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Abstract. This paper aims at investigating the resonance frequencies and stability of a
long Graphene Nano-Ribbon (GNR) carrying electric current. The governing equation
of motion is obtained based on the Euler-Bernoulli beam model along with Hamil-
ton’s principle. The transverse force distribution on the GNR due to the interaction of
the electric current with its own magnetic field is determined by the Biot-Savart and
Lorentz force laws. Using Galerkin’s method, the governing equation is solved and
the effect of current strength and dimensions of the GNR on the stability and reso-
nance frequencies are investigated.
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1 Introduction

Recent progresses in nanotechnology have led to the development of nano-electro-
mechanical systems (NEMS). Carbon nanostructures such as nanotubes, nanocones and
graphene nanoribbons are widely used as nanosensores, nanomechanical resonators,
nanoswitches robotic manipulators and magneto-elastic biosensors. The very high stiff-
ness, low density, specific optical properties, high current carrying capability and having
two-dimensional structure, have attracted the attention of scientists to GNRs [1–4]. Ow-
ing to these outstanding properties, graphene is an ideal material for the design and

∗Corresponding author.
Email: firouzabadi@sharif.edu (R. D. Firouz-Abadi), mohammadkhani@ae.sharif.edu (H. Mohammadkhani)

http://www.global-sci.org/aamm 299 c©2014 Global Science Press



300 R. D. Firouz-Abadi and H. Mohammadkhani / Adv. Appl. Math. Mech., 6 (2014), pp. 299-306

development of new NEMS for a variety of applications, including force, position and
mass sensing [5–9].

The structural instability is one of the major problems encountered in flexible
lightweight components of NEMS. The vibration and instability of a current-carrying
elastic rods have been studied by some researchers [10–13]. Also, recently Chen and et
al. [14] investigated the fabrication and electrical readout of monolayer Graphene res-
onators, and studied their response to changes in mass and temperature.

The aim of this study is to investigate the resonance frequencies and instability of a
long GNR carrying electric current. The Lorentz force produced by the interaction of the
current with its own magnetic field induces the transverse deflection of GNR. The GNR
is modeled as an Euler-Bernoulli beam and the Galerkin method is applied to solve the
governing equation of motion. Based on the obtained model, the variation of resonance
frequencies and instability conditions of the GNRs of different dimensions are investi-
gated.

2 Governing equations of motion

Fig. 1 shows a schematic of a GNR of flexural rigidity D, length l, width b and thickness
h which carries electric current I. The transverse vibration of the GNR is described in the
global xyz frame so that the x axis coincides with the neutral axis. The GNR is suspended
across a valley between two metallic gates, and is bridge at both ends. Considering the
GNR as an Euler-Bernoulli beam, the governing equation of transverse deflection can be
derived using Hamilton’s principle;

δH=
∫ t1

t1

δ(K−U+W)dt=0, (2.1)

where K is the kinetic energy, U is the potential energy, and W is the work done by the
self induced Lorentz force. The kinetic and potential energies of the beam are given by

K=
1

2

∫ l

0
ρAẇ2dx, (2.2a)

U=
1

2

∫ l

0
Dw′′2dx, (2.2b)

where ρA is mass of GNR per unit length and w is the transversal deflection. Also the
prime and dot symbols denote the derivative with respect to x and time, respectively.
The work done by a transverse force distribution fy on the GNR is calculated as

W=
∫ l

0
fywdx. (2.3)

The GNR can be modeled as a series of differential segments as shown in Fig. 2. The
magnetic field due to the element dx1 on the neutral axis at point x is obtained from the
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Figure 1: Schematic of the flexible Graphene nano-ribbon.
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Figure 2: Schematic of the deform GNR and the Lorentz force due to the magnetic field of the element dx1 on
the element dx.

Biot-Savart law as follows [15]

B=
µ0

4π

∫

b
2

−
b
2

ds1×r

|r|3
, (2.4)

where r=(x−x1)i+(w−w1)j−z1k is the distance vector from the element dx1dz1 to the
neutral axis at point x. Also, µ0 is the permeability of free space and the current vector
ds1 can be expressed as

ds1= Jh(i+w′
1j)dx1dz1, (2.5)

where J is the electric current density. Thus the Lorentz force due to the magnetic field of
the element dx1 on the element dx can be obtained as follows

df= Idl×B, (2.6)

where dl is (i+w′j)dx. Substituting Eq. (2.4) into Eq. (2.6), the transverse force distribu-
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tion fy on the element dx can be shown

fy =
df·j

dx
=

∫ l

0

∫

b
2

−
b
2

µ0bh2 J2

4π

w1+(x−x1)w
′
1−w

((x−x1)
2+(w−w1)

2+z1
2)

3/2
dz1dx1. (2.7)

Assuming constant electric current density across the GNR’s width, integrating Eq. (2.8)
over the GNR’s width and using the Taylor expansion about w−w1, the transverse force
distribution is obtained

fy =
µ0 I2

4π

∫ l

0

w1+(x−x1)w
′
1−w

(x−x1)
2
√

(x−x1)
2+ b2

4

dx1. (2.8)

In which the nonlinear terms are eliminated.

3 Solution method

Based on Galerkin’s method, the transverse deflections of the GNR can be written as
series expansions of the mode shapes of a GNR bridged at both ends, namely

w(x,t)=
N

∑
n=1

αn(t)φn(x), (3.1)

where αn(t)s are the modal coordinates of the system and φns are the modes of a bridged
beam, given by

φn(x)=

√

2

l
sin

(nπx

l

)

. (3.2)

Substituting Eq. (3.1) into Eq. (2.1), and choosing φm, m=1,··· ,N as admissible variations
of the transverse deflection, δw, the following coupled system equations is obtained

Iα̈+Kα=0, (3.3)

where I is the identity matrix and the stiffness matrix K is defined

K(m,n)=
D

ρA

(nπ

l

)4
δmn−

µ0 I2

4πρA

∫ l

0

∫ l

0

φn(x1)−φn(x)+(x−x1)φ
′
n(x)

(x−x1)
2
√

(x−x1)
2+ b2

4

φm(x)dx1dx, (3.4)

where δmn is Kronecker’s delta. Assuming a solution of the form q= eλjtq̄j, where λj =

σj+iωj is the jth eigenvalue and q̄j is the jth eigenvector. Eq. (3.3) is transformed into the
following standard eigenvalue problem

Kq̄j =−λ2
j Iq̄j. (3.5)
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Figure 3: Time response versus amplitude of unstable mode.

To find the nontrivial solutions, the determinant of the matrix (λ2
j I+K) must be zero.

Thus, the characteristic equation of the system is obtained as

|λ2
j I+K|=0. (3.6)

The zero roots of the characteristic equation are the eigenvalues of the system that de-
termine the modal damping σj and frequency ωj of the system modes. As the electric
current is increased, the damping of each mode (σj) turns to be positive at a specific cur-
rent value, and the mode becomes unstable. The first instability point determines the
critical electric current and the instability mode. Therefore, if real parts of all eigenval-
ues are negative, the system is stable. Namely, the trivial solutions are asymptotically
stable. If there exists at least one eigenvalue with a positive real part, then there are in-
finitely growing solutions for arbitrary small initial conditions and the trivial solution is
unstable.

Since the considered system is conservative and there is no any external energy source
in the system, the static instability or divergence occurs. Namely, the unstable mode
grows as eσjt, where σj is a positive real number. Thus the amplitude of the unstable
mode (and consequently the GNR’s deflections) will be increased exponentially as shown
in Fig. 3. Note that in practice, the nonlinear effects inhibit the large deflections and thus
the predicted instability is for the linearized system (the onset of instability). This type of
instability is exactly similar to the buckling of the beams under a compressive force.

4 Numerical results and discussion

Based on the obtained formulation, the variation of resonance frequencies of the GNR
versus the electric current and length-to-width ratio is investigated.

Fig. 4 shows the dimensionless frequency of the fundamental mode versus the electric
current for several length-to-width ratios when b= 75nm. The bending stiffness for the
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Figure 4: Dimensionless fundamental frequency versus the electric currents for several length-to-width ratios
when b=75nm.
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Figure 5: Critical electric current versus the width of the GNR for several length-to-width ratios in logarithmic
scale.

GNR is taken as 2.1eV which is reported by Cranford and Buehler [16] based on the
molecular dynamics results. The fundamental frequency is made dimensionless relative
to its value at the zero current. The results reveal that the electric current and length-
to-width ratio are crucial factors to determine the resonance frequency and the stability
boundary of the GNR. Increasing the electric current yields the reduction of the resonance
frequencies so that the buckling instability occurs at a specific current value. Eq. (3.4)
confirms that the stiffness of the GNR decreases directly proportional to the square of
the electric current. Furthermore, the results imply that increasing length-to-width ratio
decreases the resonance frequency of the GNR.

Fig. 5 gives a better insight into the effect of width of the GNR as well as length-to-
width ratio on the critical electric current in logarithmic scale. The areas below the curves
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demonstrate the stable region that diminishes as length-to-width ratio and the width of
the GNR decrease. Based on curve fitting to the presented results and several other case
studies, the relation between the critical current (Icr), the width and length of the GNR is
obtained as described Icr(mA)=155b0.666/l1.166 in which the GNR’s length and width are
in nanometer.

5 Conclusions

In summary, the resonance frequency and the stability boundaries of a long graphene
nano-ribbon carrying electric current were investigated. The results show self induced
transverse Lorentz force on the GNR due to the interaction of the electric current with its
own magnetic field causes the reduction of natural frequencies and increasing the current
results in the divergence instability. Also, based on curve fitting to the obtained results
an empirical relation between the critical current and the width and the length-to-width
ratio of the GNR was introduced.
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