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Abstract. We investigate the superconvergence properties of the constrained
quadratic elliptic optimal control problem which is solved by using rectangular
mixed finite element methods. We use the lowest order Raviart-Thomas mixed
finite element spaces to approximate the state and co-state variables and use piece-
wise constant functions to approximate the control variable. We obtain the super-
convergence of O(h1+s) (0<s≤1) for the control variable. Finally, we present two
numerical examples to confirm our superconvergence results.
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1 Introduction

In this paper, we focus on the superconvergence properties of rectangular mixed fi-
nite element methods for linear elliptic optimal control problem. Optimal control
problems are playing increasingly important role in the design of modern life. They
have various applications in the operation of physical, social, and economic processes.
Among the available numerical methods, finite element methods for state equations
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enjoy wide application (though other methods are also used of course). Many experts
have made various contributions to the finite element methods for optimal control
problems. Let us first mention two early papers devoted to linear-quadratic optimal
control problems by Falk [11] and Geveci [12]. Moreover, Arada et al. [2] studied
the numerical approximation of distributed nonlinear optimal control problems with
pointwise constraints on the control. Meyer and Rösch [21] analyzed the discretization
of the dimensional (2-d) elliptic optimal control problem. It is proved that these ap-
proximations have convergence order h2. A posteriori error estimates for distributed
convex optimal control problems and nonlinear optimal control problems have been
obtained in [17, 18]. Huang et al. [15] constructed an adaptive multi-mesh finite ele-
ment scheme for constrained distributed convex optimal control problem.

Compared with standard finite element methods, the mixed finite element meth-
ods have many advantages. In many control problems, the objective functional con-
tains the gradient of the state variables. Thus, the accuracy of the gradient is important
in numerical discretization of the coupled state equations. Mixed finite element meth-
ods are appropriate for the state equations in such cases since both the scalar variable
and its flux variable can be approximated to the same accuracy by using such meth-
ods. Some specialists have made many important works on some topic of mixed finite
element method for linear optimal control problems.

Recently, in [8, 9], we obtained a posteriori error estimates and a priori error es-
timates of mixed finite element methods for quadratic optimal control problems. In
[6, 7], we used the postprocessing projection operator to prove a quadratic supercon-
vergence of the control by mixed finite element methods. We investigated the optimal
control problem with the admissible control set, defined by

Uad =
{

u ∈ L2(Ω) : a ≤ u ≤ b, a.e. in Ω
}

,

where a and b are two real numbers, and obtained the superconvergence of O(hs+1)
(for some 0<s≤1) for the control variable which is approximated by piecewise con-
stant functions. Compared with it, our work changes the admissible set and we also
get the same result.

For the constrained optimal control problem, the regularity of the optimal control
is generally quite low. The goal of this paper is to investigate the superconvergence
for the elliptic optimal control problem with a special admissible set which will be
specified later.

We are concerned with the two dimensional elliptic optimal control problem

min
u∈Uad

{
1
2
‖p− pd‖2 +

1
2
‖y− yd‖2 +

ν

2
‖u‖2

}
, (1.1)

subject to the state equation

divp + a0y = u, p = −A(x)grady, x ∈ Ω, (1.2)

with the boundary condition

y = 0, x ∈ ∂Ω, (1.3)
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where Ω is a rectangular domain, pd and yd are two known functions, p and y are the
state variables, u is the control variable, and ν > 0 is a constant. We denote L2(Ω)
norm by ‖ · ‖ and the set of admissible controls by Uad, where

Uad =
{

u ∈ L2(Ω) :
∫

Ω
u(x)dx ≥ 0

}
. (1.4)

This paper is organized as follows. In next section, we construct a discretized scheme
for the optimal control problem (1.1)-(1.3). In section 3, we consider the local L2 su-
perconvergence of the mixed finite element approximations for the control problem.
In section 4, we carry out the global L2 superconvergence of rectangular lowest order
Raviart-Thomas mixed finite element methods. In section 5, two numerical examples
are presented to demonstrate our theoretical results. Finally, we give the conclusions
and comment on possible future work in section 6.

2 Mixed methods for optimal control problem

We shall construct a discretized scheme for the optimal control problem (1.1)-(1.3) by
using mixed finite element methods and give its equivalent optimality conditions.

At first, we make the following assumption for the coefficient matrix A(x).

(A1) The coefficient matrix function A(x)=
(
aij(x)

)
is symmetric with aij(x)∈W1,∞(Ω), which satisfies

the ellipticity condition

c∗|ξ|2 ≤
2

∑
i,j=1

aij(x)ξiξ j, ∀ (ξ, x) ∈ R2 ×Ω, c∗ > 0.

Next, we introduce the co-state elliptic equation

divq + a0z = y− yd, q = −A(x)(gradz + p− pd), x ∈ Ω, (2.1)

with the boundary condition

z = 0, x ∈ ∂Ω. (2.2)

Lemma 2.1. Assume that Ω is a convex polygonal domain. Let the state variable y and the
co-state variable z be the variational solutions of (1.2)-(1.3) and (2.1)-(2.2), respectively. Then,
there exists 0 < s0 ≤ 1 such that for 0 < s < s0,

‖y‖H2+s(Ω) ≤ C‖u‖Hs(Ω), (2.3)

‖z‖H2+s(Ω) ≤ C‖y‖Hs(Ω). (2.4)

Remark 2.1. It is known (see e.g., [3]) that s0 = min {1, π/ω− 1} when both the state
equation and co-state equation are Laplace equation, where ω is the radian measure
of the largest corner of the domain Ω (ω < π). If the state equation and the co-
state equation are variable coefficient equations, then s0 is dependent on ω and the
eigenvalue of the coefficient matrix A(x) at the corner points.
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Thus, we make the following realistic assumption (A2)

u ∈ W1,∞(Ω), y, z ∈ H2+s(Ω), for 0 < s ≤ 1. (2.5)

We shall obtain superconvergence results by using the operator interpolation tech-
nique. Let

V = H(div; Ω) =
{

v ∈ L2(Ω)2, divv ∈ L2(Ω)
}

, W = L2(Ω).

The Hilbert space V is equipped with the following norm:

‖v‖div = ‖v‖H(div;Ω) =
(‖v‖2 + ‖divv‖2) 1

2 .

Then, the weak formulation of the optimal control problem (1.1)-(1.3) is to find (p, y, u) ∈
V ×W ×Uad such that

min
u∈Uad

{
1
2
‖ p− pd‖2 +

1
2
‖y− yd‖2 +

ν

2
‖u‖2

}
, (2.6)

(A−1 p, v)− (y, divv) = 0, ∀ v ∈ V , (2.7)
(divp, w) + (a0y, w) = (u, w), ∀ w ∈ W, (2.8)

where the inner product in L2(Ω) or
(

L2(Ω)
)2 is denoted by (·, ·). It is well known

(see, e.g., [9]) that the convex control problem (2.6)-(2.8) has a unique solution (p, y, u),
and that a triplet (2.6)-(2.8) if and only if there exists a co-state (q, z) ∈ V ×W such
that (p, y, q, z, u) satisfies the following optimality conditions:

(A−1 p, v)− (y, divv) = 0, ∀ v ∈ V , (2.9)
(divp, w) + (a0y, w) = (u, w), ∀ w ∈ W, (2.10)
(A−1q, v)− (z, divv) = −(p− pd, v), ∀ v ∈ V , (2.11)
(divq, w) + (a0z, w) = (y− yd, w), ∀ w ∈ W, (2.12)
(z + νu, ũ− u) ≥ 0, ∀ ũ ∈ Uad. (2.13)

In [20], it has proved the expression of the control. In this paper, we use the similar
method to derive the results below.

Lemma 2.2. Let u be the solution of (2.9)-(2.13). Then we have

u(x) = max
{

0,
z
ν

}
− z

ν
,

where

z =

∫
Ω z∫
Ω 1

,

denotes the integral average on Ω of the function z.
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Proof. For any function z ∈ W, we show that

u(x) = max
{

0,
z
ν

}
− z

ν
,

satisfies the variational inequality:

(z + νu, ũ− u) ≥ 0, ∀ ũ ∈ Uad.

If z/ν > 0, then

u =
z
ν
− z

ν
,

and

(z + νu, ũ− u)

=
∫

Ω
(z + νu)(ũ− u)

=
∫

Ω
z
(
ũ− z

ν
+

z
ν

)
= z

∫

Ω
ũ ≥ 0, ∀ ũ ∈ Uad. (2.14)

If z/ν ≤ 0, then
u = − z

ν
, and (z + νu, ũ− u) = 0.

Note that for the co-state solution z the solution of

(z + νu, ũ− u) ≥ 0,

is unique. Then the lemma is proved. ¤
Thus, from above optimality condition (2.13), we have that

u(x) = max
{

0,
z
ν

}
− z

ν
, (2.15)

where

z =

∫
Ω z∫
Ω 1

,

denotes the integral average on Ω of the function z. From the regularity assumption
(2.5) and (2.15), we know u ∈ H2(Ω).

Let Th denote a regular rectangular partition of the domain Ω, V h ×Wh ⊂ V ×W
denotes the order k Raviart-Thomas mixed finite element space [23]. To approximation
the control, we use the following space of piecewise constant functions:

Uh =
{

ũh ∈ Uad : ũh = constant, T ∈ Th

}
. (2.16)

Then we introduce the following Raviart-Thomas projection (see [10]):

Πh × Ph : V ×W −→ V h ×Wh,
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which has the following properties:

(i) Ph is the local L2(Ω) projection.
(ii) Πh and Ph satisfy

div ◦Πh = Ph ◦ div, (2.17)(
div(v−Πhv), wh

)
= 0, wh ∈ Wh, (2.18)

(divvh, w− Phw) = 0, vh ∈ V h. (2.19)

(iii) The following approximation properties hold (see [19]):

‖v−Πhv‖0,ρ ≤ Chr‖v‖r,ρ,
1
ρ

< r ≤ k + 1, (2.20)

‖div(v−Πhv)‖−t ≤ Chr+t‖divv‖r, 0 ≤ r, t ≤ k + 1, (2.21)
‖w− Phw‖−t,ρ ≤ Chr+t‖w‖r,ρ, 0 ≤ r, t ≤ k + 1, (2.22)

where ‖.‖r,ρ denotes the norm of the usual Sobolev space Wr,ρ(Ω) for 1 ≤ ρ ≤ +∞
and r ≥ 0.

The mixed finite element approximation of (2.6)-(2.8) is to find (ph, yh, uh) ∈ V h ×
Wh ×Uh such that

min
u∈Uh

{
1
2
‖ ph − pd‖2 +

1
2
‖yh − yd‖2 +

ν

2
‖uh‖2

}
, (2.23)

(A−1 ph, vh)− (yh, divvh) = 0, ∀ vh ∈ V h, (2.24)
(divph, wh) + (a0yh, wh) = (uh, wh), ∀ wh ∈ Wh. (2.25)

The control problem (2.23)-(2.25) again has a unique solution (ph, yh, uh), and a triplet
(ph, yh, uh) ∈ V h ×Wh ×Uh is the solution of (2.23)-(2.25) if and only if there is a co-
state (qh, zh) ∈ V h ×Wh such that (ph, yh, qh, zh, uh) satisfies the following discretized
optimality conditions:

(A−1 ph, vh)− (yh, divvh) = 0, ∀ vh ∈ V h, (2.26)
(divph, wh) + (a0yh, wh) = (uh, wh), ∀ wh ∈ Wh, (2.27)
(A−1qh, vh)− (zh, divvh) = −(ph − pd, vh), ∀ vh ∈ V h, (2.28)
(divqh, wh) + (a0zh, wh) = (yh − yd, wh), ∀ wh ∈ Wh, (2.29)
(zh + νuh, ũh − uh) ≥ 0, ∀ ũh ∈ Uh. (2.30)

We shall use some intermediate variables. For any control function ũ ∈ Uad, we define
the state solution

(
p(ũ), y(ũ), q(ũ), z(ũ)

)
associated with ũ which satisfies

(
A−1 p(ũ), v

)− (
y(ũ), divv

)
= 0, ∀ v ∈ V , (2.31)(

divp(ũ), w
)
+

(
a0y(ũ), w

)
= (ũ, w), ∀ w ∈ W, (2.32)

(
A−1q(ũ), v

)− (
z(ũ), divv

)
= −(

p(ũ)− pd, v
)
, ∀ v ∈ V , (2.33)(

divq(ũ), w
)
+

(
a0z(ũ), w

)
=

(
y(ũ)− yd, w

)
, ∀ w ∈ W. (2.34)
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Then, we define the discrete state solution
(

ph(ũ), yh(ũ), qh(ũ), zh(ũ)
)

corresponding
to ũ which satisfies

(
A−1 ph(ũ), vh

)− (
yh(ũ), divvh

)
= 0, ∀ vh ∈ V h, (2.35)(

divph(ũ), wh
)
+

(
a0yh(ũ), wh

)
= (ũ, wh), ∀ wh ∈ Wh, (2.36)

(
A−1qh(ũ), vh

)− (
zh(ũ), divvh

)
= −(

ph(ũ)− pd, vh
)
, ∀ vh ∈ V h, (2.37)(

divqh(ũ), wh
)
+

(
a0zh(ũ), wh

)
=

(
yh(ũ)− yd, wh

)
, ∀ wh ∈ Wh. (2.38)

With these definitions, the exact state solution and its corresponding approximations
can be written as:

(p, y, q, z) =
(

p(u), y(u), q(u), z(u)
)
,

(ph, yh, qh, zh) =
(

ph(uh), yh(uh), qh(uh), zh(uh)
)
.

3 L2 superconvergence on rectangular mixed finite elements

Let Th = {Ti} be a rectangular partition of Ω, V h ×Wh ⊂ V ×W denotes the lowest
order Raviart-Thomas mixed element space, namely,

V h =
{

v ∈ V : ∀ Ti ∈ Th, v |Ti∈ Q1,0(Ti)×Q0,1(Ti)
}

,

Wh =
{

w ∈ W : ∀ Ti ∈ Th, w |Ti∈ Q0,0(Ti)
}

,

where Qm,n(Ti) indicates the space of polynomials of degree no more than m and n in
x and y on Ti, respectively. Thus, on each rectangle element Ti ∈ Th, the Gauss point
is its center point Si. For example,

If Ti = [ai, bi]× [ci, di], then Si =
(

ai + bi

2
,

ci + di

2

)
.

As in [21], for any smooth function f (x) ∈ C(Ω), we define an interpolation function
fτ in the following form:

fτ(x) = f (Si), if x ∈ Ti, (3.1)

where Si is the center point of the rectangle Ti. Let f be a function belonging to H2(Ti)
for all i. Then, by the Bramble-Hilbert Lemma [1], we have

∣∣∣
∫

Ti

(
f (x)− f (Si)

)
dx

∣∣∣ ≤ Ch2
√
| Ti | | f |H2(Ti), (3.2)

∑
i

∣∣∣
∫

Ti

(
f (x)− f (Si)

)
dx

∣∣∣ ≤ Ch2
(

∑
i
| f |2H2(Ti)

) 1
2
, (3.3)

where |Ti| = meas(Ti).
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Let u be the optimal control solution of (1.1)-(1.3), we define a interpolation func-
tion uI ∈ Uh:

uI(x) = max
{

0,
z(Si)

ν

}
− z(Si)

ν
, if x ∈ Ti. (3.4)

It is easy to verify that uI ∈ Uh.
Let z be a function belonging to H2(Ti) for all i. Then, by (2.15) and the Bramble-

Hilbert Lemma [1], we have
∣∣∣
∫

Ti

(
u(x)− uI

)
dx

∣∣∣ ≤ Ch2
√
| Ti | | z |H2(Ti), (3.5)

∑
i

∣∣∣
∫

Ti

(
u(x)− uI

)
dx

∣∣∣ ≤ Ch2
(

∑
i
| z |2H2(Ti)

) 1
2
. (3.6)

Before presenting the main theorem, we first give some useful lemmas that have been
proved in [6] and derive the main lemma of the section.

Lemma 3.1. Suppose that Assumptions (A1)-(A2) are valid. Let zh(u) and zh(uh) be the
discrete solutions of (2.35)-(2.38) with ũ = u and ũ = uh, respectively. Then we have

(
zh(uh)− zh(uI), uI − uh

) ≤ 0. (3.7)

Lemma 3.2. Suppose that Assumptions (A1)-(A2) are valid. For any function ũ ∈ Uad, let(
p(ũ), y(ũ), q(ũ), z(ũ)

)
and

(
ph(ũ), yh(ũ), qh(ũ), zh(ũ)

)
be the solutions of (2.31)-(2.34)

and (2.35)-(2.38), respectively, for the lowest order Raviart-Thomas mixed finite elements. If
the regularity conditions

y(ũ), z(ũ) ∈ H1(Ω), p(ũ), q(ũ) ∈ (
H2(Ω)

)2,

hold, then we have

‖Phy(ũ)− yh(ũ)‖+ ‖Πh p(ũ)− ph(ũ)‖ ≤ Ch2
(
‖p(ũ)‖H2(Ω) + ‖y(ũ)‖H1(Ω)

)
, (3.8)

‖Phz(ũ)− zh(ũ)‖+ ‖Πhq(ũ)− qh(ũ)‖ ≤ Ch2
(
‖q(ũ)‖H2(Ω) + ‖z(ũ)‖H1(Ω)

)
. (3.9)

Lemma 3.3. Suppose that Assumptions (A1)-(A2) are fulfilled. Let z(uI) and zh(uI) be the
solutions of (2.31)-(2.34) and (2.35)-(2.38) with ũ = uI , respectively. Then we have

(
zh(uI)− z(uI), uI − uh

) ≤ Ch1+s‖z‖H2+s(Ω) · ‖uI − uh‖, 0 < s ≤ 1. (3.10)

Lemma 3.4. Suppose that Assumptions (A1)-(A2) are fulfilled. Let uh be the solution of
(2.26)-(2.30) and zτ and uI be the interpolation functions of z and u defined in (3.1) and (3.4),
respectively. Then we have

(z− zτ, uI − uh) ≤ Ch2‖z‖H2(Ω) · ‖uI − uh‖. (3.11)
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Now, we prove the main lemma of the section.

Lemma 3.5. Suppose that Assumptions (A1)-(A2) are valid. Let uI be the interpolation of
the exact control u defined in (3.1) and z(uI) and z(u) be the solutions of (2.31)-(2.34) with
ũ = uI and ũ = u, respectively. Then we have

‖z(uI)− z(u)‖ ≤ Ch2. (3.12)

Proof. From the Assumption (A2), we use the strong forms of the Eqs. (1.2) and
(2.1) to obtain the error equations:

−div
(

A(x)grad
(
y(uI)− y(u)

))
+ a0

(
y(uI)− y(u)

)
= uI − u, (3.13)

−div
(

A(x)grad
(
z(uI)− z(u)

)
+ p(uI)− p(u)

)

+a0

(
z(uI)− z(u)

)
= y(uI)− y(u), (3.14)

which imply that

‖z(uI)− z(u)‖H1(Ω) ≤ C
(
‖y(uI)− y(u)‖+ ‖p(uI)− p(u)‖

)
. (3.15)

Then, we multiply (3.14) by y(uI)− y(u) to derive that

‖y(uI)− y(u)‖2

=
(
y(uI)− y(u), y(uI)− y(u)

)

=−
(

div
(

A(x)grad
(
z(uI)− z(u)

)
+ p(uI)− p(u)

)
, y(uI)− y(u)

)

+
(

a0
(
z(uI)− z(u)

)
, y(uI)− y(u)

)

=
(

A(x)grad
(
z(uI)− z(u)

)
, grad

(
y(uI)− y(u)

))

+
(

A(x)
(

p(uI)− p(u)
)
, grad

(
y(uI)− y(u)

))
+

(
a0

(
z(uI)− z(u)

)
, y(uI)− y(u)

)

=
(

A(x)grad
(
y(uI)− y(u)

)
, grad

(
z(uI)− z(u)

))

−
(

p(uI)− p(u), p(uI)− p(u)
)

+
(

a0
(
y(uI)− y(u)

)
, z(uI)− z(u)

)

=
(

uI − u, z(uI)− z(u)
)
−

(
p(uI)− p(u), p(uI)− p(u)

)
,

where we have used

p(uI)− p(u) = −A(x)grad
(

y(uI)− y(u)
)

,

and (3.13). Thus, we have the following identity

‖y(uI)− y(u)‖2 + ‖p(uI)− p(u)‖2 =
(

uI − u, z(uI)− z(u)
)

. (3.16)
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Now, we define a standard piecewise linear function space

Sh =
{

rh(x) ∈ C(Ω) : rh ∈ Q1,1(Ti), ∀ Ti ∈ Th

}
, (3.17)

and a standard H1(Ω)-orthogonal projection Qh : C(Ω) → Sh, which satisfies: for any
ψ ∈ C(Ω) (

grad(ψ−Qhψ), gradrh

)
= 0, ∀ rh ∈ Sh. (3.18)

By standard finite element analysis, the projection Qh has the following approximate
property and stable property:

‖ψ−Qhψ‖ ≤ Ch‖ψ‖H1(Ω), (3.19)

‖Qhψ‖H1(Ω) ≤ C‖ψ‖H1(Ω). (3.20)

Set r = z(uI)− z(u) and rh = Qh
(
z(uI)− z(u)

)
. We can write the right-hand side of

Eq. (3.16) as follows

(
uI − u, z(uI)− z(u)

)
= (uI − u, r− rh) + (uI − u, rh). (3.21)

It follows from (3.19) that

(uI − u, r− rh) ≤ ‖uI − u‖ · ‖r− rh‖
≤ Ch2‖u‖W1,∞ · ‖z(uI)− z(u)‖H1(Ω). (3.22)

Since rh ∈ Q1,1(Ti) for any rectangle Ti, then we have
∫

Ti

uIrhdx =
∫

Ti

uI(Si)rhdx =
∫

Ti

uI(Si)rh(Si)dx. (3.23)

By using (3.23) and (3.2), we obtain that
∣∣∣∣
∫

Ω
(uI − u)rh

∣∣∣∣

≤ ∑
Ti∈Ω

∣∣∣∣
∫

Ti

(
u(Si)− u(x)

) · rh(x)dx
∣∣∣∣

= ∑
Ti∈Ω

∣∣∣∣
∫

Ti

[
(urh)(Si)− (urh)(x)

]
dx

∣∣∣∣

≤Ch2
(

∑
Ti∈Ω

|urh|2H2(Ti)

) 1
2

≤ Ch2
(

∑
Ti∈Ω

|u|2H2(Ti)
· |rh|2H1(Ti)

) 1
2

.

From (2.15), we obtain that
|u|H2(Ti) ≤ C|z|H2(Ti). (3.24)
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Applying the estimate in H1 norm for L2 projections (see [5, 14]), we have

|rh|H1(Ti) =
∣∣Qh

(
z(uI)− z(u)

)∣∣
H1(Ti)

≤ C|z(uI)− z(u)|H1(Ti).

Therefore,
∣∣∣∣
∫

Ω
(uI − u)rh

∣∣∣∣ ≤ Ch2
(

∑
Ti∈Ω

|z|2H2(Ti)
· ∣∣z(uI)− z(u)

∣∣2
H1(Ti)

) 1
2

≤ Ch2 · ‖z‖H2(Ω) · |z(uI)− z(u)|H1(Ω). (3.25)

Finally, we can combine the estimates (3.16) and (3.21)-(3.25) to derive

‖y(uI)− y(u)‖2 + ‖p(uI)− p(u)‖2

≤Ch2 · ‖z(uI)− z(u)‖H1(Ω)

≤Ch2 · (‖y(uI)− y(u)‖+ ‖p(uI)− p(u)‖),

where we have used the stability property (3.15) in the last step. The above inequality
implies the desired result (3.12). ¤

Now, we are able to obtain our first main result.

Theorem 3.1. Suppose that Assumptions (A1)-(A2) are satisfied. Let uI be the interpolation
of the exact control u defined in (3.4) and uh be the solution of (2.26)-(2.30). Then we have the
estimate

‖uI − uh‖ ≤ Ch1+s, 0 < s ≤ 1. (3.26)

Proof. From the inequality (2.13), we have
(

z(x) + νu(x)
)
·
(

ũ− u(x)
)
≥ 0, ∀ ũ ∈ Uad, ∀ x ∈ Ω. (3.27)

We apply this formula for x=Si, and ũ=uh(Si). This is correct because of the continuity
of u, z, and uh in these points {Si}, namely,

(
z(Si) + νu(Si)

)
·
(

uh(Si)− u(Si)
)
≥ 0, ∀ Si. (3.28)

Due to (3.1), the above inequality is equivalent to
(

z(Si) + νuI(Si)
)
·
(

uh(Si)− uI(Si)
)
≥ 0, ∀ Si. (3.29)

Integrating this inequality over Ti and adding up over all i, we get that

(zτ + νuI , uh − uI) ≥ 0. (3.30)

We choose the test function ũh = uI in (2.30) to obtain that
(

zh(uh) + νuh, uI − uh

)
≥ 0. (3.31)
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By adding these two inequalities (3.30) and (3.31), we have
(

zh(uh)− zτ + ν(uh − uI), uI − uh

)
≥ 0.

Hence,

ν‖uI − uh‖2

≤
(

zh(uh)− zτ , uI − uh

)

=
(

zh(uh)− zh(uI), uI − uh

)
+

(
zh(uI)− z(uI), uI − u

)

+
(

z(uI)− z(u), uI − uh

)
+

(
z− zτ , uI − uh

)
. (3.32)

Then we combine Lemma 3.1 and Lemmas 3.3-3.5 to deduce the superconvergence
result (3.26). ¤

Next, we can establish the following superconvergence result for state and co-state.

Theorem 3.2. Suppose that Assumptions (A1)-(A2) are satisfied. Let (p, y, q, z, u) ∈ (V ×
W)2×Uad be the solutions defined in (2.9)-(2.13) and (ph, yh, qh, zh, uh) ∈ (V h×Wh)2×Uh
be the solutions of (2.26)-(2.30). Then we have

‖Πh p− ph‖div + ‖Phy− yh‖ ≤ Ch1+min(s, 1
2 ), (3.33)

‖Πhq− qh‖div + ‖Phz− zh‖ ≤ Ch1+min(s, 1
2 ), (3.34)

for 0 < s ≤ 1.

Proof. It follows from (2.9)-(2.12) and (2.26)-(2.30) that we have the error equations:
(

A−1(p− ph), vh
)− (y− yh, divvh) = 0,(

div(p− ph), wh
)
+

(
a0(y− yh), wh

)
= (u− uh, wh),

(
A−1(q− qh), vh

)− (z− zh, divvh) = −(p− ph, vh),(
div(q− qh), wh

)
+

(
a0(z− zh), wh

)
= (y− yh, wh),

for all vh ∈ V h and wh ∈ Wh. By using the definitions of projections Πh and Ph, the
above equations can be rewrittrn as

(
A−1(Πh p− ph), vh

)− (Phy− yh, divvh) = φ1(vh),(
div(Πh p− ph), wh

)
+

(
a0(Phy− yh), wh

)
= ψ1(wh),

(
A−1(Πhq− qh), vh

)− (Phz− zh, divvh) = φ2(vh),(
div(Πhq− qh), wh

)
+

(
a0(Phz− zh), wh

)
= ψ2(wh),

for all vh ∈ V h and wh ∈ Wh, where

φ1(vh) = −(
A−1(p−Πh p), vh

)
,

ψ1(wh) = (u− uh, wh)−
(
a0(y− Phy), wh

)
,

φ2(vh) = −(p− ph, vh)−
(

A−1(q−Πhq), vh
)
,

ψ2(wh) = (y− yh, wh)−
(
a0(z− Phz), wh

)
.
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Since the terms φ1(vh), ψ1(wh), φ2(vh), ψ2(wh) can be regarded as linear functionals
of vh and wh defined on V h and Wh, respectively, we know from the stability result
of [4, 22] that

‖Πh p− ph‖div + ‖Phy− yh‖ ≤ C
{

sup
vh∈V h

|φ1(vh)|
‖vh‖div

+ sup
wh∈Wh

|ψ1(wh)|
‖wh‖

}
, (3.35)

‖Πhq− qh‖div + ‖Phz− zh‖ ≤ C
{

sup
vh∈V h

|φ2(vh)|
‖vh‖div

+ sup
wh∈Wh

|ψ2(wh)|
‖wh‖

}
. (3.36)

It is easy to see that

(p− ph, vh) = (p−Πh p, vh) + (Πh p− ph, vh), (3.37)
(y− yh, wh) = (y− Phy, wh) + (Phy− yh, wh) = (Phy− yh, wh). (3.38)

By the standard superconvergence of mixed finite element methods, we have
(
a0(y− Phy), wh

) ≤ Ch2‖y‖H1(Ω)‖wh‖, (3.39)
(
a0(z− Phz), wh

) ≤ Ch2‖z‖H1(Ω)‖wh‖. (3.40)

Under the condition y, z ∈ H3(Ω), applying the integral identity technique [16] gives
(

A−1(p−Πh p), vh
) ≤ Ch2‖y‖H3(Ω)‖vh‖, (3.41)

(
A−1(q−Πhq), vh

) ≤ Ch2‖z‖H3(Ω)‖vh‖, (3.42)

(p−Πh p, vh) ≤ Ch2‖y‖H3(Ω)‖vh‖. (3.43)

On the other hand, applying the standard error estimates of mixed finite element
methods and the approximation properties of projection operators Ph and Πh, we have
that

(
A−1(p−Πh p), vh

) ≤ Ch‖y‖H2(Ω)‖vh‖, (3.44)
(

A−1(q−Πhq), vh
) ≤ Ch‖z‖H2(Ω)‖vh‖, (3.45)

(p−Πh p, vh) ≤ Ch‖y‖H2(Ω)‖vh‖. (3.46)

Then, by the interpolation theory, under the assumption (A2) we obtain that
(

A−1(p−Πh p), vh
) ≤ Ch1+s‖y‖H2+s(Ω)‖vh‖, (3.47)

(
A−1(q−Πhq), vh

) ≤ Ch1+s‖z‖H2+s(Ω)‖vh‖, (3.48)

(p−Πh p, vh) ≤ Ch1+s‖y‖H2+s(Ω)‖vh‖. (3.49)

Here, we only give the proof of (3.47). We define a linear functional

Ty =
(

A−1(p−Πh p), vh
)

=
(

A−1(−A grady−Πh(−Agrady)
)
, vh

)
.
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Then, it follows from (3.41) and (3.44) that

‖T‖L(H2+s(Ω)→R) ≤ ‖T‖s
L(H3(Ω)→R)‖T‖1−s

L(H2(Ω)→R)

≤ C(h2‖vh‖)s · (h‖vh‖)1−s = Ch1+s‖vh‖,

which implies (3.47). We can similarly prove (3.48) and (3.49). Note that

(u− uh, wh) = (u− uI , wh) + (uI − uh, wh). (3.50)

It follows from (3.1)-(3.3) that

(u− uI , wh) ≤ ∑
Ti∈Ω

|wh|
∣∣∣∣
∫

Ti

(u(x)− u(Si))dx
∣∣∣∣

≤Ch2 ∑
Ti∈Ω

‖u‖H2(Ti) ·
√
|Ti| · |wh| = Ch2‖u‖H2(Ω) · ‖wh‖.

By using Theorem 3.1, we clearly see that

(uI − uh, wh) ≤ ‖uI − uh‖ · ‖wh‖ ≤ Ch1+s‖wh‖. (3.51)

From the above analysis, we can obtain the desired results (3.33)-(3.34). ¤

4 Global L2 superconvergence by postprocessing

In this section, we shall apply a higher order interpolation postprocessing method pre-
sented by Lin and Yan [16] to obtain global superconvergence for the approximation.
We construct a larger rectangular elements partition T2h, which is the coarse meshes of
Th. Then each element τ o f T2h is composed of four neighboring rectangular elements
of Th. Based on this coarse meshes, we denote V2h ×W2h to express the order k = 1
Raviart-Thomas mixed finite element spaces:

V2h =
{

v ∈ V : ∀ τ ∈ T2h, v |τ∈ Q2,1(τ)×Q1,2(τ)
}

,

W2h =
{

w ∈ W : ∀ τ ∈ T2h, w |τ∈ Q1,1(τ)
}

,

and the related Raviart-Thomas projection (see [10]):

Π2h × P2h : V ×W → V2h ×W2h,

which satisfies the following properties [23]:

(i) P2hPh = P2h and ‖P2hwh‖ ≤ C‖wh‖, for all wh ∈ Wh.

(ii) Π2hΠh = Π2h and ‖Π2hvh‖div ≤ C‖vh‖div, for all vh ∈ V h.
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By using the interpolation operators Π2h and P2h and their properties, we can obtain
the following global superconvergence result.

Lemma 4.1. ([6]) For any function ũ ∈ Uad, let
(

p(ũ), y(ũ), q(ũ), z(ũ)
)
, and

(
ph(ũ), yh(ũ), qh(ũ), zh(ũ)

)
,

be the solutions of (2.31)-(2.34) and (2.35)-(2.38), respectively, with the lowest order Raviart-
Thomas mixed finite elements. If the regularity conditions

y(ũ), z(ũ) ∈ H1(Ω), p(ũ), q(ũ) ∈ (
H2(Ω)

)2,

hold, then we have

‖p(ũ)− P2h ph(ũ)‖+ ‖p(ũ)−Π2h ph(ũ)‖ ≤ Ch2,
‖z(ũ)− P2hzh(ũ)‖+ ‖q(ũ)−Π2hqh(ũ)‖ ≤ Ch2.

In order to improve the accuracy of the control approximation on a global scale,
we construct

û(x) = max
{

0,
z
ν

}
− P2hzh

ν
. (4.1)

Now, we can prove the following global L2 superconvergence result.

Theorem 4.1. Suppose that Assumptions (A1)-(A2) are satisfied. Let (p, y, q, z, u) ∈ (V ×
W)2×Uad be the solutions defined in (2.9)-(2.13) and (ph, yh, qh, zh, uh) ∈ (V h×Wh)2×Uh
be the solutions of (2.26)-(2.30). Then we have

‖u− û‖ ≤ Ch1+s, 0 < s ≤ 1. (4.2)

Proof. From (2.15) and (4.1), we obtain by the triangle inequality

‖u− û‖ ≤ C‖z− P2hzh‖
≤C

(
‖z(u)− z(uI)‖+ ‖z(uI)− P2hzh(uI)‖+ ‖P2hzh(uI)− P2hzh(uh)‖

)
. (4.3)

We first apply lemma 3.5 to obtain that

‖z(u)− z(uI)‖ ≤ Ch2. (4.4)

Then, from the approximation property of the operator P2h, the property (i) of the
operator P2h, we have

‖z(uI)− P2hzh(uI)‖
≤‖z(uI)− P2hz(uI)‖+ ‖P2hz(uI)− P2hzh(uI)‖
≤Ch2‖z(uI)‖H2(Ω) + ‖P2hPhz(uI)− P2hzh(uI)‖
≤Ch2‖z(uI)‖H2(Ω) + ‖Phz(uI)− zh(uI)‖
≤Ch1+s‖z‖H2+s(Ω). (4.5)
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Next, it remains to bound the third term of above inequality (4.3). By the property (i)
of the operator P2h, we have

‖P2hzh(uI)− P2hzh(uh)‖ ≤ C‖zh(uI)− zh(uh)‖.

Similar to the proof of Lemma 3.1, we use (2.35)-(2.38) to obtain the error equations
(

A−1(ph(uI)− ph(uh)
)
, vh

)
− (

yh(uI)− yh(uh), divvh
)

= 0,
(

div
(

ph(uI)− ph(uh)
)
, wh

)
+

(
a0

(
yh(uI)− yh(uh)

)
, wh

)
= (uI − uh, wh),

(
A−1(qh(uI)− qh(uh)

)
, vh

)
− (

zh(uI)− zh(uh), divvh
)

= −(
ph(uI)− ph(uh), vh

)
,

(
div

(
qh(uI)− qh(uh)

)
, wh

)
+

(
a0

(
zh(uI)− zh(uh)

)
, wh

)
=

(
yh(uI)− yh(uh), wh

)
,

for all vh ∈ V h and wh ∈ Wh. We use the stability property of the saddle-point problem
to obtain that

‖zh(uI − zh(uh)‖+ ‖qh(uI)− qh(uh)‖
≤C

(‖yh(uI)− yh(uh)‖+ ‖ph(uI)− ph(uh)‖
)

≤C‖uI − uh‖ ≤ Ch1+s, (4.6)

where the last step was derived by using Theorem 3.1. Then by (4.3)-(4.6), we can
prove the result (4.2). ¤

5 Numerical tests

In this section, we present below two examples to test the superconvergence theoret-
ical results of the control. The first example is based on Example 1 of [6] with some
modification. In the second example, we consider the control problem with a nonlin-
ear state equation.

The optimization problems were solved numerical by projected gradient methods,
with codes developed based on AFEPACK [13]. The control function u is discretized
by piecewise constant functions, where the state (y, p) and the co-state (z, q) were
approximated by the lowest order Raviart-Thomas mixed finite element functions. In
the two examples, we choose the domain Ω = [0, 1]× [0, 1].

Example 1. We consider the following two-dimensional elliptic optimal control prob-
lem

min
u∈Uad

1
2

{‖p− pd‖2 + ‖y− yd‖2 + ‖u‖2} , (5.1)

subject to the state equation

divp + a0y = u + f , p = −grady, x ∈ Ω, (5.2)
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with the boundary condition

y = 0, x ∈ ∂Ω, (5.3)

and the admissible set

Uad =
{

u ∈ L2(Ω) :
∫

Ω
u(x)dx ≥ 0

}
. (5.4)

Let a0 = 0. Then the state equation may be restated as

divp = u + f , p = −grady, x ∈ Ω, (5.5)

Next, we introduce the co-state elliptic equation

divq = y− yd, q = −(gradz + p− pd), x ∈ Ω, (5.6)

with the boundary condition

z = 0, x ∈ ∂Ω. (5.7)

We choose

y = sin(πx1) sin(πx2), z = −2π2 sin(πx1) sin(πx2),

u = max(0, z̄)− z, f = 2π2y− u,

pd =
(
−π(1 + π2) cos(πx1) sin(πx2),−π(1 + π2) sin(πx1) cos(πx2)

)
,

yd = (1 + 2π4) sin(πx1) sin(πx2).

In the numerical implementation, the profile of the numerical solution is plotted in
Fig. 1 and the errors ‖uI − uh‖ and ‖uI − û‖ obtained on a sequence of uniformly

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

5

10

15

20

Figure 1: The profile of the numerical solution of Example 1 on an 64×64 mesh grid.
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Table 1: The errors of Example 1 on a sequential uniform refined meshes.

resolution ‖uI − uh‖ ‖u− û‖
16×16 4.506e-02 4.324e-01
32×32 1.129e-02 1.477e-01
64×64 2.831e-03 5.907e-02
128×128 7.149e-04 1.776e-02

refined meshes are presented in Table 1. The superconvergence phenomenon can be
observed clearly from the data.

Example 2. In this example, we consider the following nonlinear optimal control prob-
lem

min
u∈Uad

1
2

{‖p− pd‖2 + ‖y− yd‖2 + ‖u‖2} ,

− div(grady) + y5 = u + f , x ∈ Ω,
y = 0, x ∈ ∂Ω,

and we introduce co-state elliptic equation

divq + 5y4z = y− yd, q = −(gradz + p− pd), x ∈ Ω, (5.8)

with the boundary condition

z = 0, x ∈ ∂Ω.

We choose that

y = sin(πx1) sin(πx2), z = −π2 sin(πx1) sin(πx2),

u = max(0, z̄)− z, f = 2π2y + y5 − u,
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Figure 2: The profile of the numerical solution of Example 2 on 64×64 mesh grids.
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Table 2: The errors of Example 2 on a sequential uniform refined meshes.

resolution ‖uI − uh‖ ‖u− û‖
16× 16 1.049e-02 2.118e-01
32× 32 2.617e-03 7.296e-02
64× 64 6.530e-04 2.531e-02
128× 128 1.623e-04 8.850e-03

pd = p + gradz =
(
−π(1 + π2) cos(πx1) sin(πx2),

−π(1 + π2) sin(πx1) cos(πx2)
)

,

yd = y− 5y4z.

The profile of the numerical solution is presented in Fig. 2. The superconvergence
behavior of the L2-errors is illustrated in Table 2.

6 Conclusions and future work

In this paper, we have discussed the lowest order Raviart-Thomas mixed finite ele-
ment methods for constrained quadratic optimal control problem, and the admissible
set:

Uad =
{

u ∈ L2(Ω) :
∫

Ω
u(x)dx ≥ 0

}
.

We have obtained the superconvergence of O(h1+s) (0 < s ≤ 1) for the control vari-
able which is approximated by piecewise constant functions.

In our future work, we shall use the mixed finite element method to deal with
the optimal control problems governed by nonlinear parabolic equations and convex
boundary control problems. Furthermore, we shall consider a priori error estimates
and superconvergence of optimal control problems governed by nonlinear parabolic
equations and convex boundary control problems.
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