c1 in Eq. (6.1) are calculated by the least-squares method. Fig.
10 reveals good agreement between the experimental data and their description by
Eq. (6.1) with the parameters Ea and γ0 listed in Table 1. The apparent activation
energy Ea=43 kJ/mol is in accord with the observations reported by other researchers
(29–39 [18], 35–36 [11], 37 [15], 39 [19], 44–45 [10] kJ/mol).

6.2 Start-up shear tests with large strains

We now fit observations in start-up shear tests with various strain rates k̇ reported
in Figs. 3–8. First, we match the experimental data in shear test with the maximum
strain rate k̇=10 s−1 at T=130 ◦C by using the parameters µ, γ̃ and σ found in the
approximation of observations in small-amplitude oscillatory tests. To determine a
and g, we fix some intervals [0, amax] and [0, gmax], where these quantities are assumed
to be located, and divide these intervals into J=10 subintervals by the points

a(i) = i∆a, and g(j) = j∆g, (i, j = 1, . . . , J − 1),

with ∆a=amax/J, and ∆g=gmax/J. For each pair {a(i), g(j)}, Eqs. (5.9)–(5.11) with
initial conditions (5.12) are integrated by the Runge–Kutta method with the step
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Figure 3: Shear stress Σ versus shear k in start-
up tests with various strain rates k̇ s−1. Symbols:
experimental data on TPE melt at the temperature
T = 120 ◦C (unfilled circles: k̇ = 10.0, filled circles:
k̇ = 5.0, asterisks: k̇ = 2.0, stars: k̇ = 1.0). Solid
lines: results of numerical simulation.

Figure 4: Shear stress Σ versus shear k in start-
up tests with various strain rates k̇ s−1. Symbols:
experimental data on TPE melt at the temperature
T = 130 ◦C (unfilled circles: k̇ = 10.0, filled circles:
k̇ = 5.0, asterisks: k̇ = 2.0, stars: k̇ = 1.0). Solid
lines: results of numerical simulation.

Figure 5: Shear stress Σ versus shear k in start-
up tests with various strain rates k̇ s−1. Symbols:
experimental data on TPE melt at the temperature
T = 150 ◦C (unfilled circles: k̇ = 10.0, filled circles:
k̇ = 5.0, asterisks: k̇ = 2.0, stars: k̇ = 1.0). Solid
lines: results of numerical simulation.

Figure 6: Shear stress Σ versus shear k in start-
up tests with various strain rates k̇ s−1. Symbols:
experimental data on TPE melt at the temperature
T = 170 ◦C (unfilled circles: k̇ = 10.0, filled circles:
k̇ = 5.0, asterisks: k̇ = 2.0, stars: k̇ = 1.0). Solid
lines: results of numerical simulation.

∆t=1.0 · 10−5 s−1 for any u=n∆u with

∆u = 3.5 · 10−2, n = 0, 1, . . . , N − 1,

and N=400. The integral in Eq. (5.14) is evaluated numerically by the Simpson
method. The best-fit values a(i) and g(j) are determined from the condition of min-
imum of the function

H = ∑
m

[
Σexp(tm)− Σnum(tm)

]2
,
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Figure 7: Shear stress Σ versus shear k in start-
up tests with various strain rates k̇ s−1. Symbols:
experimental data on TPE melt at the temperature
T = 190 ◦C (unfilled circles: k̇ = 10.0, filled circles:
k̇ = 5.0, asterisks: k̇ = 2.0, stars: k̇ = 1.0). Solid
lines: results of numerical simulation.

Figure 8: Shear stress Σ versus shear k in start-
up tests with various strain rates k̇ s−1. Symbols:
experimental data on TPE melt at the temperature
T = 210 ◦C (unfilled circles: k̇ = 10.0, filled circles:
k̇ = 5.0, asterisks: k̇ = 2.0, stars: k̇ = 1.0). Solid
lines: results of numerical simulation.

where the sum is calculated over all instants tm at which the experimental data are
reported, Σexp is the shear stress measured in a test, and Σnum is given by Eq. (5.14).
After finding the best-fit values a(i) and g(j), this procedure is repeated twice for the
new intervals [a(i−1), a(i+1)] and [g(j−1), g(j+1)], to ensure an acceptable accuracy of
fitting.

Afterwards, we fix the best-fit value of a (it is given in Table 1) and repeat the above
procedure of matching observations (in transient shear tests with the strain rate k̇=10
s−1) at other temperatures with the only adjustable parameter g.

The dependence of g on temperature T is depicted in Fig. 9. The experimental
data are approximated by Eq. (4.16), where the coefficients g0 and g1 are found by the
least-squares technique (these parameters are collected in Table 1). Fig. 9 shows that
phenomenological Eq. (4.16) correctly describes the observations.

When all material parameters are found, numerical simulation of Eqs. (5.9)–(5.11)
and (5.14) is performed for all temperatures T and strain rates k̇ under consideration.
The results of numerical analysis are depicted in Figs. 3–8, which reveal good agree-
ment between the experimental data and predictions of the model.

7 Validation of the model

To validate the constitutive equations, we examine their ability (i) to predict the me-
chanical response in start-up shear tests with relatively high strain rates k̇, and (ii) to
describe the steady shear viscosity η as a function of strain rate k̇. In the latter case, re-
sults of numerical simulation are compared with predictions based on the Cox–Merz
rule [49].
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Figure 9: Modulus µ and dimensionless parameter
g versus temperature T. Symbols: treatment of
observations on TPE melt. Solid lines: results of
numerical simulation.

Figure 10: Rate γ0 versus temperature T. Circles:
treatment of observations on TPE melt. Solid line:
results of numerical simulation.

7.1 Start-up shear tests

To check accuracy of predictions of the shear stress Σ in transient tests with large shear
rates k̇ based on constitutive equations (3.5) and (5.9)–(5.14), two additional series of
experiments were conducted. The first series involved three start-up shear tests with
the strain rates k̇=40, 50 and 60 s−1 at the temperature T=150 ◦C. The other series
consisted of four shear tests with the strain rate k̇=50 s−1 at the temperatures T=150,
170, 190, and 210 ◦C. The experimental dependencies of the shear stress Σ on shear k
are plotted in Figs. 11 and 12. It is worth noting that the interval of shear k in these
figures substantially exceeds that in Figs. 3–8.

Afterwards, numerical simulation is performed of Eqs. (3.5) and (5.9)–(5.14) with

Figure 11: Shear stress Σ versus shear k in start-
up tests with various strain rates k̇ s−1. Symbols:
experimental data at the temperature T = 150 ◦C.
Solid lines: results of numerical simulation.

Figure 12: Shear stress Σ versus shear k in start-
up tests with the strain rate k̇ = 50 s−1. Symbols:
experimental data at various temperatures T ◦C.
Solid lines: results of numerical simulation.
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Figure 13: Shear viscosity η versus shear rate k̇ and
complex viscosity η∗ versus angular frequency ω.
Symbols: observations in small-amplitude oscilla-
tory tests on TPE melt at various temperatures T◦C. Solid lines: results of numerical simulation.

Figure 14: Velocity gradient V versus dimension-
less coordinate x2∗. Solid lines: results of numeri-
cal simulation for steady Poiseuille flow at T = 150◦C with ∆P∗ = 20, 40, 80, and 120 kPa, from bot-
tom to top, respectively.

the experimental constants listed in Table 1. The results of numerical analysis are also
depicted in Figs. 11 and 12. These figures demonstrate good agreement between the
observations and the results of simulation, which confirms that the constitutive model
adequately predicts the mechanical response of TPE melt.

7.2 The Cox–Merz rule

The Cox–Merz rule states that the dependence of the complex viscosity

η∗ =
1
ω

√
(G′)2 + (G′′)2, (7.1)

on frequency ω in oscillatory shear tests with small amplitudes practically coincides
with the dependence of the steady shear viscosity η on shear rate k̇ in shear tests with
large strains, when ω and k̇ are measured in rad/s and s−1, respectively. Although
this assertion has no rigorous proof, it is fulfilled for a number of polymer melts with
a high level of accuracy.

To evaluate applicability of the Cox–Merz rule to TPE melt, we calculate the depen-
dence η∗(ω) by means of Eq. (7.1) and the experimental data for G′ and G′′ depicted in
Figs. 1 and 2. Observations at the temperatures T=120, 150 and 190 ◦C are presented
in Fig. 13.

Afterwards, the dependence of steady shear viscosity η on shear rate k̇ is deter-
mined numerically with the help of Eqs. (5.33), (5.35), (5.36) and (5.38). Calculations
are performed with the material parameters listed in Table 1. The integral in Eq. (5.38)
is evaluated by the Simpson method with N=400 points and the step ∆u=3.5 · 10−2.
For each u, the quantity p20(u) is found from Eq. (5.36), which is solved by the
Newton–Raphson iterative method with the minimum accuracy of 1.0 · 10−11. The
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results of numerical simulation are depicted in Fig. 13 which reveals that for all tem-
peratures and frequencies (shear rates) under consideration, the response of TPE melt
follows the Cox–Merz rule. At T=150 and 190 ◦C, the steady shear viscosity η prac-
tically coincides with the dynamic viscosity η∗, whereas at the lowest temperature
T=120 ◦C, rather small deviations are observed between them.

8 Poiseuille flow in a channel

The constitutive model is now applied to investigate the Poiseuille flow of TPE melt
in a channel with rectangular cross-section under a pressure gradient ∆P depending
on time t only. We concentrate on the classical statement of the problem and disregard
wall slip and flow instabilities.

The choice of the Poiseuille flow for the analysis is explained by two reasons: (i)
this is the only spatially inhomogeneous motion, for which exact solutions of non-
linear constitutive equations may be developed and examined by comparison with
observations of extensional viscosity [49], and (ii) explicit solutions for the Poiseuille
flow of viscoelastic and viscoplastic fluids are widely used in biomedical engineering
(arterial blood flow [50]) and microfluidics [51].

In a conventional microfluidic devise, when a polymer liquid moves through a
micro- or nano-sized channel with rough walls (surface roughness is comparable with
a characteristic width of the channel) under the action of a relatively high pressure
gradient, slippage occurs at the walls that results in friction-driven dissipation of en-
ergy, part of which causes a noticeable growth of temperature [52, 53]. The increase
in temperature of the liquid affects its mechanical behavior, in particular, the veloc-
ity profile, and, as a consequence, leads to changes in appropriate boundary condi-
tions [54]. In general, a coupled thermo-mechanical problem of viscoelastic flow in
a channel with nonlinear stick-slip conditions at the walls [55, 56] should be consid-
ered, which is overly complicated to expect an analytical solution to be developed.
Results of numerical simulation of this problem [57, 58] are, however, rather limited
because the number of material parameters is too large in order to assess the influence
of various factors, on the one hand, and the physics of surface interactions is not fully
understood, on the other [59]. It seems natural, as a first approximation, to decouple
the entire problem and to study slippage-induced heating of a polymer fluid (with
simplified motion equations) and Poiseuille flow of a viscoelastic fluid at various tem-
peratures (with simplified boundary conditions at the walls) separately. Heat transfer
in a flow of viscous fluid in a channel with rough walls has recently been investigated
in [58]. Our aim is to evaluate the effects of temperature and material nonlinearities
on the velocity profile for the Poiseuille flow of a TPE melt when slippage along the
walls is disregarded. To the best of our knowledge, the influence of these factors on
flow of polymer melts has not yet been analyzed.

The channel occupies the infinite domain

{−∞ < x1 < ∞, 0 < x2 < 2L, −∞ < x3 < ∞},
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where xm (m = 1, 2, 3) are Cartesian coordinates with basic vectors em, and 2L stands
for width of the channel. Flow of the melt occurs in the x1 direction, and the velocity
vector v reads

v = v(t, x2)e1, (8.1)

where v(t, x2) is a function to be found. This function obeys the no-slip boundary
conditions at the walls x2 = 0 and x2 = 2L,

v(t, 0) = 0, v(t, 2L) = 0. (8.2)

For a discussion of more realistic boundary conditions induced by wall slip, see [55,
56, 59–61]. Assuming the flow to be symmetric with respect to the plane x2 = L, we
replace Eq. (8.2) with

v(t, 0) = 0, V(t, L) = 0, (8.3)

where
V =

∂v
∂x2

. (8.4)

8.1 Constitutive equations

As flow of TPE melt is studied in the reference coordinate frame, some modifications
of the stress–strain relations are to be performed. First, we re-write Eq. (4.7) in the
form

Σ = −pI + T, (8.5)

where p denotes pressure, and

T = µ
∫ ∞

0

(
Be − 1

3
Je1I

)
f (u)du (8.6)

stands for the traceless extra-stress tensor. Secondly, we replace the partial derivative
with respect to time in Eq. (4.10) with the substantial derivative

D
Dt

=
∂

∂t
+ v · ∇, (8.7)

which results in the kinetic equation for the left Cauchy–Green tensor for elastic de-
formation

DBe

Dt
= L · Be + Be · L> − 2Γ(B2

e −
1
3

Je1Be). (8.8)

The Cauchy–Green tensor Be is presumed to depend on time, dimensionless energy
u, and coordinate x2 only,

Be = Be(t, x2, u). (8.9)

Under conditions (8.1) and (8.9), we have

v · ∇Be = ve1 · e2
∂Be

∂x2
= 0,
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which implies that for this type of flow, substantial derivative (8.7) of the tensor Be
coincides with its partial derivative with respect to time,

DBe

Dt
=

∂Be

∂t
. (8.10)

The velocity gradient for macro-deformation reads

L = (∇v)>.

Insertion of Eq. (8.1) into this relation implies that

L = Ve1e2. (8.11)

We search the tensor Be in the form (5.5), where pm(t, x2, u) (m = 1, 2, 3) and φ(t, x2, u)
are functions to be found. Substitution of Eqs. (5.5), (8.10), and (8.11) into Eq. (8.8)
results in the differential equations

∂p1

∂t
= −1

3
Γp1(2p2

1 − p2
2 − p2

3 − φ2), (8.12a)

∂p2

∂t
= −1

3
Γp2(−p2

1 + 2p2
2 − p2

3 + 2φ2), (8.12b)

∂p3

∂t
= −1

3
Γp3(−p2

1 − p2
2 + 2p2

3 − φ2), (8.12c)

∂φ

∂t
= Vp2 − 1

3
Γφ(5p2

1 + 2p2
2 − p2

3 + 2φ2). (8.12d)

Eqs. (8.12) coincide with Eqs. (5.9)–(5.11), where the shear rate k̇ is replaced with V.
It follows from Eqs. (8.6) and (8.9) that the extra-stress tensor T depends on time

and coordinate x2 only,
T = T(t, x2). (8.13)

Insertion of Eqs. (5.5) and (5.6) into Eq. (8.6) yields

T = T11e1e1 + T22e2e2 + T33e3e3 + T(e1e2 + e2e1), (8.14)

where

T11 =
µ

3

∫ ∞

0
(2p2

1 − p2
2 − p2

3 + 2φ2) f (u)du, (8.15a)

T22 =
µ

3

∫ ∞

0
(−p2

1 + 2p2
2 − p2

3 − φ2) f (u)du, (8.15b)

T33 =
µ

3

∫ ∞

0
(−p2

1 − p2
2 + 2p2

3 − φ2) f (u)du, (8.15c)

T = µ
∫ ∞

0
p2φ f (u)du. (8.15d)
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8.2 Governing equations

We treat pressure p as a function of time and Cartesian coordinates, p = p(t, x1, x2, x3).
This function is connected with the pressure gradient ∆P by the formula

∂p
∂x1

= −∆P. (8.16)

The momentum equation for a polymer melt reads

ρ
Dv
Dt

= −∇p +∇ · T, (8.17)

where ρ stands for a constant mass density. Bearing in mind that

∂v
∂t

=
∂v
∂t

e1, v · ∇v = 0, ∇ · T =
∂T
∂x2

e1 +
∂T22

∂x2
e2,

and using Eq. (8.7), we present Eq. (8.17) in the form

ρ
∂v
∂t

= − ∂p
∂x1

+
∂T
∂x2

, 0 = − ∂p
∂x2

+
∂T22

∂x2
, 0 = − ∂p

∂x3
. (8.18)

Insertion of Eqs. (8.15) and (8.16) into the first equality in Eq. (8.18) results in

ρ
∂v
∂t

= ∆P + µ
∂

∂x2

∫ ∞

0
p2φ f (u)du. (8.19)

Formulas (8.4), (8.12) and (8.19) provide a set of integro-differential equations for the
unknown velocity v.

8.3 Steady-state flow of a melt

We focus on a steady-state solution of the governing equations with a constant pres-
sure gradient ∆P, when the dependence of unknown functions on time is disregarded.
It follows from Eq. (8.19) that

∂

∂x2

∫ ∞

0
p2φ f (u)du = −∆P

µ
, (8.20)

where the same notation is preserved for the steady-state values of unknown func-
tions. The steady-state solution of Eq. (8.12) satisfies nonlinear algebraic equations
(5.28), where k̇ is replaced with V. By analogy with Eqs. (5.33)–(5.36), we infer that the
function p2 obeys the equation

p3
2 +

K2

ψ2 p5
2 − 1 = 0, (8.21)
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and the function φ is given by

φ = K
p2

2
ψ(p2)

, (8.22)

where

K =
V exp(u)

2γ̃
, ψ(p2) = 1− a + a exp

[
−g

(
p2 + 2p−2

2 − 3
)]

. (8.23)

Eqs. (8.21) and (8.22) imply that

p2

∣∣∣
V=0

= 1, φ
∣∣∣
V=0

= 0. (8.24)

Integration of Eq. (8.20) from x2 to L results in
∫ ∞

0
p2φ f (u)du

∣∣∣
x2=L

−
∫ ∞

0
p2φ f (u)du

∣∣∣
x2=x2

= −∆P
µ

(L− x2).

Keeping in mind the last boundary condition (8.3) and Eqs. (8.23) and (8.24), we obtain

∫ ∞

0
K

p3
2

ψ(p2)
f (u)du =

∆P
µ

(L− x2). (8.25)

Eqs. (8.21)–(8.23) and (8.25) provide a set of nonlinear equations for the function
V(x2). When this function is found, the steady-state velocity v(x2) is determined by
integration of Eq. (8.4) with the first boundary condition (8.3).

To reduce the number of parameters that describe the Poiseuille flow, on the one
hand, and to preserve the structure of governing equations, on the other, we introduce
the variables

x2∗ =
x2

L
, v∗ =

v
L

, ∆P∗ = L∆P.

In the new notation, Eqs. (8.21)–(8.23) remain unchanged, whereas Eq. (8.25) reads

∫ ∞

0
K

p3
2

ψ(p2)
f (u)du = ∆P∗(1− x2∗). (8.26)

The steady-state velocity v∗ is given by

v∗(x2∗) =
∫ x2∗

0
V(z)dz. (8.27)

8.4 Numerical simulation

To evaluate the effect of temperature T on velocity v, numerical simulation is per-
formed of Eqs. (8.21)–(8.23), (8.26), and (8.27) with the material parameters listed
in Table 1. Given temperature T and pressure gradient ∆P∗, we fix some value V,
and find a solution p2 of Eqs. (8.21)–(8.23). For any u=n∆u with ∆u=3.5 · 10−2,



26 Drozdov, Jensen, Christiansen / Adv. Appl. Math. Mech., 1 (2010), pp. 1-31

n = 0, 1, . . . , N − 1, and N=400, this solution is determined by the Newton–Raphson
iterative algorithm with the accuracy of 1.0 · 10−11. When the dependence p2(u) is
found for a given V, the integral in Eq. (8.26) is evaluated by the Simpson method,
and the dimensionless coordinate x2∗ is calculated. Inverting the dependence x2∗(V),
the velocity gradient V is found as a function of x2∗. In accord with Eq. (8.27), upon
integration of this function, v∗(x2∗) is determined. Calculations are carried out for
V=i∆V with the step ∆V=0.03, i = 1, 2, . . . , I, and I=105.

The dependencies V(x2∗) and v∗(x2∗) are presented in Figs. 14 and 15 (for T=150
◦C) and 16 and 17 (for T=210 ◦C). Results of numerical analysis are reported for vari-
ous values of ∆P∗ ranging from 20 to 120 kPa (which roughly correspond to the dimen-
sionless ratios ∆P∗/µ in the interval between 0.05 and 0.3). Figs. 14 and 16 demon-

Figure 15: Velocity v∗ versus dimensionless coor-
dinate x2∗. Solid lines: results of numerical sim-
ulation for steady Poiseuille flow at T = 150 ◦C
with ∆P∗ = 20, 40, 80, and 120 kPa, from bottom
to top, respectively.

Figure 16: Velocity gradient V versus dimension-
less coordinate x2∗. Solid lines: results of numeri-
cal simulation for steady Poiseuille flow at T = 210◦C with ∆P∗ = 20, 40, 80, and 120 kPa, from bot-
tom to top, respectively.

Figure 17: Velocity v∗ versus dimensionless coor-
dinate x2∗. Solid lines: results of numerical sim-
ulation for steady Poiseuille flow at T = 210 ◦C
with ∆P∗ = 20, 40, 80, and 120 kPa, from bottom
to top, respectively.

Figure 18: Velocity v∗ versus dimensionless coor-
dinate x2∗. Solid lines: results of numerical sim-
ulation for steady Poiseuille flow with ∆P∗ = 100
kPa at the temperatures T = 120, 130, 150, 170,
190, and 210 ◦C, from bottom to top, respectively.
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strate that the dependencies V(x2∗) are close to linear (the latter correspond to the
classical solution) at ∆P∗=20 kPa, and they become substantially nonlinear with an
increase in ∆P∗. The velocity gradient V strongly grows with ∆P∗, in particular, at
relatively small values of x2∗, that is near the wall x2=0.

According to Figs. 15 and 17, shape of the curves v∗(x2∗) is parabolic at the smallest
value of ∆P∗. When ∆P∗ increases, the curves v∗(x2∗) deviate from this pattern, and
a pronounced growth of the maximum velocity is observed. This growth is in accord
with the results of molecular-dynamics simulations reported in [62]. Comparison of
Figs. 15 and 17 shows a strong increase of the steady velocity with temperature.

To evaluate this growth, numerical simulation is performed of Eqs. (8.21)–(8.23),
(8.26), and (8.27) for ∆P∗=100 kPa at all temperatures T under consideration. The
results are presented in Fig. 18, where the steady velocity v∗ is plotted versus dimen-
sionless coordinate x2∗. This figure shows that the maximum velocity increases by a
factor of 8, when temperature T grows from 120 to 210 ◦C.

9 Concluding remarks

Two series of rheological tests (small-amplitude oscillatory tests in the frequency-
sweep mode and start-up shear tests with various strain rates) have been performed
on a thermoplastic-elastomer melt at various temperatures T ranging from 120 ◦C to
210 ◦C.

Constitutive equations are developed for the mechanical response of a melt at arbi-
trary three-dimensional deformations with finite strains. The melt is treated as an in-
compressible, inhomogeneous, non-affine network of chains, where junctions between
chains (physical cross-links and entanglements) slide with respect to their reference
positions. The stress–strain relations are derived by using the laws of thermodynam-
ics. For an isothermal deformation, these equations involve 5 adjustable parameters.
The number of material constants increases up to 8 for non-isothermal deformation
programs.

Material constants are found by fitting the experimental data. It is demonstrated
that the constitutive equations adequately describe the observations, and the ad-
justable parameters change consistently with temperature. To validate the model, two
additional series of rheological tests have been performed. An acceptable agreement
is revealed between experimental data in these tests and predictions of the model. It is
shown that the results of numerical analysis obey the Cox–Merz rule with a high level
of accuracy.

As an application, Poiseuille flow of TPE melt in a channel is analyzed. A set
of nonlinear differential-algebraic equations is developed for the steady flow velocity.
These equations are solved numerically with the material parameters found by match-
ing the observations. It is demonstrated that the steady velocity is strongly affected by
temperature and pressure gradient. The velocity profile is parabolic at small pressure
gradients (which is typical of the classical solution), and it strongly deviates from the
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parabolic law with growth of pressure gradient. An increase in temperature (in the
range of temperatures under consideration) leads to the growth of maximum velocity
by several times.

Acknowledgements

Financial support from the European Commission under the project Nanotough
213436 is gratefully acknowledged.

References

[1] A. I. LEONOV, Nonequilibrium thermodynamics and rheology of viscoelastic polymer media,
Rheol. Acta., 15 (1976), pp. 85–98.

[2] M. W. JOHNSON AND D. SEGALMAN, A model for viscoelastic fluid behavior which allows
non-affine deformation, J. Non-Newton. Fluid., 2 (1977), pp. 255–270.

[3] N. PHAN THIEN AND R. I. TANNER, A new constitutive equation derived from network the-
ory, J. Non-Newton. Fluid., 2 (1977), pp. 353–365.

[4] M. H. WAGNER, Prediction of primary normal stress difference from shear viscosity data using
a single integral constitutive equation, Rheol. Acta., 16 (1977), pp. 43–50.

[5] H. GIESEKUS, A simple constitutive equation for polymer fluids based on the concept of
deformation-dependent tensorial mobility, J. Non-Newton. Fluid., 11 (1982), pp. 69–109.

[6] K. R. GEURTS AND L. E. WEDGEWOOD, A finitely extensible network strand model with
nonlinear backbone forces and entanglement kinetics, J. Chem. Phys., 106 (1997), pp. 339–346.

[7] T. C. B. MCLEISH AND R. G. LARSON, Molecular constitutive equations for a class of
branched polymers: The pom–pom model, J. Rheol., 42 (1998), pp. 81–110.

[8] C. C. HUA, J. D. SCHIEBER AND D. C. VENERUS, Segment connectivity, chain-length breath-
ing, segmental stretch, and constraint release in reptation models. 3. Shear flows, J. Rheol., 43
(1999), pp. 701–717.

[9] M. H. WAGNER, P. RUBIO AND H. BASTIAN, The molecular stress function model for poly-
disperse polymer melts with dissipative convective constraint release, J. Rheol., 45 (2001), pp.
1387–1412.

[10] C. GABRIEL AND H. MUNSTEDT, Creep recovery behavior of metallocene linear low-density
polyethylenes, Rheol. Acta., 38 (1999), pp. 1435–1528.

[11] S. E. BIN WADUD AND D. G. BAIRD, Shear and extensional rheology of sparsely branched
metallocene-catalyzed polyethylenes, J. Rheol., 44 (2000), pp. 1151–1167.

[12] C. GABRIEL AND H. MUNSTEDT, Influence of long-chain branches in polyethylenes on linear
viscoelastic flow properties in shear, Rheol. Acta., 41 (2002), pp. 232-244.

[13] A. H. DEKMEZIAN, J. B. P. SOARES, P. JIANG, C. A. GARCIA-FRANCO, W. WENG, H.
FRUITWALA, T. SUN AND D. SARZOTTI, Characterization and modeling of metallocene-based
branch-block copolymers, Macromolecules., 35 (2002), pp. 9586-9594.

[14] D. J. LOHSE, S. T. MILNER, L. J. FETTERS, M. XENIDOU, N. HADJICHRISTIDIS, R. A.
MENDELSON, C. A. GARCIA-FRANCO AND M. K. LYON, Well defined model long chain
branched polyethylene. 2. Melt rheological behavior, Macromolecules., 35 (2002), pp. 3066–
3075.

[15] B. PATHAM AND K. JAYARAMAN, Creep recovery of random ethylene-octene copolymer melts
with varying comonomer content, J. Rheol., 49 (2005), pp. 989–999.



Drozdov, Jensen, Christiansen / Adv. Appl. Math. Mech., 1 (2010), pp. 1-31 29

[16] C. A. GARCIA-FRANCO, B. A. HARRINGTON AND D. J. LOHSE, On the rheology of
ethylene-octene copolymers, Rheol. Acta., 44 (2005), pp. 591–599.

[17] W. QIYE, L. PENG, M. JINGXIA, Z. NA, A. PENG AND W. JINGAN, The rheological behavior
of EPDM Nordel IP and POE Engage produced by CGC and INSITETM technology, J. Appl.
Polym. Sci., 101 (2006), pp. 2847–2853.

[18] I. A. HUSSEIN, T. HAMEED AND M. C. WILLIAMS, Influence of molecular structure on the
rheology and thermorheology of metallocene polyethylenes, J. Appl. Polym. Sci., 102 (2006), pp.
1717–1728.

[19] F. J. STADLER, C. GABRIEL AND H. MUNSTEDT, Influence of short-chain branching of
polyethylenes on the temperature dependence of rheological properties in shear, Macromol.
Chem. Phys., 208 (2007), pp. 2449–2454.

[20] M. S. GREEN AND A. V. TOBOLSKY, A new approach to the theory of relaxing polymeric media,
J. Chem. Phys., 14 (1946), pp. 80–92.

[21] F. TANAKA AND S. F. EDWARDS, Viscoelastic properties of physically cross-linked networks.
Transient network theory, Macromolecules., 25 (1992), pp. 1516–1523.

[22] M. ZATLOUKAL, Differential viscoelastic constitutive equations for polymer melts in steady
shear and elongational flows, J. Non-Newton. Fluid Mech., 113 (2003), pp. 209–227.

[23] M .M. DENN, Extrusion instabilities and wall slip, Annu. Rev. Fluid. Mech., 33 (2001), pp.
265–287.

[24] A. N. MOROZOV AND W. VAN SAARLOOS, An introductory essay on subcritical instabilities
and the transition to turbulence in visco-elastic parallel shear flows, Phys. Rep., 447 (2007), pp.
112–143.

[25] C. METIVIER AND C. NOUAR, On linear stability of Rayleigh–Benard Poiseuille flow of vis-
coplastic fluids, Phys. Fluids., 20 (2008), No. 104101.

[26] M. RENARDY, Stress modes in linear stability of viscoelastic flows, J. Non-Newton. Fluid
Mech., 159 (2009), pp. 137–140.

[27] K. R. RAJAGOPAL AND R. K. BHATNAGAR, Exact solutions for some simple flows of an
Oldroyd–B fluid, Acta. Mech., 113 (1995), pp. 233–239.

[28] T. HAYAT, A. M. SIDDIQUI AND S. ASGHAR, Some simple flows of an Oldroyd–B fluid, Int.
J. Eng. Sci., 39 (2001), pp. 135–147.

[29] A. F. KHADRAWI, M. A. AL-NIMR AND A. OTHMAN, Basic viscoelastic fluid flow problems
using the Jeffreys model, Chem. Eng. Sci., 60 (2005), pp. 7131–7136.

[30] A. COHEN AND B. CASWELL, A procedure for calculation of the Wagner model velocity profile
in the Poiseuille flow, Rheol. Acta., 27 (1988), pp. 202–204.

[31] J. J. VAN SCHAFTINGEN AND M. J. CROCHET, Analytical and numerical solution of the
Poiseuille flow of the Johnson–Segalman fluid, J. Non-Newton. Fluid Mech., 18 (1985), pp.
335–351.

[32] K. R. RAJAGOPAL AND I. J. RAO, Some simple flows of a Johnson–Segalman fluid, Acta.
Mech., 132 (1999), pp. 209–219.

[33] J. Y. YOO AND H. CH. CHOI, On the steady simple shear flows of the one-mode Giesekus fluid,
Rheol. Acta., 28 (1989), pp. 13–24.

[34] G. SCHLEINIGER AND R. J. WEINACHT, Steady Poiseuille flow for a Giesekus fluid, J. Non-
Newton. Fluid Mech., 40 (1991), pp. 79–102.

[35] I. DAPRA AND G. SCARPI, Couette–Poiseuille flow of the Giesekus model between parallel
plates, Rheol. Acta., 48 (2009), pp. 117–120.

[36] M. A. HULSEN, Some properties and analytical expressions for plane flow of Leonov and
Giesekus models, J. Non-Newton. Fluid Mech., 30 (1988), pp. 85–92.

[37] M. SILINE AND A. I. LEONOV, On flows of viscoelastic liquids in long channels and dies, Int.



30 Drozdov, Jensen, Christiansen / Adv. Appl. Math. Mech., 1 (2010), pp. 1-31

J. Eng. Sci., 39 (2001), pp. 415–437.
[38] P. J. OLIVEIRA AND F. T. PINHO, Analytical solution for fully-developed channel and pipe flow

of Phan-Thien–Tanner fluids, J. Fluid. Mech., 387 (1999), pp. 271–280.
[39] P. J. OLIVEIRA, An exact solution for tube and slit flow of a FENE–P fluid, Acta. Mech., 158

(2002), pp. 157–167.
[40] D. O. A. CRUZ AND F . T. PINHO, Fully-developed pipe and planar flows of multimode vis-

coelastic fluids, J. Non-Newton. Fluid Mech., 141 (2007), pp. 85–98.
[41] Y. WANG, Time-dependent Poiseuille flows of visco-elasto-plastic fluids, Acta. Mech., 186

(2006), pp. 187–201.
[42] C. J. HEATON, Linear instability of annular Poiseuille flow, J. Fluid. Mech., 610 (2008), pp.

391–406.
[43] Y. -L. CHEN AND K. -Q. ZHU, Couette–Poiseuille flow of Bingham fluids between two porous

parallel plates with slip conditions, J. Non-Newton. Fluid Mech., 153 (2008), pp. 1–11.
[44] E. TALIADOROU, G. C. GEORGIOU AND I. MOULITSAS, Weakly compressible Poiseuille

flows of a Herschel–Bulkley fluid, J. Non-Newton. Fluid Mech., 158 (2009), pp. 162–169.
[45] J. HRON, J. MALEK AND K. R. RAJAGOPAL, Simple flow of fluids with pressure dependent

viscosities, P. R. Soc. London. A, 457 (2001), pp. 1603–1622.
[46] H. EYRING, Viscosity, plasticity, and diffusion as examples of absolute reaction rates, J. Chem.

Phys., 4 (1936), pp. 283–291.
[47] B. DERRIDA, Random-energy model: limit of a family of disordered models, Phys. Rev. Lett., 45

(1980), pp. 79–92.
[48] R. PIVOKONSKY, M. ZATLOUKAL AND P. FILIP, On the predictive/fitting capabilities of the

advanced differential constitutive equations for branched LDPE melts, J. Non-Newton. Fluid
Mech., 135 (2006), pp. 58–67.

[49] R. I. TANNER, Engineering Rheology, Clarendon Press, Oxford, 1992.
[50] C. A. D. LEGUY, E. M. H. BOSBOOM, A. P. G. HOEKS AND F. N. VAN DE VOSSE, Model-

based assessment of dynamic arterial blood volume flow from ultrasound measurements, Med.
Biol. Eng. Comput., 47 (2009), pp. 641–648.

[51] T. M. SQUIRES AND S. R. QUAKE, Microfluidics: Fluid physics at the nanoliter scale, Rev.
Mod. Phys., 77 (2005), pp. 977–1026.

[52] Z. LI, Surface effects on friction-induced fluid heating in nanochannel flows, Phys. Rev. E, 79
(2009), No. 026312.

[53] D. GLOSS AND H. HERWIG, Microchannel roughness effects: A close-up view, Heat. Transfer.
Eng., 30 (2009), pp. 62–69.

[54] J. SERVANTIE AND M. MULLER, Temperature dependence of the slip length in polymer melts
at attractive surfaces, Phys. Rev. Lett., 101 (2008), No. 026101.

[55] M. MULLER, C. PASTORINO AND J. SERVANTIE, Flow, slippage and a hydrodynamic bound-
ary condition of polymers at surfaces, J. Phys-Condens. Mat., 20 (2008), No. 494225.

[56] M. MULLER, C. PASTORINO AND J. SERVANTIE, Hydrodynamic boundary condition of poly-
mer melts at simple and complex surfaces, Comput. Phys. Commun., 180 (2009), pp. 600–604.

[57] N. ROQUET AND P. SARAMITO, An adaptive finite element method for viscoplastic flows in a
square pipe with stick-slip at the wall, J. Non-Newton. Fluid Mech., 155 (2008), pp. 101–115.

[58] M. H. KHADEM, M. SHAMS AND S. HOSSAINPOUR, Numerical simulation of roughness
effects on flow and heat transfer in microchannels at slip flow regime, Int. Comm. Heat Mass
Trans., 36 (2009), pp. 69–77.

[59] R. D. BRANAM AND M. M. MICCI, Comparison of wall models for the molecular dynamics
simulation of microflows, Nanosc. Microsc. Therm. Eng., 13 (2009), pp. 1-12.

[60] P. A. THOMPSON AND M. O. ROBBINS, Shear flow near solids: Epitaxial order and flow



Drozdov, Jensen, Christiansen / Adv. Appl. Math. Mech., 1 (2010), pp. 1-31 31

boundary conditions, Phys. Rev. A, 41 (1990), pp. 6830–6837.
[61] T. MA AND S. WANG, Boundary-layer and interior separations in the Taylor-Couette-Poiseuille

flow, J. Math. Phys., 50 (2009), No. 033101.
[62] J. CASTILLO-TEJAS, J. F. J. ALVARADO, G. GONZALEZ-ALATORRE, G. LUNA-

BARSENAS, I. C. SANCHEZ, R. MACIAS-SALINAS AND O. MANERO, Nonequilibrium
molecular dynamics of the rheological and structural properties of linear and branched molecules.
Simple shear and Poiseuille flows; instabilities and slip, J. Chem. Phys., 123 (2005), No. 054907.


