On Proximal Relations in Transformation Semigroups Arising from Generalized Shifts

Fatemah Ayatollah Zadeh Shirazi^{1,*}, Amir Fallahpour², Mohammad Reza Mardanbeigi³ and Zahra Nili Ahmadabadi³

 ¹ Faculty of Mathematics Statistics and Computer Science, College of Science, University of Tehran, Enghelab Ave., Tehran, Iran
 ² Faculty of Mathematics and Computer Science, College of Science, Amirkabir

University of Technology, Tehran, Iran

³ Islamic Azad University, Science and Research Branch Tehran, Iran

Received 16 October 2017; Accepted (in revised version) 24 September 2019

Abstract. For a finite discrete topological space *X* with at least two elements, a nonempty set Γ , and a map $\varphi : \Gamma \to \Gamma$, $\sigma_{\varphi} : X^{\Gamma} \to X^{\Gamma}$ with $\sigma_{\varphi}((x_{\alpha})_{\alpha \in \Gamma}) = (x_{\varphi(\alpha)})_{\alpha \in \Gamma}$ (for $(x_{\alpha})_{\alpha \in \Gamma} \in X^{\Gamma}$) is a generalized shift. In this text for $S = \{\sigma_{\psi} : \psi \in \Gamma^{\Gamma}\}$ and $\mathcal{H} = \{\sigma_{\psi} : \Gamma \xrightarrow{\psi} \Gamma$ is bijective} we study proximal relations of transformation semigroups (S, X^{Γ}) and $(\mathcal{H}, X^{\Gamma})$. Regarding proximal relation we prove:

$$P(\mathcal{S}, X^{\Gamma}) = \{ ((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \exists \beta \in \Gamma \ (x_{\beta} = y_{\beta}) \}$$

and $P(\mathcal{H}, X^{\Gamma}) \subseteq \{((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \{\beta \in \Gamma : x_{\beta} = y_{\beta}\} \text{ is infinite}\} \cup \{(x, x) : x \in \mathcal{X}\}.$

Moreover, for infinite Γ , both transformation semigroups (S, X^{Γ}) and $(\mathcal{H}, X^{\Gamma})$ are regionally proximal, i.e., $Q(S, X^{\Gamma}) = Q(\mathcal{H}, X^{\Gamma}) = X^{\Gamma} \times X^{\Gamma}$, also for sydetically proximal relation we have $L(\mathcal{H}, X^{\Gamma}) = \{((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in X^{\Gamma} \times X^{\Gamma} : \{\gamma \in \Gamma : x_{\gamma} \neq y_{\gamma}\}$ is finite}.

Key Words: Generalized shift, proximal relation, transformation semigroup. **AMS Subject Classifications**: 54H15, 37B09

1 Preliminaries

By a (left topological) transformation semigroup (S, Z, π) or simply (S, Z) we mean a compact Hausdorff topological space *Z* (phase space), discrete topological semigroup *S*

http://www.global-sci.org/ata/

©2022 Global-Science Press

^{*}Corresponding author. *Email addresses:* fatemah@khayam.ut.ac.ir, f.a.z.shirazi@ut.ac.ir

⁽F. Ayatollah Zadeh Shirazi), amir.falah90@yahoo.com (A. Fallahpour), mrmardanbeigi@srbiau.ac.ir (M. Mardanbeigi), zahra.nili.a@gmail.com (Z. Nili Ahmadabadi)

(phase semigroup) with identity *e* and continuous map $\pi : S \times Z \to Z$ ($\pi(s, z) = sz, s \in S, z \in Z$) such that for all $z \in Z$ and $s, t \in S$ we have ez = z, (st)z = s(tz). If *S* is a discrete topological group too, then we call the transformation semigroup (*S*, *Z*), a *transformation group*. We say $(x, y) \in Z \times Z$ is a *proximal pair* of (S, Z) if there exists a net $\{s_{\lambda}\}_{\lambda \in \Lambda}$ in *S* with

$$\lim_{\lambda\in\Lambda}s_{\lambda}x=\lim_{\lambda\in\Lambda}s_{\lambda}y.$$

We denote the collection of all proximal pairs of (S, Z) by P(S, Z) and call it *proximal relation* on (S, Z), for more details on proximal relations we refer the interested reader to [4,8].

In the transformation semigroup (S, Z) we call $(x, y) \in Z \times Z$ a regionally proximal pair if there exists a net $\{(s_{\lambda}, x_{\lambda}, y_{\lambda})\}_{\lambda \in \Lambda}$ in $S \times Z \times Z$ such that

$$\lim_{\lambda \in \Lambda} x_{\lambda} = x, \quad \lim_{\lambda \in \Lambda} y_{\lambda} = y \quad \text{and} \quad \lim_{\lambda \in \Lambda} s_{\lambda} x_{\lambda} = \lim_{\lambda \in \Lambda} s_{\lambda} y_{\lambda}.$$

We denote the collection of all regionally proximal pairs of (S, Z) by Q(S, Z) and call it regionally proximal relation on (S, Z). Obviously we have $P(S, Z) \subseteq Q(S, Z)$. In the transformation group (T, Z), by [9] we call $L(T, Z) = \{(x, y) \in Z \times Z : \overline{T(x, y)} \subseteq P(T, Z)\}$ the syndetically proximal relation of (T, Z) (for details on the interaction of L(T, Z), Q(T, Z) and P(T, Z) with uniform structure of Z see [5,6,9]).

1.1 A collection of generalized shifts as phase semigroup

For nonempty sets X, Γ and self-map $\varphi : \Gamma \to \Gamma$ define the generalized shift $\sigma_{\varphi} : X^{\Gamma} \to X^{\Gamma}$ by $\sigma_{\varphi}((x_{\alpha})_{\alpha \in \Gamma}) = (x_{\varphi(\alpha)})_{\alpha \in \Gamma} ((x_{\alpha})_{\alpha \in \Gamma} \in X^{\Gamma})$. Generalized shifts have been introduced for the first time in [2], in addition dynamical and non-dynamical properties of generalized shifts have been studied in several texts like [3] and [7]. It's well-known that if *X* has a topological structure, then $\sigma_{\varphi} : X^{\Gamma} \to X^{\Gamma}$ is continuous (when X^{Γ} equipped with product topology), in addition If *X* has at least two elements, then $\sigma_{\varphi} : X^{\Gamma} \to X^{\Gamma}$ is a homeomorphism if and only if $\varphi : \Gamma \to \Gamma$ is bijective.

Convention. In this text suppose *X* is a finite discrete topological space with at least two elements, Γ is a nonempty set, $\mathcal{X} := X^{\Gamma}$, and:

- $S := \{ \sigma_{\varphi} : \varphi \in \Gamma^{\Gamma} \}$, is the semigroup of generalized shifts on X^{Γ} ,
- $\mathcal{H} := \{ \sigma_{\varphi} : \varphi \in \Gamma^{\Gamma} \text{ and } \varphi : \Gamma \to \Gamma \text{ is bijective} \}$, is the group of generalized shift homeomorphisms on X^{Γ} .

Equip X^{Γ} with product (pointwise convergence) topology. Now we may consider S (resp. \mathcal{H}) as a subsemigroup (resp. subgroup) of continuous maps (resp. homeomorphisms) from \mathcal{X} to itself, so S (resp. \mathcal{H}) acts on \mathcal{X} in a natural way.

Our aim in this text is to study P(T, X), Q(T, X), and L(T, X) for T = H, S. Readers interested in this subject may refer to [1] too.

2 Proximal and regionally proximal relations of (S, X)

In this section we prove that

$$P(\mathcal{S}, \mathcal{X}) = \{ ((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X} : \exists \beta \in \Gamma \ (x_{\beta} = y_{\beta}) \},\$$
$$Q(\mathcal{S}, \mathcal{X}) = \begin{cases} \mathcal{X} \times \mathcal{X}, & \Gamma \text{ is infinite,} \\ P(\mathcal{S}, \mathcal{X}), & \Gamma \text{ is finite.} \end{cases}$$

Theorem 2.1. $P(S, \mathcal{X}) = \{((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X} : \exists \beta \in \Gamma \ (x_{\beta} = y_{\beta})\}.$

Proof. First consider $\beta \in \Gamma$ and $(x_{\alpha})_{\alpha \in \Gamma}$, $(y_{\alpha})_{\alpha \in \Gamma} \in \mathcal{X}$ by $x_{\beta} = y_{\beta}$. Define $\psi : \Gamma \to \Gamma$ with $\psi(\alpha) = \beta$ for all $\alpha \in \Gamma$. Then

$$\sigma_{\psi}((x_{\alpha})_{\alpha\in\Gamma}) = (x_{\beta})_{\alpha\in\Gamma} = (y_{\beta})_{\alpha\in\Gamma} = \sigma_{\psi}((y_{\alpha})_{\alpha\in\Gamma}),$$

$$((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma}) \in P(\mathcal{S}, \mathcal{X}).$$

Conversely, suppose $((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in P(\mathcal{S}, \mathcal{X})$. There exists a net $\{\sigma_{\varphi_{\lambda}}\}_{\lambda \in \Lambda}$ in \mathcal{S} with

$$\lim_{\lambda \in \Lambda} \sigma_{\varphi_{\lambda}}((x_{\alpha})_{\alpha \in \Gamma}) = \lim_{\lambda \in \Lambda} \sigma_{\varphi_{\lambda}}((y_{\alpha})_{\alpha \in \Gamma}) =: (z_{\alpha})_{\alpha \in \Gamma}.$$

Choose arbitrary $\theta \in \Gamma$, then

$$\lim_{\lambda \in \Lambda} x_{\varphi_{\lambda}(\theta)} = \lim_{\lambda \in \Lambda} y_{\varphi_{\lambda}(\theta)} = z_{\theta}$$

in X. Since X is discrete, there exists $\lambda_0 \in \Lambda$ such that $x_{\varphi_{\lambda}(\theta)} = y_{\varphi_{\lambda}(\theta)} = z_{\theta}$ for all $\lambda \geq \lambda_0$, in particular for $\beta = \varphi_{\lambda_0(\theta)}$ we have $x_{\beta} = y_{\beta}$.

Lemma 2.1. For infinite Γ we have: $Q(S, X) = Q(H, X) = X \times X$.

Proof. Suppose Γ is infinite, then there exits a bijection $\mu : \Gamma \times \mathbb{Z} \to \Gamma$, in particular $\{\mu(\{\alpha\} \times \mathbb{Z}) : \alpha \in \Gamma\}$ is a partition of Γ to its infinite countable subsets. Define bijection $\varphi : \Gamma \to \Gamma$ by $\varphi(\mu(\alpha, n)) = \mu(\alpha, n + 1)$ for all $\alpha \in \Gamma$ and $n \in \mathbb{Z}$. Consider $p \in X$ and $(x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma} \in \mathcal{X}$. For all $n \geq 1$ and $\alpha \in \Gamma$ let:

$$x_{\alpha}^{n} := \begin{cases} x_{\alpha}, & \alpha = \mu(\beta, k) \text{ for some } \beta \in \Gamma \text{ and } k \leq n, \\ p, & \text{otherwise,} \end{cases}$$
$$y_{\alpha}^{n} := \begin{cases} y_{\alpha}, & \alpha = \mu(\beta, k) \text{ for some } \beta \in \Gamma \text{ and } k \leq n, \\ p, & \text{otherwise,} \end{cases}$$

then:

$$\begin{split} &\lim_{n \to +\infty} (x_{\alpha}^{n})_{\alpha \in \Gamma} = (x_{\alpha})_{\alpha \in \Gamma}, \\ &\lim_{n \to +\infty} (y_{\alpha}^{n})_{\alpha \in \Gamma} = (y_{\alpha})_{\alpha \in \Gamma}, \\ &\lim_{n \to \infty} \sigma_{\varphi^{2n}}((x_{\alpha}^{n})_{\alpha \in \Gamma}) = (p_{\alpha})_{\alpha \in \Gamma} = \lim_{n \to +\infty} \sigma_{\varphi^{2n}}((y_{\alpha}^{n})_{\alpha \in \Gamma}). \end{split}$$

By $\sigma_{\varphi^{2n}} \in \mathcal{H}$ for all $n \ge 1$ and using the above statements, we have $((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in Q(\mathcal{H}, \mathcal{X}) \subseteq Q(\mathcal{S}, \mathcal{X})$.

Lemma 2.2. For finite Γ and any subsemigroup \mathcal{T} of \mathcal{S} we have $Q(\mathcal{T}, \mathcal{X}) = P(\mathcal{T}, \mathcal{X})$.

Proof. We must only prove $Q(\mathcal{T}, \mathcal{X}) \subseteq P(\mathcal{T}, \mathcal{X})$. Suppose $(x, y) \in Q(\mathcal{T}, \mathcal{X})$, then there exists a net $\{(x_{\lambda}, y_{\lambda}, t_{\lambda})\}_{\lambda \in \Lambda}$ in $\mathcal{X} \times \mathcal{X} \times \mathcal{T}$ such that

$$\lim_{\lambda \in \Lambda} x_{\lambda} = x, \quad \lim_{\lambda \in \Lambda} y_{\lambda} = y,$$
$$\lim_{\lambda \in \Lambda} t_{\lambda} x_{\lambda} = \lim_{\lambda \in \Lambda} t_{\lambda} y_{\lambda} =: z.$$

Since $\mathcal{X} \times \mathcal{X} \times \mathcal{T}$ is finite, $\{(x_{\lambda}, y_{\lambda}, t_{\lambda})\}_{\lambda \in \Lambda}$ has a constant subnet like $\{(x_{\lambda_{\mu}}, y_{\lambda_{\mu}}, t_{\lambda_{\mu}})\}_{\mu \in M}$, so there exists $t \in \mathcal{T}$ such that for all $\mu \in M$ we have $x = x_{\lambda_{\mu}}, y = y_{\lambda_{\mu}}$ and $t = t_{\lambda_{\mu}}$, therefore tx = ty(=z) and $(x, y) \in P(\mathcal{T}, \mathcal{X})$.

Theorem 2.2. We have:

$$Q(\mathcal{S}, \mathcal{X}) = \begin{cases} \mathcal{X} \times \mathcal{X}, & \Gamma \text{ is infinite,} \\ P(\mathcal{S}, \mathcal{X}), & \Gamma \text{ is finite.} \end{cases}$$

Proof. Use Lemmas 2.1 and 2.2.

3 Proximal and regionally proximal relations of $(\mathcal{H}, \mathcal{X})$

Note that for finite Γ , \mathcal{H} is a finite subset of homeomorphisms on \mathcal{X} and $P(\mathcal{H}, \mathcal{X}) = \{(x, x) : x \in \mathcal{X}\}$, also using Lemmas 2.1 and 2.2 we have:

$$Q(\mathcal{H}, \mathcal{X}) = \begin{cases} \mathcal{X} \times \mathcal{X}, & \Gamma \text{ is infinite,} \\ P(\mathcal{H}, \mathcal{X}) = \{(x, x) : x \in \mathcal{X}\}, & \Gamma \text{ is finite.} \end{cases}$$

In this section we show that:

$$\{((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma}): \max(\operatorname{card}(\{\beta\in\Gamma: x_{\beta}\neq y_{\beta}\}), \aleph_{0}) \leq \operatorname{card}(\{\beta\in\Gamma: x_{\beta}=y_{\beta}\})\}$$

is a subset of $P(\mathcal{H}, \mathcal{X})$, which is a subset of

$$\{((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma})\in\mathcal{X}\times\mathcal{X}: \{\beta\in\Gamma: x_{\beta}=y_{\beta}\} \text{ is infinite}\}\cup\{(x, x): x\in\mathcal{X}\}$$

in its turn. In particular, for countable Γ we prove

$$P(\mathcal{H},\mathcal{X}) = \{((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X} : \{\beta \in \Gamma : x_{\beta} = y_{\beta}\} \text{ is infinite}\} \cup \{(x, x) : x \in \mathcal{X}\}.$$

Lemma 3.1. For infinite Γ , we have:

$$P(\mathcal{H}, \mathcal{X}) \subseteq \{((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X} : \{\beta \in \Gamma : x_{\beta} = y_{\beta}\} \text{ is infinite}\}.$$

Proof. Consider $((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in P(\mathcal{H}, \mathcal{X})$, then there exists a net $\{\sigma_{\varphi_{\lambda}}\}_{\lambda \in \Lambda}$ in \mathcal{H} with

$$\lim_{\lambda \in \Lambda} \sigma_{\varphi_{\lambda}}((x_{\alpha})_{\alpha \in \Gamma}) = \lim_{\lambda \in \Lambda} \sigma_{\varphi_{\lambda}}((y_{\alpha})_{\alpha \in \Gamma}) =: (z_{\alpha})_{\alpha \in \Gamma}.$$

Choose distinct $\theta_1, \dots, \theta_n \in \Gamma$. For all $i \in \{1, \dots, n\}$ we have

$$\lim_{\lambda \in \Lambda} x_{\varphi_{\lambda}(\theta_{i})} = \lim_{\lambda \in \Lambda} y_{\varphi_{\lambda}(\theta_{i})} = z_{\theta_{i}} \quad \text{in} \quad X_{\lambda}$$

so there exists $\lambda_1, \dots, \lambda_n \in \Lambda$ with $x_{\varphi_{\lambda}(\theta_i)} = y_{\varphi_{\lambda}(\theta_i)} = z_{\theta_i}$ for all $\lambda \geq \lambda_i$. There exists $\mu \in \Lambda$ with $\mu \geq \lambda_1, \dots, \lambda_n$, thus $x_{\varphi_{\mu}(\theta_i)} = y_{\varphi_{\mu}(\theta_i)}$ for $i = 1, \dots, n$. Since $\varphi_{\mu} : \Gamma \to \Gamma$ is bijective and $\theta_1, \dots, \theta_n$ are pairwise distinct, $\{\varphi_{\mu}(\theta_1), \dots, \varphi_{\mu}(\theta_n)\}$ has exactly *n* elements and $\{\varphi_{\mu}(\theta_1), \dots, \varphi_{\mu}(\theta_n)\} \subseteq \{\beta \in \Gamma : x_{\beta} = y_{\beta}\}$. Hence $\{\beta \in \Gamma : x_{\beta} = y_{\beta}\}$ has at least *n* elements (for all $n \geq 1$) and it is infinite.

Theorem 3.1. We have:

$$P(\mathcal{H}, \mathcal{X}) \subseteq \{((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X} : \{\beta \in \Gamma : x_{\beta} = y_{\beta}\} \text{ is infinite}\} \cup \{(x, x) : x \in \mathcal{X}\}.$$

Proof. Use Lemma 3.1 and the fact that for finite Γ , \mathcal{H} is a finite subset of homeomorphisms on \mathcal{X} . So for finite Γ we have $P(\mathcal{H}, \mathcal{X}) = \{(w, w) : w \in \mathcal{X}\}$.

Lemma 3.2. For infinite countable Γ , we have

$$P(\mathcal{H},\mathcal{X}) = \{ ((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X} : \{ \beta \in \Gamma : x_{\beta} = y_{\beta} \} \text{ is infinite} \}.$$

Proof. Using Lemma 3.1 we must only prove:

$$P(\mathcal{H}, \mathcal{X}) \supseteq \{ ((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X} : \{ \beta \in \Gamma : x_{\beta} = y_{\beta} \} \text{ is infinite} \}.$$

Consider $(x_{\alpha})_{\alpha \in \Gamma}$, $(y_{\alpha})_{\alpha \in \Gamma} \in \mathcal{X}$ with infinite set $\{\beta \in \Gamma : x_{\beta} = y_{\beta}\} = \{\beta_1, \beta_2, \cdots\}$ and distinct β_i s. Also suppose $\Gamma = \{\alpha_1, \alpha_2, \cdots\}$ with distinct α_i s. For all $n \ge 1$ there exists bijection $\varphi_n : \Gamma \to \Gamma$ with $\varphi_n(\alpha_i) = \beta_i$ for $i \in \{1, \cdots, n\}$. Let $\alpha \in \Gamma$, there exists $i \ge 1$ with $\alpha = \alpha_i$. Since for all $n \ge i$ we have

$$x_{\varphi_n(\alpha)} = x_{\varphi_n(\alpha_i)} = x_{\beta_i} = y_{\beta_i} = y_{\varphi_n(\alpha_i)} = y_{\varphi_n(\alpha)},$$

we have

$$\lim_{n\to\infty} x_{\varphi_n(\alpha)} = \lim_{n\to\infty} y_{\varphi_n(\alpha)}.$$

Therefore

$$\begin{split} &\lim_{n\to\infty}\sigma_{\varphi_n}((x_{\alpha})_{\alpha\in\Gamma})=\lim_{n\to\infty}(x_{\varphi_n(\alpha)})_{\alpha\in\Gamma}=\lim_{n\to\infty}(y_{\varphi_n(\alpha)})_{\alpha\in\Gamma}=\lim_{n\to\infty}\sigma_{\varphi_n}((y_{\alpha})_{\alpha\in\Gamma}),\\ &((x_{\alpha})_{\alpha\in\Gamma},(y_{\alpha})_{\alpha\in\Gamma})\in P(\mathcal{H},\mathcal{X}). \end{split}$$

Thus, we complete the proof.

Theorem 3.2. For countable Γ ,

$$P(\mathcal{H}, \mathcal{X}) = \{ ((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X} : \{ \beta \in \Gamma : x_{\beta} = y_{\beta} \} \text{ is infinite} \} \\ \cup \{ (x, x) : x \in \mathcal{X} \}.$$

Proof. First note that for finite Γ , \mathcal{H} is finite and $P(\mathcal{H}, \mathcal{X}) = \{(x, x) : x \in \mathcal{X}\}$. Now use Lemma 3.2.

Lemma 3.3. For infinite Γ , we have:

$$\{((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma}): \operatorname{card}(\{\beta\in\Gamma: x_{\beta}\neq y_{\beta}\}) \leq \operatorname{card}(\{\beta\in\Gamma: x_{\beta}=y_{\beta}\})\} \subseteq P(\mathcal{H}, \mathcal{X})$$

In particular,

$$\{((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma}): \{\beta\in\Gamma: x_{\beta}\neq y_{\beta}\} \text{ is finite}\}\subseteq P(\mathcal{H}, \mathcal{X}).$$

Proof. Suppose Γ is infinite. For $(x_{\alpha})_{\alpha \in \Gamma}$, $(y_{\alpha})_{\alpha \in \Gamma} \in \mathcal{X}$, let:

$$A := \{ \alpha \in \Gamma : x_{\alpha} = y_{\alpha} \}, \quad B := \{ \alpha \in \Gamma : x_{\alpha} \neq y_{\alpha} \}$$

with $\operatorname{card}(B) \leq \operatorname{card}(A)$. There exists a one to one map $\lambda : B \to A$. By $\operatorname{card}(\Gamma) = \operatorname{card}(A) + \operatorname{card}(B)$ and $\operatorname{card}(B) \leq \operatorname{card}(A)$, *A* is infinite. Since *A* is infinite, we have $\operatorname{card}(A) = \operatorname{card}(A) \aleph_0$ so there exists a bijection $\varphi : A \times \mathbb{N} \to A$. For all $\theta \in A$ let $K_{\theta} = \varphi(\{\theta\} \times \mathbb{N}) \cup \lambda^{-1}(\theta)$. Thus K_{θ} s are disjoint infinite countable subsets of Γ , as a matter of fact $\{K_{\theta} : \theta \in A\}$ is a partition of Γ to some of its infinite countable subsets. For all $\theta \in A$, $\{\alpha \in K_{\theta} : x_{\alpha} = y_{\alpha}\} = \varphi(\{\theta\} \times \mathbb{N})$ is infinite and K_{θ} is infinite countable. By Lemma 3.2 there exists a sequence $\{\psi_{\theta}^{h}\}$ of permutations on K_{θ} such that

$$\lim_{n\to\infty}\sigma_{\psi_n^\theta}(x_\alpha)_{\alpha\in K_\theta}=\lim_{n\to\infty}\sigma_{\psi_n^\theta}(y_\alpha)_{\alpha\in K_\theta}.$$

For all $n \ge 1$ let

$$\psi_n = \bigcup_{\theta \in A} \psi_n^{ heta}$$

then $\psi_n : \Gamma \to \Gamma$ is bijective and

$$\lim_{n\to\infty}\sigma_{\psi_n}(x_{\alpha})_{\alpha\in\Gamma}=\lim_{n\to\infty}\sigma_{\psi_n}(y_{\alpha})_{\alpha\in\Gamma},$$

which completes the proof.

Theorem 3.3. The collection $\{((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma}) : \max(\operatorname{card}(\{\beta \in \Gamma : x_{\beta} \neq y_{\beta}\}), \aleph_0) \le \operatorname{card}(\{\beta \in \Gamma : x_{\beta} = y_{\beta}\})\}$ is a subset of $P(\mathcal{H}, \mathcal{X})$.

Proof. If Γ is finite, then

$$\{((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma}) : \max(\operatorname{card}(\{\beta\in\Gamma: x_{\beta}\neq y_{\beta}\}), \aleph_{0}) \\ \leq \operatorname{card}(\{\beta\in\Gamma: x_{\beta}=y_{\beta}\})\} = \emptyset.$$

Use Lemma 3.3 to complete the proof.

4 Syndetically proximal relations of $(\mathcal{H}, \mathcal{X})$

In this section we prove:

$$L(\mathcal{H},\mathcal{X}) = \begin{cases} \{((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X} : \{\gamma \in \Gamma : x_{\gamma} \neq y_{\gamma}\} \text{ is finite}\}, & \Gamma \text{ is infinite,} \\ \{(x,x) : x \in \mathcal{X}\}, & \Gamma \text{ is finite.} \end{cases}$$

Lemma 4.1. For $(x_{\alpha})_{\alpha \in \Gamma}$, $(y_{\alpha})_{\alpha \in \Gamma}$, $(u_{\alpha})_{\alpha \in \Gamma} \in \mathcal{X}$, and $p, q \in X$ let:

$$z_{lpha} := \left\{ egin{array}{ccc} q, & x_{lpha}
eq y_{lpha}, \\ u_{lpha}, & x_{lpha} = y_{lpha}, \end{array}
ight. ext{ and } w_{lpha} := \left\{ egin{array}{ccc} p, & x_{lpha}
eq y_{lpha}, \\ u_{lpha}, & x_{lpha} = y_{lpha}. \end{array}
ight.$$

We have:

1). *if*
$$((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in P(\mathcal{H}, \mathcal{X})$$
, *then* $((z_{\alpha})_{\alpha \in \Gamma}, (w_{\alpha})_{\alpha \in \Gamma}) \in P(\mathcal{H}, \mathcal{X})$,
2). *if* $((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in L(\mathcal{H}, \mathcal{X})$, *then* $((z_{\alpha})_{\alpha \in \Gamma}, (w_{\alpha})_{\alpha \in \Gamma}) \in L(\mathcal{H}, \mathcal{X})$.

Proof. 1) Suppose $((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma}) \in P(\mathcal{H}, \mathcal{X})$, then there exists a net $\{\sigma_{\varphi_{\lambda}}\}_{\lambda\in\Lambda}$ in \mathcal{H} such that

$$\lim_{\lambda\in\Lambda}\sigma_{\varphi_{\lambda}}((x_{\alpha})_{\alpha\in\Gamma})=\lim_{\lambda\in\Lambda}\sigma_{\varphi_{\lambda}}((y_{\alpha})_{\alpha\in\Gamma}).$$

Thus

$$\lim_{\lambda \in \Lambda} ((x_{\varphi_{\lambda}(\alpha)})_{\alpha \in \Gamma}) = \lim_{\lambda \in \Lambda} ((y_{\varphi_{\lambda}(\alpha)})_{\alpha \in \Gamma}),$$

i.e., for all $\alpha \in \Gamma$ there exists $\kappa_{\alpha} \in \Lambda$ such that:

$$\forall \lambda \geq \kappa_{\alpha} \ (x_{\varphi_{\lambda}(\alpha)} = y_{\varphi_{\lambda}(\alpha)}).$$

Hence, for all $\lambda \geq \kappa_{\alpha}$ we have $z_{\varphi_{\lambda}(\alpha)} = u_{\varphi_{\lambda}(\alpha)} = w_{\varphi_{\lambda}(\alpha)}$. On the other hand the net $\{(u_{\varphi_{\lambda}(\alpha)})_{\alpha\in\Gamma}\}_{\lambda\in\Lambda}$ has a convergent subnet like $\{(u_{\varphi_{\lambda}(\alpha)})_{\alpha\in\Gamma}\}_{\theta\in T}$ to a point of \mathcal{X} , say $(v_{\alpha})_{\alpha\in\Gamma}$, since \mathcal{X} is compact. For all $\alpha \in \Gamma$ there exists $\theta_{\alpha} \in T$ such that $\lambda_{\theta_{\alpha}} \geq \kappa_{\alpha}$, and moreover

$$\forall \theta \geq \theta_{\alpha} \ (u_{\varphi_{\lambda_{\alpha}}(\alpha)} = v_{\alpha}).$$

Note that for all $\theta \ge \theta_{\alpha}$ we have $\lambda_{\theta} \ge \kappa_{\alpha}$, leads us to:

$$\forall heta \geq heta_{lpha} \; (z_{\varphi_{\lambda_{eta}}(lpha)} = v_{lpha} = w_{\varphi_{\lambda_{eta}}(lpha)}).$$

Hence

$$\lim_{\theta \in T} \sigma_{\varphi_{\lambda_{\theta}}}((z_{\alpha})_{\alpha \in \Gamma}) = \lim_{\theta \in T} \sigma_{\varphi_{\lambda_{\theta}}}((w_{\alpha})_{\alpha \in \Gamma}) \quad \text{and} \quad ((z_{\alpha})_{\alpha \in \Gamma}, (w_{\alpha})_{\alpha \in \Gamma}) \in P(\mathcal{H}, \mathcal{X}).$$

2) Now suppose $((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma}) \in L(\mathcal{H}, \mathcal{X})$ and $((s_{\alpha})_{\alpha\in\Gamma}, (t_{\alpha})_{\alpha\in\Gamma})$ is an element of $\overline{\mathcal{H}((z_{\alpha})_{\alpha\in\Gamma}, (w_{\alpha})_{\alpha\in\Gamma})}$. There exists a net $\{\sigma_{\varphi_{\lambda}}\}_{\lambda\in\Lambda}$ in \mathcal{H} , with

$$((s_{\alpha})_{\alpha\in\Gamma},(t_{\alpha})_{\alpha\in\Gamma}) = \lim_{\lambda\in\Lambda} \sigma_{\varphi_{\lambda}}((z_{\alpha})_{\alpha\in\Gamma},(w_{\alpha})_{\alpha\in\Gamma}) = \lim_{\lambda\in\Lambda}((z_{\varphi_{\lambda}(\alpha)})_{\alpha\in\Gamma},(w_{\varphi_{\lambda}(\alpha)})_{\alpha\in\Gamma}).$$

On the other hand the net $\{((x_{\varphi_{\lambda}(\alpha)})_{\alpha\in\Gamma}, (y_{\varphi_{\lambda}(\alpha)})_{\alpha\in\Gamma})\}_{\lambda\in\Lambda}$ has a convergent subnet in compact space $\mathcal{X} \times \mathcal{X}$, without loss of generality we may suppose $\{((x_{\varphi_{\lambda}(\alpha)})_{\alpha\in\Gamma}, (y_{\varphi_{\lambda}(\alpha)})_{\alpha\in\Gamma})\}_{\lambda\in\Lambda}$ itself converges to a point of $\mathcal{X} \times \mathcal{X}$ like $((m_{\alpha})_{\alpha\in\Gamma}, (n_{\alpha})_{\alpha\in\Gamma})$. Hence

$$((m_{\alpha})_{\alpha\in\Gamma}, (n_{\alpha})_{\alpha\in\Gamma})\in \overline{\mathcal{H}((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma})}\subseteq P(\mathcal{H}, \mathcal{X}).$$

Now for $\alpha \in \Gamma$ there exists $\kappa \in \Lambda$ such that:

$$\forall \lambda \geq \kappa ((m_{\alpha}, n_{\alpha}) = (x_{\varphi_{\lambda}(\alpha)}, y_{\varphi_{\lambda}(\alpha)})).$$

Hence we have:

$$m_{\alpha} \neq n_{\alpha} \implies (\forall \lambda \ge \kappa \ (x_{\varphi_{\lambda}(\alpha)} \neq y_{\varphi_{\lambda}(\alpha)}))$$

$$\Rightarrow (\forall \lambda \ge \kappa \ (z_{\varphi_{\lambda}(\alpha)} = q \land w_{\varphi_{\lambda}(\alpha)} = p))$$

$$\Rightarrow \lim_{\lambda \in \Lambda} z_{\varphi_{\lambda}(\alpha)} = q \land \lim_{\lambda \in \Lambda} w_{\varphi_{\lambda}(\alpha)} = p$$

$$\Rightarrow (s_{\alpha}, t_{\alpha}) = (q, p)$$

and

$$m_{\alpha} = n_{\alpha} \implies (\forall \lambda \ge \kappa (x_{\varphi_{\lambda}(\alpha)} = y_{\varphi_{\lambda}(\alpha)}))$$

$$\Rightarrow (\forall \lambda \ge \kappa (z_{\varphi_{\lambda}(\alpha)} = w_{\varphi_{\lambda}(\alpha)}))$$

$$\Rightarrow s_{\alpha} = \lim_{\lambda \in \Lambda} z_{\varphi_{\lambda}(\alpha)} = \lim_{\lambda \in \Lambda} w_{\varphi_{\lambda}(\alpha)} = t_{\alpha}$$

$$\Rightarrow s_{\alpha} = t_{\alpha}.$$

Hence for $(v_{\alpha})_{\alpha \in \Gamma} := (s_{\alpha})_{\alpha \in \Gamma}$, we have:

$$s_{\alpha} = \begin{cases} q, & m_{\alpha} \neq n_{\alpha}, \\ v_{\alpha}, & m_{\alpha} = n_{\alpha}, \end{cases} \text{ and } t_{\alpha} = \begin{cases} p, & m_{\alpha} \neq n_{\alpha}, \\ v_{\alpha}, & m_{\alpha} = n_{\alpha}. \end{cases}$$
(4.1)

Using 1), $((m_{\alpha})_{\alpha \in \Gamma}, (n_{\alpha})_{\alpha \in \Gamma}) \in P(\mathcal{H}, \mathcal{X})$ and (4.1) we have $((s_{\alpha})_{\alpha \in \Gamma}, (t_{\alpha})_{\alpha \in \Gamma}) \in P(\mathcal{H}, \mathcal{X})$, which completes the proof.

Lemma 4.2. We have:

$$L(\mathcal{H},\mathcal{X}) \subseteq \{((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X} : \{\gamma \in \Gamma : x_{\gamma} \neq y_{\gamma}\} \text{ is finite}\}$$

Proof. Consider $(x_{\alpha})_{\alpha \in \Gamma}$, $(y_{\alpha})_{\alpha \in \Gamma} \in \mathcal{X}$ such that $B := \{\alpha \in \Gamma : x_{\alpha} \neq y_{\alpha}\}$ is infinite. Choose distinct $p, q \in X$ and let:

$$z_{\alpha} := \left\{ \begin{array}{ll} q, & \alpha \in B, \\ p, & \alpha \notin B. \end{array} \right.$$

By Lemma 4.1, if $((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in L(\mathcal{H}, \mathcal{X})$, then $((z_{\alpha})_{\alpha \in \Gamma}, (p)_{\alpha \in \Gamma}) \in L(\mathcal{H}, \mathcal{X})$. We show $((q)_{\alpha \in \Gamma}, (p)_{\alpha \in \Gamma}) \in \overline{\mathcal{H}((z_{\alpha})_{\alpha \in \Gamma}, (p)_{\alpha \in \Gamma})}$. Suppose *U* is an open neighbourhood of $((q)_{\alpha \in \Gamma}, (p)_{\alpha \in \Gamma})$, then there exists distinct $\alpha_1, \dots, \alpha_n \in \Gamma$ such that for:

$$V_{\alpha} = \begin{cases} \{q\}, & \alpha = \alpha_1, \cdots, \alpha_n, \\ X, & \alpha \neq \alpha_1, \cdots, \alpha_n, \end{cases} \text{ and } W_{\alpha} = \{p\}, \quad (\forall \alpha \in \Gamma), \end{cases}$$

we have

$$\prod_{\alpha\in\Gamma}V_{\alpha}\times\prod_{\alpha\in\Gamma}W_{\alpha}\subseteq U$$

Since *B* is infinite, we could choose distinct $\beta_1, \dots, \beta_n \in B$ such that $\{\alpha_1, \dots, \alpha_n\} \cap \{\beta_1, \dots, \beta_n\} = \emptyset$. Define $\psi : \Gamma \to \Gamma$ by

$$\psi(\alpha) := \begin{cases} \alpha_i, & \alpha = \beta_i, \quad i = 1, \cdots, n, \\ \beta_i, & \alpha = \alpha_i, \quad i = 1, \cdots, n, \\ \alpha, & \text{otherwise,} \end{cases}$$

then $\psi : \Gamma \to \Gamma$ is bijective, $\sigma_{\psi} \in \mathcal{H}$ and

(()

$$\sigma_{\psi}((z_{\alpha})_{\alpha\in\Gamma},(p)_{\alpha\in\Gamma})=(\sigma_{\psi}((z_{\alpha})_{\alpha\in\Gamma}),\sigma_{\psi}((p)_{\alpha\in\Gamma}))=((z_{\psi(\alpha)})_{\alpha\in\Gamma},(p)_{\alpha\in\Gamma})\in U.$$

Hence $((q)_{\alpha\in\Gamma}, (p)_{\alpha\in\Gamma}) \in \mathcal{H}((z_{\alpha})_{\alpha\in\Gamma}, (p)_{\alpha\in\Gamma})$. Since $((q)_{\alpha\in\Gamma}, (p)_{\alpha\in\Gamma}) \notin P(\mathcal{H}, \mathcal{X})$, we have $((z_{\alpha})_{\alpha\in\Gamma}, (p)_{\alpha\in\Gamma}) \notin L(\mathcal{H}, \mathcal{X})$, which leads to $((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma}) \notin L(\mathcal{H}, \mathcal{X})$ and completes the proof.

The proof of the following lemma is similar to that of Lemma 3.1.

Lemma 4.3. For $((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X}$ if $\{\alpha \in \Gamma : x_{\alpha} \neq y_{\alpha}\}$ is finite and $((z_{\alpha})_{\alpha \in \Gamma}, (w_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{H}((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma})$, then $\{\alpha \in \Gamma : z_{\alpha} \neq w_{\alpha}\}$ is finite satisfying $\operatorname{card}(\{\alpha \in \Gamma : z_{\alpha} \neq w_{\alpha}\}) \leq \operatorname{card}(\{\alpha \in \Gamma : x_{\alpha} \neq y_{\alpha}\}).$

Proof. For $n \ge 1$, if there exists distinct $\alpha_1, \dots, \alpha_n \in \Gamma$ with $z_{\alpha_i} \ne w_{\alpha_i}$ for $i = 1, \dots, n$, then let:

$$U_{\alpha} := \begin{cases} \{z_{\alpha}\}, & \alpha = \alpha_{1}, \cdots, \alpha_{n}, \\ X, & \alpha \neq \alpha_{1}, \cdots, \alpha_{n}, \end{cases} \text{ and } V_{\alpha} := \begin{cases} \{w_{\alpha}\}, & \alpha = \alpha_{1}, \cdots, \alpha_{n}, \\ X, & \alpha \neq \alpha_{1}, \cdots, \alpha_{n}. \end{cases}$$

Thus

$$U := \prod_{\alpha \in \Gamma} U_{\alpha} imes \prod_{\alpha \in \Gamma} V_{\alpha}$$

is an open neighbourhood of $((z_{\alpha})_{\alpha \in \Gamma}, (w_{\alpha})_{\alpha \in \Gamma})$, and there exists bijection $\varphi : \Gamma \to \Gamma$ with

$$(\sigma_{\varphi}((x_{\alpha})_{\alpha\in\Gamma}),\sigma_{\varphi}((y_{\alpha})_{\alpha\in\Gamma}))=((x_{\varphi(\alpha)})_{\alpha\in\Gamma},(y_{\varphi(\alpha)})_{\alpha\in\Gamma})\in U.$$

Hence $x_{\varphi(\alpha_i)} = z_{\alpha_i}$ and $y_{\varphi(\alpha_i)} = w_{\alpha_i}$ for all $i = 1, \dots, n$. Therefore $x_{\varphi(\alpha_i)} \neq y_{\varphi(\alpha_i)}$ for all $i = 1, \dots, n$, which leads to $\{\varphi(\alpha_1), \dots, \varphi(\alpha_n)\} \subseteq \{\alpha \in \Gamma : x_\alpha \neq y_\alpha\}$, so $n = \operatorname{card}(\{\varphi(\alpha_1), \dots, \varphi(\alpha_n)\}) \leq \operatorname{card}(\{\alpha \in \Gamma : x_\alpha \neq y_\alpha\})$ (note that φ is one to one), which leads to the desired result.

Lemma 4.4. For infinite Γ we have:

$$L(\mathcal{H},\mathcal{X}) \supseteq \{((x_{\alpha})_{\alpha \in \Gamma}, (y_{\alpha})_{\alpha \in \Gamma}) \in \mathcal{X} \times \mathcal{X} : \{\gamma \in \Gamma : x_{\gamma} \neq y_{\gamma}\} \text{ is finite}\}.$$

Proof. Use Lemmas 4.3 and 3.3.

Theorem 4.1. We have:

$$L(\mathcal{H},\mathcal{X}) = \begin{cases} \{((x_{\alpha})_{\alpha\in\Gamma}, (y_{\alpha})_{\alpha\in\Gamma}) \in \mathcal{X} \times \mathcal{X} : \{\gamma \in \Gamma : x_{\gamma} \neq y_{\gamma}\} \text{ is finite}\}, & \Gamma \text{ is infinite,} \\ \{(x,x) : x \in \mathcal{X}\}, & \Gamma \text{ is finite.} \end{cases}$$

Proof. For infinite Γ use Lemmas 4.2 and 4.4, also for finite Γ note that $P(\mathcal{H}, \mathcal{X}) = \{(x, x) : x \in \mathcal{X}\}$.

5 More details

In transformation semigroup (S, W) we say a nonempty subset D of W is invariant if $SD := \{sw : s \in S, w \in D\} \subseteq W$. For closed invariant subset D of W we may consider action of S on D in a natural way. For closed invariant subset D of W one may verify easily,

$$P(S,D) \subseteq P(S,W), \quad Q(S,D) \subseteq Q(S,W), \text{ and } L(S,D) \subseteq L(S,W).$$

Suppose *Z* is a compact Hausdorff topological space with at least two elements, by Tychonoff's theorem Z^{Γ} is also compact Hausdorff. Again for $\varphi : \Gamma \to \Gamma$ one may consider $\sigma_{\varphi} : Z^{\Gamma} \to Z^{\Gamma} (\sigma_{\varphi}((z_{\alpha})_{\alpha \in \Gamma}) = (z_{\varphi(\alpha)})_{\alpha \in \Gamma})$, also $S := \{\sigma_{\varphi} : Z^{\Gamma} \to Z^{\Gamma} | \varphi \in \Gamma^{\Gamma}\}$, and $\mathcal{H} := \{\sigma_{\varphi} : Z^{\Gamma} \to Z^{\Gamma} | \varphi \in \Gamma^{\Gamma} \text{ and } \varphi : \Gamma \to \Gamma \text{ is bijective }\}$. Then for each finite nonenpty subset *A* of *Z*, *A*^{Γ} is a closed invariant subset of (S, Z^{Γ}) (resp. $(\mathcal{H}, Z^{\Gamma})$) and *A* is a discrete (and finite) subset of *Z*. But using previous sections we know about $P(T, A^{\Gamma})$, $Q(T, A^{\Gamma})$, and $L(T, A^{\Gamma})$ for $T = \mathcal{H}, S$. Hence for $T = \mathcal{H}, S$ by:

 $\bigcup \{P(T, A^{\Gamma}) : A \text{ is a finite subset of } Z\} \subseteq P(T, Z^{\Gamma}),$ $\bigcup \{Q(T, A^{\Gamma}) : A \text{ is a finite subset of } Z\} \subseteq Q(T, Z^{\Gamma}),$ $\bigcup \{L(T, A^{\Gamma}) : A \text{ is a finite subset of } Z\} \subseteq L(T, Z^{\Gamma}),$

we will have more data about $P(T, Z^{\Gamma})$, $Q(T, Z^{\Gamma})$, $L(T, Z^{\Gamma})$.

References

- F. Ayatollah Zadeh Shirazi and F. Ebrahimifar, On generalized shift transformation semigroups, J. Math. Anal., 9(2) (2018), 70–77.
- [2] F. Ayatollah Zadeh Shirazi, N. Karami Kabir and F. Heydari Ardi, A note on shift theory, Mathematica Pannonica, 19/2 (2008), Proceedings of ITES-2007, 187–195.

- [3] F. Ayatollah Zadeh Shirazi, J. Nazarian Sarkooh and B. Taherkhani, On Devaney chaotic generalized shift dynamical systems, Studia Scientiarum Mathematicarum Hungarica, 50(4) (2013), 509–522.
- [4] I. U. Bronstein, Extensions of Minimal Transformation Groups, Sitjthoff and Noordhoff, 1979.
- [5] R. Ellis, Lectures on Topological Dynamics, W. A. Benjamin, New York, 1969.
- [6] Gherco, A. I. Ergodic sets and mixing extensions of topological transformation semigroups, Constantin Sergeevich Sibirsky (1928–1990). Bul. Acad. Ştiinţe Repub. Mold. Mat., 2 (2003), 87–94.
- [7] A. Giordano Bruno, Algebraic entropy of generalized shifts on direct products, Commun. Algebra, 38/11 (2010), 4155–4174.
- [8] Sh. Glasner, Proximal flows, Lecture Notes in Mathematics 517, Springer-Verlag, Berlin 1976.
- [9] J. O. Yu, The regionally regular relation, J. Chungcheong Math. Soc., 19(4) (2006), 365–373.