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Abstract. In this article, natural convection of a magnetic fluid in a cubic cavity
with a heat generating object inside and under a uniform magnetic field is simu-
lated by the lattice Boltzmann method. Results obtained from the present simula-
tions are shown to be agreed well with our experimental measurements, and reveal
more of effects of the magnetic field on the flow and heat transfer of the magnetic
fluids.
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1 Introduction

Magnetic fluids are super paramagnetic fluids formed by a stable colloidal suspension
of ferromagnetic nanoparticles dispersed in carrier liquids such as water or kerosene
[1]. Among various magnetic fluids, there is a so-called temperature-sensitive mag-
netic fluid (TSMF), whose magnetization strongly depends on the temperature. Becau-
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se of its being operated easily in the room temperature range, the TSMF is consid-
ered as a promising fluid in energy conversion and heat transport systems with small
length scale or under microgravity environment [2, 3]. Due to the important role of
the convection mechanism in the energy conversion and heat transportation, a thor-
ough understanding of relations between the applied magnetic field and the resulted
convection is necessary.

Flow behaviors as well as the heat transfer characteristics associated with the
natural convection of the TSMF have been studied by many researchers in the past
years [4–8]. Finlayson [4] first studied the thermomagnetic convection of the TSMF
and showed that there exists a critical parameter beyond which the thermomagnetic
convection occurs. Schwab et al. [5] conducted an experimental investigation of the
convective instability in a horizontal layer of the TSMF and characterized the influence
of the magnetic Rayleigh number on the Nusselt number. Krakov and Nikiforov [6]
addressed the influences of the relative orientation of the temperature gradient and
the magnetic field on thermomagnetic convection in a square cavity. Yamaguchi et
al. [7, 8] performed experiments and numerical analyses in a square enclosure and
characterized the heat transfer in terms of the magnetic Rayleigh number.

However, in most of practical situations, a container with heat generating objects
inside is often encountered, and studying the convection of such a case is fewer but
nontrivial in both academics and engineering. For this reason, in our recent study [9],
the natural convection of the TSMF in a cubic container with a heat generating square
cylinder object inside was investigated under a uniform magnetic field experimentally.
The experimental results showed that the heat transfer characteristic of the TSMF is
enhanced when the magnetic field is applied. The stronger the magnetic field, the
better the heat transfer characteristic can be achieved.

As a compensation of the above experimental research, and in order to disclose
more physics behind the experimental findings, in this paper the natural convec-
tion of the TSMF in a cubic cavity with a heat generating object inside under a uni-
form magnetic field is numerically carried out by using the lattice Boltzmann method
(LBM) [10, 11]. The LBM [10, 11] is formulated based on a derived scalar magnetic
potential advection-diffusion equation at the first-order time accuracy. By defining an
effective velocity, which is a function of the temperature gradient, a lattice Boltzmann
scheme for the magnetic field is straightforwardly constructed in a similar fashion
of that of modeling the temperature transport equation. To ensure the scheme close
to the original elliptic scalar potential equation, the time derivative in the advection-
diffusion equation is multiplied by an adjustable preconditioning parameter. In the
present study, using the LBM [10, 11], we particularly focus on investigating the ef-
fects of the magnetic field on the characteristics of the flow and heat transfer as well
as the temperature behaviors in the considered flow field.

The rest of the paper is organized as follows. In Section 2, the LBM [10, 11] with
numerical implementations is introduced briefly. Section 3 is devoted to results and
discussions of the present study. The results obtained are compared to experimental
measurements conducted in our labs. A conclusion is given in Section 4.
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2 Methodology and numerical implementations

2.1 Lattice Boltzmann models

In the theory of the magnetic fluids, as the flow under influences of the magnetic field,
it undergoes magnetic force. The magnetic hydrodynamics for the non-conductive
magnetic fluid can be described by the following governing equations (2.1)-(2.2)

∂tρ +∇ρ0u = 0, (2.1)
ρ0 [∂t (u) + (u · ∇) u]

=−∇p + η
[
∇2u +

1
3
∇ (∇ · u)

]
+ µ0M · ∇H− ρβ(T − T0)g, (2.2)

[
ρ0CP − µ0H ·

(∂M
∂T

)
H

]
(∂tT + u · ∇T)

=λ∇2T −
(

µ0T
(∂M

∂T

)
H
· DH

Dt

)
, Fluid, (2.3)

ρHCPH∂tT = λH∇2T, Heat generating object, (2.4)(
1 +

M
H

)
∇2φ−

(
M
H

)
· ∇φ = 0. (2.5)

In the above equations, ρ0 is the constant density, u is the velocity, p is the pressure,
and T is the temperature; η is the dynamical viscosity, µ0 is the magnetic permeability
of vacuum, β is the expansion coefficient under the Boussinesq approximation; H is
the modulus of the magnetic intensity H and φ is the scalar potential and ∇φ = H for
the non-conductive magnetic fluid; M is the modulus of the magnetization M; φ is the
scalar potential and ∇φ = H; λ and λH are the coefficients of thermal conductivity of
the fluid and the heat generating object, respectively, Cp and CpH are the specific heats
of respective fluid and the heat generating object at constant pressure.

In terms of the lattice Boltzmann theory, Eqs. (2.1)-(2.5) can be solved by the follow-
ing lattice Boltzmann scheme by employing three distribution functions for velocity,
thermal and magnetic field [10, 11], respectively, as

fα (r + ξαδt, t + δt)− fα (r, t)

=− fα (r, t)− f eq
α (r, t)

τf
+ wα

(
τf − 0.5

)
δt

τf c2
s

F · (ξα − u) , (2.6)

gα (r + ξαδt, t + δt)− gα (r, t) = − gα (r, t)− geq
α (r, t)

τg
+ wαSδt, (2.7)

hα (r + ξαδt, t + δt)− hα (r, t) = −hα (r, t)− heq
α (r, t)

τh
, (2.8)

with the equilibrium distribution functions defined as

f eq
α (r, t) = wα

{
ρ + ρ0

[ ξα · u
c2

s
+

1
2c2

s

( (ξα · u)2

c2
s

− u2
)]}

, (2.9)
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geq
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heq
α (r, t) = wαφ

{
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ξα · γuT

c2
s

+
1

2c2
s

( (ξα · γuT)2

c2
s

− (γuT)2
)}

, (2.11)

and the force and source term are

F = µo M∇H − ρ0β(T − T0)g, (2.12)

S = − µ0TM · DH
Dt

ρ0CP − µ0H ·
(

∂M
∂T

)
H

, (2.13)

where r=r(x, y, z) is the spatial vector;

uT = −∇
( M

H

)
=

χ0∇T
Tc − T0

,

is defined as an effective velocity with T0 and Tc being the reference and Curie tem-
peratures respectively, and χ0 the magnetization rate at T0; γ is an adjustable precon-
ditioning parameter introduced to ensure that the solution of the LB scheme (2.8) re-
mains close to a solution of the original scalar potential equation (2.5). The relaxation
parameters in Eqs. (2.6)-(2.8) are given by

τf =
η

ρ0c2
s δt

+ 0.5, (2.14)

τg =
D

(D + 2)
λ[

ρ0CP − µ0H ·
(

∂M
∂T

)
H

]
c2

s δt

+ 0.5, (2.15)

τh =
γ

c2
s δt

(
1 +

M
H

)
+ 0.5, (2.16)

respectively. In numerical simulation, the value of the preconditioning parameter γ is
chosen by setting τh = 1.

The sound speed cs, the weight coefficient wα and the discrete velocity ξα used in
the above LBM scheme can be referred to the discrete velocity model of the D3Q19 for
three-dimension (3D) [12]. The density, velocity, and temperature are calculated by

ρ = ∑
α

fα, ρ0u = ∑
α

fαξα + 0.5δtF, T = ∑
α

gα, φ = ∑
α

hα. (2.17)

A number of previous researches [12,13] have shown, by the Chapman-Enskog analy-
sis, the lattice Boltzmann equations (2.6)-(2.8) be capable of recovering to the following
macroscopic equations (2.1)-(2.5), respectively.



80 Niu, Yamaguchi, Zhang and Yoshikawa / Adv. Appl. Math. Mech., 2 (2010), pp. 76-85

2.2 Numerical implementation and boundary conditions

The natural convection of the magnetic fluid in a cubic cavity with heat generating
object inside under a uniform magnetic field investigated in the present paper is in
line with our experimental conditions (Table 1). The cubic cavity has the side length
L=7.5mm, and the heat generating stick inside the cavity has the longitude and side
lengths of L and L/3, respectively. The temperatures on the upper and bottom walls
are same and fixed at Tb=Tu=T0=298.15K.

The evaluation of the heat transfer characteristics of the test TSMF in the container
is based on the following parameters:

Gr =
ρ2

0gβ∆Tre f L3

η2
0

, Grm =
ρ2

0µ0χ0H2
0 L2

η2
0

, Nu =
∫∫ (

− ∂T
∂Z

)

z=0,L
dxdy, (2.18)

where
∆Tre f = Th − Tu + Tb

2
,

is the representative temperature difference between the heat generating object and
the upper/bottom walls, and Gr and Grm are the Grashof and magnetic Grashof num-
bers, respectively; Nu is an effective Nusselt number. With the grid-independence in-
vestigations of other two grids of 25× 25× 25 and 43× 43× 43 in advance, all the sim-
ulations in the present study are carried out on the uniform grid of 37× 37× 37 in the
range of 0<Gr<160, and the results presented below are given in the non-dimensional
form by r/L, (Ure f =

√
gβL∆Tre f ) and T/∆Tre f .

The boundary conditions of the macroscopic variables u, T are sketched in Fig. 1
in non-dimensional form. For the magnetic field, the magnetic potential boundary
conditions are set by the magnetic intensity, which are described as follows

∂φ

∂x

∣∣∣∣
x=0,L

= 0,
∂φ

∂y

∣∣∣∣
y=0,L

= 0,
∂φ

∂z

∣∣∣∣
z=0,L

= H. (2.19)

Table 1: Cavity dimension, fluid properties used in present study.

Scale length of cavity L 7.5 Specific heat Cp 1.39× 101

(mm) (J/kgPK)
Density ρ0 1.397× 103 Expansion coefficient β 6.90× 10−4

(kg/m3) (1/K)
Viscosity η 1.680× 10−3 Curie temperature Tc 477.35
(Pa · s) (K)
Thermal conductivity λ 1.750× 10−1 Reference temperature T0 298.15
(W/(m·K)) (K)
Thermal conductivity λH 1.11× 102 Magnetization rate χ0 0.2650
(W/(m·K))
Permeability of vacuum µ0 4π × 10−7 Gravitational acceleration g 9.8
(H/m) (m/s2)
Density ρH 8.52× 103 Specific heat CpH 3.85× 102

(kg/m3) (J/kg·K)
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Figure 1: Sketch of the thermal magnetic natural convection flow condition in the cubic cavity.

In our numerical simulation, the temperatures on the isolated walls and the scalar
potentials on all walls are calculated based on the second order extrapolation scheme.
For the distribution functions of fα, gα and hα on the boundaries, the non-equilibrium
bounce back boundary conditions [10] are employed when the macroscopic velocities,
temperatures and scalar potentials on the walls are known, and they are given as
follows

fα (r, t)− f eq
α (r, t) = fα (r, t)− f eq

α (r, t) , (2.20)

gα (r, t)− geq
α (r, t) = − [

gα (r, t)− geq
α (r, t)

]
, (2.21)

hα (r, t)− heq
α (r, t) = − [

hα (r, t)− heq
α (r, t)

]
, (2.22)

respectively. ᾱ in Eqs. (2.20)-(2.22) denotes directions of the unknown distribution
function, and ᾱ = −α.

3 Results and discussions

Fig. 2 displays the variations of the average Nusselt numbers on the Grashof numbers
at three magnetic Grashof numbers of 0, 1.00× 104 and 1.96× 104. Experimental and
numerical results are all plotted in this figure. Seen from Fig. 2, the calculated results
are in good agreement with the experimental data [9], and the Nusselt numbers at all
three magnetic Grashof numbers increase with the increase of the Grashof number,
indicating that the heat transfer rate increases when the magnetic field strength is
increased. This observation can be explained more clearly by the following numerical
results, which depict details of the flow and magnetic fields.

Fig. 3 shows the velocity vectors of Gr=75 inside the cavity at Grm=1.10 × 104

(left) and 1.96× 104 (right). As shown in Fig. 3, four symmetric weak flow rolls occur
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Exp. [9], Grm = 0
Exp. [9], Grm = 1.10E+04
Exp. [9], Grm = 1.96E+04
Cal. Grm = 0
Cal. Grm = 1.10E+04
Cal. Grm = 1.96E+04
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Figure 2: Dependence of the average Nusselt numbers of the Grashof numbers at three magnetic Grashof
numbers of 0, 1.10× 104 and 1.96× 104.

near the isolate walls in side cavity due to effects of the magnetic forces. Because the
temperature gradient is larger near the heat generating object, the velocity is larger
at that region. Moreover, the rolls become stronger with the increase of the magnetic
Grashof number. Figs. 4(a) and 4(b) show the flow patterns and temperature fields
of Gr=75 at four planes of the cavity at Grm=1.10× 104 and 1.96× 104, respectively.
Corresponding to the velocity field shown in Fig. 3, the low temperature fluid near
the upper and bottom cooling walls is brought to the region near the heat generating
object, and the high temperature fluid near the heat generating object is brought to
the side isolated walls, along which it is further brought to the upper and bottom
cooling walls. The heat transport rate is larger at high magnetic Grashof number than
that at low magnetic Grashof number. As shown in Figs. 4(a) with 4(b), it can also be
observed that the heat is gradually transport from the hot side to the cool side along
the heat generating object.

Corresponding to the temperature field, the magnetization M inside the cavity
demonstrates an opposite pattern as plotted in Figs. 5(a) and 5(b). Since M is every-
where parallel to the magnetic field H in the flow field, Figs. 5(a) and 5(b) only display
the contours of modulus of the magnetization at four planes in the cubic cavity for
flows of Gr=75 at Grm=1.10× 104 and 1.96× 104, respectively. The modulus of M
is calculated directly by M=χ0H(Tc − T)/(Tc − T0) . As shown in Fig. 5, due to the
temperature dependence of the magnetization too, the modulus of the magnetization
M is shown to be varied in the cavity. Large magnetization is found in the region near
the upper and bottom walls, and low magnetization appears near the heat generating
object.

4 Conclusions

In this article, the natural convection of a magnetic fluid in a cubic cavity with a heat
generating object inside under a uniform magnetic field was simulated by the lattice
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Figure 3: The velocity vectors (color plotted against temperature) of Gr = 75 inside the cavity at Grm =
1.10× 104 (left) and 1.96× 104 (right), respectively.

y/L = 0.4, 0.96 x/L = 0.5, 0.88
(a) Grm = 1.10× 104

y/L = 0.4, 0.96 x/L = 0.5, 0.88
(b) Grm = 1.96× 104

Figure 4: The temperature contours and velocity vectors of Gr = 75 at four planes of the cavity at
Grm = 1.10× 104 and 1.96× 104, respectively.
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y/L = 0.4, 0.96 x/L = 0.5, 0.88
(a) Grm = 1.10× 104

y/L = 0.4, 0.96 x/L = 0.5, 0.88
(b) Grm = 1.96× 104

Figure 5: The contours of modulus of the magnetization M of Gr = 75 at four planes of the cavity at
Grm = 1.10× 104 and 1.96× 104, respectively.

Boltzmann method. Results obtained from the present simulations are shown to be
agreed well with our experimental measurements, and reveal that the magnetic and
flow fields are influenced by temperature. Four symmetric weak flow rolls occur near
the isolate walls in side cavity due to effects of the magnetic force, and they brings
the low temperature fluid near the upper and bottom cooling walls to the region near
the heat generating object, and further stream the high temperature fluid near the
heat generating object to the side isolated and the upper/bottom cooling walls. With
the magnetic field imposed, the heat transfer inside cavity is enhanced significantly
compared to that without the magnetic field.
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