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Abstract. We present a novel mapping approach for WENO schemes through the
use of an approximate constant mapping function which is constructed by employ-

ing an approximation of the classic signum function. The new approximate constant

mapping function is designed to meet the overall criteria for a proper mapping func-
tion required in the design of the WENO-PM6 scheme. The WENO-PM6 scheme

was proposed to overcome the potential loss of accuracy of the WENO-M scheme

which was developed to recover the optimal convergence order of the WENO-JS
scheme at critical points. Our new mapped WENO scheme, denoted as WENO-

ACM, maintains almost all advantages of the WENO-PM6 scheme, including low
dissipation and high resolution, while decreases the number of mathematical oper-

ations remarkably in every mapping process leading to a significant improvement

of efficiency. The convergence rates of the WENO-ACM scheme have been shown
through one-dimensional linear advection equation with various initial conditions.

Numerical results of one-dimensional Euler equations for the Riemann problems,

the Mach 3 shock-density wave interaction and the Woodward-Colella interacting
blastwaves are improved in comparison with the results obtained by the WENO-JS,

WENO-M and WENO-PM6 schemes. Numerical experiments with two-dimensional
problems as the 2D Riemann problem, the shock-vortex interaction, the 2D explo-

sion problem, the double Mach reflection and the forward-facing step problem mod-

eled via the two dimensional Euler equations have been conducted to demonstrate
the high resolution and the effectiveness of the WENO-ACM scheme. The WENO-

ACM scheme provides significantly better resolution than the WENO-M scheme and

slightly better resolution than the WENO-PM6 scheme, and compared to the WENO-
M and WENO-PM6 schemes, the extra computational cost is reduced by more than

83% and 93%, respectively.
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1. Introduction

A number of essentially non-oscillatory (ENO) schemes [16–19,33,34] and weigh-

ted ENO (WENO) schemes [23,27] have been developed quite successfully to solve the

hyperbolic conservation laws, which may develop discontinuities in its solutions even

if the initial conditions are smooth. The goal of this paper is to propose an improved

version of the fifth-order WENO scheme for the hyperbolic conservation laws taking

the form

ut +
d
∑

α=1

fα(u)xα = 0, xα ∈ R, t > 0.

Here the function u = (u1, u2, · · · , um)T is an m-dimensional vector of conserved vari-

ables, and flux fα(u) is a vector-valued function of m components with xα and t vari-

ables.

Liu et al. [27] developed the first version of WENO schemes which convert an r-th

order ENO scheme [16–19, 33, 34] into an (r + 1)-th order WENO scheme by using a

convex combination of all candidate substencils instead of just one as in the original

ENO scheme. Later, Jiang and Shu [23] proposed the classic WENO-JS schemes with

an improvement that an r-th order ENO scheme can be converted into a (2r − 1)-
th order WENO scheme by introducing a new definition of the smoothness indicator

used to measure the smoothness of the numerical solution on a substencil. Then, the

weighting method presented in [27] and the smoothness indicators designed in [23]

eventually became a standard, and the WENO-JS schemes especially the fifth-order

one [23] developed into one of the most popular high-order methods [25]. In recent

decades, many successful works have been done to raise some issues about WENO

schemes [1,5,6,9,11,12,20,22,44].

It was clearly pointed out by Henrick et al. [20] that, in general, the fifth-order

WENO-JS scheme is only third-order or even less accurate at critical points of order

ncp = 1 in smooth regions, where ncp denotes the order of the critical point; e.g.,

ncp = 1 corresponds to f ′ = 0, f ′′ 6= 0 and ncp = 2 corresponds to f ′ = 0, f ′′ =
0, f ′′′ 6= 0, etc. To overcome this problem, Henrick et al. [20] introduced a care-

fully designed mapping function leading to the first mapped WENO scheme named

WENO-M. Compared to the WENO-JS scheme [23], the WENO-M scheme is able to

recover the optimal convergence order near critical points in smooth regions and gen-

erate more accurate solutions. Another significant contribution of the work by Hen-

rick et al. [20] is that they derived a strong sufficient condition on the weights of

substencils for WENO schemes to achieve optimal convergence orders and this con-

dition has become the primary criterion in the design of all other mapped WENO

schemes [11, 12, 25, 26, 37, 38, 40]. Recently, Feng et al. [11] found that the mapping
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function of the WENO-M scheme [20] may amplify the effect from the non-smooth

substencils and thus cause a potential loss of accuracy near discontinuities. To address

this issue, they proposed two additional requirements to the mapping function g(ω),
that is, g′(0) = 0 and g′(1) = 0. Then, the WENO-PMk scheme has been devised [11]

by employing a piecewise polynomial mapping function which satisfies the two addi-

tional requirements above and the original criteria in [20], and the WENO-PM6 scheme

was recommended, which is able to generate more accurate numerical solutions [11]

near the discontinuities than the classic WENO-JS scheme and the WENO-M scheme.

Furthermore, the two additional requirements were considered to be very important

to decrease the effect from the non-smooth substencils [40] and were used in the con-

struction of the WENO-RM(mn0) scheme [40]. Similarly, requirements g′(0) = 1 and

g′(1) = 1, which are also used to decrease the effect from the non-smooth substencils,

were employed when the WENO-PPMn (n = 4, 5, 6) [25], WENO-RM(k,m, s) [37],

WENO-AIM(k,m, c) [38] and WENO-MAIMi [26] schemes were constructed. From

a different perspective, Borges et al. [5] proposed another version of the fifth-order

WENO scheme, which is called the WENO-Z scheme. It drives the weights to the

optimal values faster than the WENO-M scheme by employing a global higher order

reference value for the smoothness indicators [10]. Later, the WENO-Z scheme was

successfully extended to higher orders by Castro et al. [6]. The recommended fifth-

order WENO-Z scheme with the power parameter p = 1 gives less dissipation than the

WENO-JS scheme but its convergence order is fourth-order at the first-order critical

points [41] and will drop to second-order at higher order critical points [10]. Recently,

Don et al. [9, 39] demonstrated that the optimal order of accuracy for the WENO-Z

scheme can be obtained regardless of any order critical points by setting the parameter

ǫ, which is used to prevent the denominator becoming zero, as a function of the spacial

step ∆x. However, it was indicated [21] that adjusting ǫ to recover accuracy is actually

an implicit switch between the WENO scheme and the upstream central scheme, and

its effect is dependent on the specific problem. It is worthy to note that, lately, Zhu et

al. [46] has proposed a new type of high-order MWENO schemes with unequal-sized

stencils to achieve increasingly high order of accuracy for the seventh-order and ninth-

order versions. As we focus mainly on the fifth-order version here, we refer to [46] for

more details.

Various existing mapped WENO schemes, e.g., WENO-M, WENO-PM6, WENO-

RM260, WENO-PPM5, WENO-RM(k,m, s), WENO-AIM (k,m, c), WENO-MAIMi, etc.,

can improve the performances of the classic WENO-JS scheme in some ways like achiev-

ing optimal convergence orders near critical points in smooth regions, having low dis-

sipation and generating more accurate solutions near the discontinuities. However, as

some specified complicated mapping procedures must be performed, the chief draw-

back of these existing mapped schemes is that the computational cost increases signifi-

cantly. Taking the WENO-M scheme that is one of the concerned WENO schemes in this

paper as an example, as reported in [5], its extra computational cost is 20% to 30% com-

pared to the WENO-JS scheme when calculating two dimensional Euler equations. For

the WENO-PM6 scheme, another concerned WENO scheme in this paper, it was noted
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that [38] the piecewise nature requires logic operations to be implemented during the

mapping process, which makes it harder to vectorize the operations and increases the

computational cost. Hong et al. indicated that [21], as the form of the mapping func-

tion designed in the WENO-PM6 scheme becomes more complicated than the WENO-M

scheme, its extra computational cost will have a further increase. Actually, our exten-

sive numerical tests show that the extra computational cost of the WENO-PM6 scheme

will increase by more than 54% compared to the WENO-JS scheme, and we will give

the results in Subsection 4.4 in detail.

In this paper, an approximate constant mapping function is designed at first. This

new mapping function satisfies the original criteria proposed in [20] so that the new

corresponding WENO scheme, abbreviated as WENO-ACM, is able to achieve the op-

timal convergence orders near critical points in smooth regions. And also, the new

mapping function maintains g′(0) = 0 and g′(1) = 0 so that it can decrease the effect

from the non-smooth substencils as the WENO-PM6 scheme does. Thus, the WENO-

ACM scheme is able to yield low dissipation and high resolution results comparable to

that of the WENO-PM6 scheme. The greatest benefit is that the new mapping function

almost uses only one assignment operation to implement the mapping process, instead

of evaluating the mapping functions involving multiple multiplication and division as

other existing mapped WENO schemes do. Therefore, the cost of the WENO-ACM

scheme is very low. Numerical experiments with various benchmark problems modeled

via the two dimensional Euler equations are conducted to demonstrate that the WENO-

ACM scheme generates significantly better resolution than the WENO-M scheme and

slightly better resolution than the WENO-PM6 scheme, while the extra computational

cost is reduced by more than 83% compared to the WENO-M scheme and reduced by

more than 93% compared to the WENO-PM6 scheme.

The remainder of this paper is organized as follows. In Section 2, we give a brief de-

scription of the finite volume methodology and the procedures of the WENO-JS [23],

WENO-M [20] and WENO-PMk [11] schemes to clarify our major concern. In Sec-

tion 3, we introduce the details on how we construct the new mapped WENO scheme

with approximate constant mapping and then provide the parametric study of the new

mapping function and the convergence property of the new mapped WENO scheme. In

Section 4, some numerical experiments are presented to compare the performances of

different WENO schemes, and the computational cost comparisons are also shown in

this section. Finally, the conclusions are given in Section 5.

2. Review of finite volume WENO schemes

2.1. Finite volume methodology

Consider the following one-dimensional scalar hyperbolic conservation law:

∂tu+ ∂xf(u) = 0, (2.1)
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which is to be solved on the domain x ∈ [xl, xr] for t ≥ 0 with the initial condition

u(x, 0) = u0(x). Throughout this paper, we assume that the computational domain

is discretized into uniform cells Ij = [xj−1/2, xj+1/2], j = 1, . . . , N with width ∆x =
(xr − xl)/N . The cell center of Ij is denoted by xj = xl + (j − 1/2)∆x and its cell

boundaries are denoted by xj±1/2 = xj ±∆x/2. The cell average ūj of Ij is defined by

ūj =
1

∆x

∫ x
j+1

2

x
j− 1

2

u(ξ, t)dξ. (2.2)

By integrating Eq. (2.1) over Ij and employing some simple mathematical manipula-

tions, we can approximate Eq. (2.1) by the following finite volume conservative formu-

lation:

dūj(t)

dt
≈ − 1

∆x

(

f̂
(

u−
j+ 1

2

, u+
j+ 1

2

)

− f̂
(

u−
j− 1

2

, u+
j− 1

2

)

)

. (2.3)

In Eq. (2.3), ūj(t) is the numerical approximation to ūj defined in Eq. (2.2), and the

numerical flux f̂(u−, u+) where u− and u+ refer to the left-sided and right-sided lim-

its of u is a replacement of the physical flux function f(u). For the possible pres-

ence of discontinuities, u− and u+ are usually not equal. For hyperbolic laws, the

numerical flux f̂(u−, u+) is a monotone function and it is consistent with the physi-

cal flux, i.e., f̂(u, u) = f(u). In this paper, the global Lax-Friedrichs flux f̂(a, b) =
1
2 [f(a) + f(b)− α(b− a)] is chosen, where α = maxu|f ′(u)| is a constant and the max-

imum is taken over the whole range of u. In Eq. (2.3), u±
j±1/2

can be computed by

the technique of reconstruction, like some WENO reconstructions which are described

in the following subsections. For the system of hyperbolic conservation laws a local

characteristic decomposition is used in the reconstruction, and [23] is referred to for

more details. Two commonly used classes of finite volume WENO schemes in two di-

mensional Cartesian meshes are studied in detail in [43], and the one denoted as class

A is taken in this paper.

2.2. WENO-JS

We recall the reconstruction process of the fifth-order WENO-JS scheme [23], which

has successfully been extended to higher order ones [4, 13]. We describe only the

procedure of the left-biased reconstruction u−j+1/2 as the right-biased one u+j+1/2 can

easily be obtained by mirror symmetry with respect to the location xj+1/2 of that for

u−j+1/2. For simplicity of notation, we do not use the subscript “-” in the following

content.

Explicitly, for the five-point stencil S5 = {Ij−2, Ij−1, Ij , Ij+1, Ij+2}, the third-order

approximations of u(xj+1/2, t) associated with three left-biased substencils Ss =
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{Ij+s−2, Ij+s−1, Ij+s}, s = 0, 1, 2 are as follows:

u0
j+ 1

2

=
1

6
(2ūj−2 − 7ūj−1 + 11ūj),

u1
j+ 1

2

=
1

6
(−ūj−1 + 5ūj + 2ūj+1),

u2
j+ 1

2

=
1

6
(2ūj + 5ūj+1 − ūj+2).

(2.4)

The fifth-order approximation of global stencil S5 is built via the following convex

combination of the three third-order approximations in Eq. (2.4):

uj+ 1
2
=

2
∑

s=0

ωsu
s
j+ 1

2

,

where ωs are nonlinear weights. In the classic WENO-JS scheme, the nonlinear weights

are calculated by

ωJS
s =

αJS
s

2
∑

l=0

αJS
l

, αJS
s =

ds
(ǫ+ βs)2

, (2.5)

where ǫ is a small positive number introduced to prevent the denominator being zero

and it was taken to be 10−6 in the original WENO-JS scheme, and d0 = 0.1, d1 =
0.6, d2 = 0.3 are ideal weights of ωs satisfying

2
∑

s=0

dsu
s
j+ 1

2

= u
(

xj+ 1
2
, t
)

+O
(

∆x5
)

in smooth regions. The parameters βs named smoothness indicators are defined as

follows [23]:

β0 =
13

12

(

ūj−2 − 2ūj−1 + ūj
)2

+
1

4

(

ūj−2 − 4ūj−1 + 3ūj
)2
,

β1 =
13

12

(

ūj−1 − 2ūj + ūj+1

)2
+

1

4

(

ūj−1 − ūj+1

)2
,

β2 =
13

12

(

ūj − 2ūj+1 + ūj+2

)2
+

1

4

(

3ūj − 4ūj+1 + ūj+2

)2
.

In smooth regions without critical points, the classic WENO-JS scheme is able to

achieve fifth-order of accuracy. However, at critical points where the first derivative

vanishes but the third derivative does not simultaneously, it loses accuracy and its order

of accuracy decreases to third-order or even less. More details can be found in [20].
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2.3. WENO-M

In order to overcome the problem that the WENO-JS scheme loses accuracy at crit-

ical points, Henrick et al. [20] proposed the WENO-M scheme by constructing a map-

ping function of the nonlinear weights ω given by

(

gM
)

s
(ω) =

ω
(

ds + d2s − 3dsω + ω2
)

d2s + (1− 2ds)ω
, ω ∈ [0, 1]. (2.6)

Clearly, (gM)s(ω) is a monotonically increasing function in [0, 1] with finite slopes, and

it satisfies the following properties.

Lemma 2.1. The mapping function defined by Eq. (2.6) satisfies:

C1. 0 ≤ (gM)s(ω) ≤ 1, (gM)s(0) = 0, (gM)s(ds) = ds, (g
M)s(1) = 1;

C2. (gM)′s(ds) = (gM)′′s(ds) = 0.

By employing Eqs. (2.5)-(2.6), one can obtain the mapped weights as follows:

ωM
s =

αM
s

2
∑

l=0

αM
l

, αM
s = (gM)s(ω

JS
s ).

It has been analyzed and proved in detail in [20] that the WENO-M scheme is able

to achieve the optimal order of accuracy in smooth regions even near the first-order

critical point.

2.4. WENO-PM6

Feng et al. [11] found that the mapping operation of the WENO-M scheme will

cause the potential loss of accuracy near the discontinuities or the parts with sharp

gradients. To overcome this drawback, they add two requirements, that is, g′s(0) = 0
and g′s(1) = 0, to the original criteria (see Lemma 2.1) by Henrick et al. [20]. And then

a new mapping function is defined by the following piecewise polynomial function:

(

gPM
)

s
(ω) = C1(ω − ds)

k+1(ω + C2) + ds, k ≥ 2, (2.7)

where C1, C2 are constants with specified parameters k and ds, and they are calculated

by














C1 = (−1)k
k + 1

dk+1
s

, C2 =
ds

k + 1
, if 0 ≤ ω ≤ ds,

C1 = − k + 1

(1− ds)k+1
, C2 =

ds − (k + 2)

k + 1
, if ds < ω ≤ 1.

Lemma 2.2. The mapping function (gPM)s(ω) defined by Eq. (2.7) satisfies:
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C1. (gPM)′s(ω) ≥ 0, ω ∈ [0, 1];

C2. (gPM)s(0) = 0, (gPM)s(ds) = ds, (g
PM)s(1) = 1;

C3. (gPM)′s(ds) = · · · = (gPM)
(k)
s (ds) = 0;

C4. (gPM)′s(0) = (gPM)′s(1) = 0.

Similarly, by employing Eq. (2.5) and Eq. (2.7) where the parameter k is taken to

be 6 as recommended in [11], one can obtain the mapped weights of the WENO-PM6

scheme as follows:

ωPM6
s =

αPM6
s

2
∑

l=0

αPM6
l

, αPM6
s =

(

gPM6
)

s
(ωJS

s ).

It has been verified that the WENO-PM6 scheme is able to achieve the optimal order

of accuracy as the WENO-M scheme does at critical points. In addition, the resolution

of the WENO-PM6 scheme is significantly higher than the WENO-JS scheme and the

WENO-M scheme, especially for a long output time. One can see [11] for more details.

2.5. Time discretization

Following the method of lines (MOL) approach, the Partial Differential Equation

(PDE) Eq. (2.1) can be turned into an Ordinary Differential Equation (ODE) system of

the form
dūj(t)

dt
= L(uj), (2.8)

where

L(uj) := − 1

∆x

(

f̂

(

u−
j+ 1

2

, u+
j+ 1

2

)

− f̂

(

u−
j− 1

2

, u+
j− 1

2

))

.

Then, the WENO schemes can be applied to obtain L(uj).
In all the numerical experiments in this paper, the ODE system Eq. (2.8) is solved

using the following explicit, third-order, Strong Stability Preserving (SSP) Runge-Kutta

method [14,15,33]:

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)),

where u(1) and u(2) are the intermediate stages, un is the value of u at time level

tn = n∆t, and ∆t is the time step satisfying some proper CFL condition.
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3. The new mapped WENO scheme

3.1. Design and properties of the approximate constant mapping function

3.1.1. The new mapping function

Let sgm(x, δ,A) denote the signum-like function, taking the form

sgm(x, δ,A) =











x

|x| , |x| ≥ δ,

x
(

A(δ2 − x2)
)k+3

+ |x|
, |x| < δ,

where k ∈ N
+, δ > 0 and δ → 0. The positive parameter A is a scale transformation

factor introduced to adjust the shape of the mapping function below. As mentioned

in [26], we can easily verify that sgm(x, δ,A) is monotone increasing.

Then we can construct a global monotonically increasing mapping function, de-

noted as (gACM)s(ω), by directly splicing two signum-like functions as

(

gACM
)

s
(ω) =















ds
2
sgm

(

ω − CFSs, δs, A
)

+
ds
2
, ω ≤ ds,

1− ds
2

sgm
(

ω − CFSs, δs, A
)

+
1 + ds

2
, ω > ds,

(3.1)

where the Control Factor of Smoothness CFSs is the same as that in [26] satisfying

CFSs ∈ (0, ds), and CFSs = 1 − (1− ds)/ds × CFSs with CFSs ∈ (ds, 1). In addition,

the splicing condition CFSs+ δs < ds < CFSs− δs and the requirements CFSs− δs > 0
and CFSs + δs < 1 need to be satisfied. Therefore, the value of the parameter δs is

limited by

δs < min

{

CFSs, ds −CFSs, (1− ds)
(

1− CFSs
ds

)

,
1− ds
ds

CFSs

}

.

The effects of parameters CFSs, k,A and δs on the mapping function (gACM)s(ω) will

be discussed in the following subsection.

Remark 3.1. The splicing condition CFSs + δs < ds < CFSs − δs is used to guarantee

(

gACM
)

s
(ds) = ds and

(

gACM
)′

s
(ds) = (gACM)′′s(ds) = · · · = 0.

Similarly, the requirements CFSs − δs > 0 and CFSs + δs < 1 are imposed to ensure

that (gACM)s(ω) satisfies the properties at the boundaries ω = 0 and ω = 1, that is,

(

gACM
)

s
(0) = (gACM)′s(0

+) =
(

gACM)′s(1
−
)

= 0 and (gACM)s(1) = 1.

As a summary, we state the trivial theorem without proof in the following.
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Theorem 3.1. With appropriate parameters CFSs, A and δs, the mapping function

(gACM)s(ω) defined by Eq. (3.1) satisfies the following properties:

C1. (gACM)s(0) = 0, (gACM)s(ds) = ds, (g
ACM)s(1) = 1;

C2. (gACM)′s(ω) ≥ 0, ω ∈ (0, 1);

C3. (gACM)′s(ds) = (gACM)′′s(ds) = · · · = 0;

C4. (gACM)′s(0
+) = (gACM)′s(1

−) = 0.

We can observe the properties in Theorem 3.1 intuitively from Fig. 1. Now, we give

the approximate-constant-mapped WENO scheme, denoted as WENO-ACM, with the

mapped weights

ωACM
s =

αACM
s

2
∑

l=0

αACM
l

, αACM
s =

(

gACM
)

s
(ωJS

s ). (3.2)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A = 30.0, CFS1 = 0.2, = 0.13 < , min = 0.133333

(a)

g(
)

 WENO-JS
 k = 1
 k = 2
 k = 3
 k = 5
 k = 10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

k = 2.0, CFS1 = 0.2, = 0.13 < , min = 0.133333

(b)

g(
)

 WENO-JS
 A = 30
 A = 25
 A = 20
 A = 15
 A = 10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

CFS1

min{ , min = 0.066667k = 2.0, A = 50, = 0.06 <

(c)

g(
)

 WENO-JS
 CFS1 = 0.1
 CFS1 = 0.15
 CFS1 = 0.2
 CFS1 = 0.25
 CFS1 = 0.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Figure 1: The new mapping function (gACM)1(ω), and effects of varying parameters k,A,CFS1 and δ1 for
d1 = 0.6.
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Remark 3.2. By submitting the nonlinear weights ωJS
s of the (2r − 1)-th order WENO-

JS scheme (in [4] and [13] the results of r = 2, . . . , 9 were given) into Eq. (3.2), the

above fifth-order WENO-ACM scheme can be easily extended to (2r− 1)-th order ones.

3.1.2. Parametric study

The curves of (gACM)s(ω) varying with ω and the effects of the parameters k,A,CFSs
and δs are shown in Fig. 1, taking the case of d1 = 0.6 as an example.

In Fig. 1, we can see the following properties:

(1) for given A,CFS1 and δ1, increasing k will widen the optimal weight interval

(standing for the interval about ω = ds over which the mapping process attempts

to use the corresponding optimal weight, see [26]), but narrow the transition

intervals (standing for the intervals about ω = CFSs or ω = CFSs over which the

mapping results satisfying 0 < g(ω) < ds or ds < g(ω) < 1 respectively);

(2) for given k,CFS1 and δ1, decreasing A will widen the optimal weight interval and

narrow the transition intervals;

(3) for given k,A and δ1, increasing CFS1 will narrow the optimal weight interval

and maintain the width of the transition intervals unchanged;

(4) for given k,A and CFS1, decreasing δ1 will widen the optimal weight interval and

narrow the transition intervals.

For smooth problems, a wider optimal weight interval will bring the scheme closer

to the corresponding linear upwind scheme leading to lower dissipation and higher

resolution, and it is apparent from the success of fifth-order WENO-IM(2, 0.1) scheme

[12] that widening the optimal weight interval results in better performance. However,

an excessive optimal weight interval may lead to possible over-amplification of the

contribution from a non-smooth stencil that creates a serious problem when a shock or

nonlinear interaction between two shocks, like in the blastwave problem [42], appears

in the solution. It would generate numerical oscillations, even produce negative density

and pressure, due to the mapping. This would be likely to happen in various mapped

WENO schemes as their mappings push the nonlinear weights over the optimal weight

intervals to be the ideal weights. Taking the WENO-ACM scheme as an example, its

mapping functions compress all the large and small weights ωs ∈ (CFSs+δs,CFSs−δs)
closer together toward the ideal weights with less numerical dissipation but higher

risk of generating numerical oscillations. It is easy to verify from Eq. (3.1) that the

maximum optimal weight interval of the mapping function (gACM)s(ω) is determined

by CFSs and we can also find this intuitively from Fig. 1. Therefore, in the WENO-

ACM scheme, an optimal CFSs should be desired that helps to obtain solutions with

less numerical dissipation leading to higher resolution and prevent the scheme from

generating numerical oscillations in the meantime. In other words, we can treat CFSs
as a tunable parameter: a larger CFSs makes the performance of the WENO-ACM
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scheme get closer to that of the WENO-M or even WENO-JS scheme, and a smaller

CFSs makes the performance of the WENO-ACM scheme get closer to that of the linear

upwind scheme. It is difficult and unsolved here yet to determine the optimal CFSs
theoretically, but after extensive numerical tests, we find that CFSs = ds/10 should be

a good choice. We will give a more detailed discussion about this through the blastwave

problem as shown in Example 4.8 in Subsection 4.2.

Clearly, the new mapping method uses only one assignment operation when ω is out

of the transition intervals. However, when ω is on the transition intervals, the new map-

ping method uses multiple multiplication and division as the existing mapped WENO

schemes (like the WENO-M and WENO-PM6 schemes) do in their mapping processes

on the whole interval of ω ∈ [0, 1]. Thus, narrower transition intervals will introduce

fewer mathematical operations during the mapping process of the WENO-ACM scheme

so that the CPU time will decrease significantly. Furthermore, our tests have shown

that narrower transition intervals will not bring any adverse effects on the resolution

and convergence rate of accuracy of the WENO-ACM scheme. Actually, the WENO-

ACM scheme still performs very well even if the transition intervals decrease to near

zero, and this will be verified in the calculation results of the numerical experiments in

Section 4.

3.2. The rate of convergence

Before giving Theorem 3.2 to show the convergence property of the WENO-ACM

scheme, we state the following two necessary lemmas explicitly that can be found in

the statement in [12, pp. 456-457] and [20, p. 565].

Lemma 3.1. The sufficient condition for the (2r − 1)-th order WENO scheme to achieve

the optimal order of accuracy is

ωs − ds = O
(

(∆x)r
)

, r = 2, . . . , 9, s = 0, . . . , r − 1.

Lemma 3.2. For ncp ≤ r − 1, the weights ωJS
s in the (2r − 1)-th order WENO-JS scheme

satisfy

ωJS
s − ds = O

(

(∆x)r−1−ncp
)

, r = 2, 3, . . . , 9,

then, the convergence order is

rc =

{

2r − 1, if ncp = 0,

2r − 2− ncp, if ncp = 1, 2, . . . , r − 1.

Theorem 3.2. For ncp < r− 1, the (2r− 1)-th order WENO-ACM scheme can achieve the

optimal convergence rate of accuracy if the new mapping function (gACM)s(ω) is applied

to weights of the (2r − 1)-th order WENO-JS scheme.

One can easily prove Theorem 3.2 by employing the Taylor series analysis and using

Theorem 3.1, Lemmas 3.1 and 3.2, and the detailed proof process is almost identical

to the one in [20].
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4. Numerical experiments

In this section, we compare the calculation results of the WENO-ACM scheme with

those of several typical WENO schemes, i.e., the classic WENO-JS scheme, the original

WENO-M scheme, and the WENO-PM6 scheme that generates less dissipation and bet-

ter resolution. The value of ǫ is chosen to be 10−40 in all considered schemes. Several

problems with different initial and boundary conditions are used for the comparison,

such as the one-dimensional linear advection equation, one- and two- dimensional

Euler equations of compressible gas dynamics. The one-dimensional linear advection

equation is computed for the accuracy test, and the numerical experiments of the Euler

equations are conducted to demonstrate the performance of the WENO-ACM scheme

in solving hyperbolic systems. Meanwhile, the computational costs of the WENO-JS,

WENO-M, WENO-PM6 and WENO-ACM schemes in simulating the benchmark prob-

lems of two-dimensional Euler equations are compared by the CPU timing per Runge-

Kutta step.

In all the numerical experiments below, the global Lax-Friedrichs numerical flux is

employed, and unless otherwise noted, the parameters in the WENO-ACM scheme are

chosen to be k = 2, A = 20, δs = 1.0e−6,CFSs = 0.1ds.

4.1. One-dimensional linear advection equation

Example 4.1. We solve the one-dimensional linear advection equation ut+ux = 0 with

the periodic boundary conditions and the following initial condition [12]:

u(x, 0) = sin(πx). (4.1)

The computational domain is x ∈ (−1; 1) and it is the same for the rest examples in this

subsection. It is noted that although the initial condition in Eq. (4.1) has two first-order

critical points, their first and third derivatives vanish simultaneously. To ensure that the

error for the overall scheme is a measure of the spatial convergence only, and note that

we consider only the fifth-order methods here, we set the CFL number to be (∆x)2/3.

The L1, L2, L∞ norms of the error are calculated by comparing the numerical solution

(uh)j with the exact solution uexactj according to

L1 = h ·
∑

j

∣

∣uexactj − (uh)j
∣

∣,

L2 =

√

h ·
∑

j

(

uexactj − (uh)j
)2
,

L∞ = max
j

∣

∣uexactj − (uh)j
∣

∣,

where h = ∆x is the uniform spatial step size.

Table 1 shows the L1, L2, L∞ errors and convergence orders of various considered

WENO schemes for Example 4.1 at output time t = 2.0. All the schemes can achieve
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Table 1: Convergence properties of various schemes as applied to Example 4.1 at output time t = 2 with
CFL = (∆x)2/3.

Scheme h = ∆x L1 error L1 order L2 error L2 order L∞ error L∞ order

WENO-JS 0.2 6.18328e-02 - 4.72306e-02 - 4.87580e-02 -

0.1 2.96529e-03 4.3821 2.42673e-03 4.2826 2.57899e-03 4.2408

0.05 9.27609e-05 4.9985 7.64332e-05 4.9887 9.05453e-05 4.8320

0.025 2.89265e-06 5.0031 2.33581e-06 5.0322 2.90709e-06 4.9610

0.0125 9.03392e-08 5.0009 7.19259e-08 5.0213 8.85753e-08 5.0365

0.00625 2.82330e-09 4.9999 2.23105e-09 5.0107 2.72458e-09 5.0228

WENO-M 0.2 2.01781e-02 - 1.55809e-02 - 1.47767e-02 -

0.1 5.18291e-04 5.2829 4.06148e-04 5.2616 3.94913e-04 5.2256

0.05 1.59422e-05 5.0228 1.25236e-05 5.0193 1.24993e-05 4.9816

0.025 4.98914e-07 4.9979 3.91875e-07 4.9981 3.91808e-07 4.9956

0.0125 1.56021e-08 4.9990 1.22541e-08 4.9991 1.22538e-08 4.9988

0.00625 4.88356e-10 4.9977 3.83568e-10 4.9976 3.83541e-10 4.9977

WENO-PM6 0.2 1.74869e-02 - 1.35606e-02 - 1.27577e-02 -

0.1 5.02923e-04 5.1198 3.95215e-04 5.1006 3.94515e-04 5.0151

0.05 1.59130e-05 4.9821 1.25010e-05 4.9825 1.24960e-05 4.9805

0.025 4.98858e-07 4.9954 3.91831e-07 4.9957 3.91795e-07 4.9952

0.0125 1.56020e-08 4.9988 1.22541e-08 4.9989 1.22538e-08 4.9988

0.00625 4.88355e-10 4.9977 3.83568e-10 4.9976 3.83543e-10 4.9977

WENO-ACM 0.2 1.52184e-02 - 1.19442e-02 - 1.17569e-02 -

0.1 5.02844e-04 4.9196 3.95138e-04 4.9178 3.94406e-04 4.8977

0.05 1.59130e-05 4.9818 1.25010e-05 4.9822 1.24960e-05 4.9801

0.025 4.98858e-07 4.9954 3.91831e-07 4.9957 3.91795e-07 4.9952

0.0125 1.56020e-08 4.9988 1.22541e-08 4.9989 1.22538e-08 4.9988

0.00625 4.88355e-10 4.9977 3.83568e-10 4.9976 3.83543e-10 4.9977

the optimal convergence orders. In terms of accuracy, the WENO-M, WENO-PM6 and

WENO-ACM schemes provide more accurate numerical solutions than the results of the

WENO-JS scheme in general. Besides, it is noted that, in terms of the L1-norm error,

the WENO-ACM scheme gives almost equally accurate numerical solutions as those of

the WENO-PM6 scheme which are more accurate than the numerical solutions of the

WENO-M scheme.

We use this example to test the efficiency of various WENO schemes. Here we also

consider the efficiency of the MWENO5 scheme [46], which is a fifth-order mapped

WENO scheme constructed by obeying the similar principles proposed by Henrick et

al. [20] and employing the ‘Type (i)’ mapping function proposed by Zhu et al. [46]

very recently. In Fig. 2, we draw the graphs for the CPU time versus the computing

errors (we only present the results of the L1− and L2− norm errors here just for the

sake of brevity in the presentation, hereinafter the same). Clearly, the scheme with the
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Figure 2: Comparison of various WENO schemes for Example 4.1 in CPU time and computing errors.

least CPU time to achieve the same errors would have the best efficiently. Therefore,

the lower line has higher efficiency. Then, from Fig. 2, we can easily observe that the

WENO-ACM scheme has the best efficiency. We also find that the MWENO5 scheme

performs almost identical to the WENO-M scheme, and they have the second best effi-

ciency, followed by the WENO-PM6 scheme. Unsurprisingly, the WENO-JS scheme has

the lowest efficiency.

Example 4.2. We solve the one-dimensional linear advection equation ut+ux = 0 with

the periodic boundary conditions and the following initial condition [20]:

u(x, 0) = sin

(

πx− sin(πx)

π

)

. (4.2)

As mentioned earlier, the CFL number is set to be (∆x)2/3. It is easy to verify that the

particular initial condition Eq. (4.2) has two first-order critical points, which both have

a non-vanishing third derivative.

The L1, L2, L∞ errors and convergence orders of various considered WENO schemes

at output time t = 2.0 are shown in Table 2. From Table 2, we can observe that the

WENO-M, WENO-PM6 and WENO-ACM schemes can retain the optimal orders even

in the presence of critical points. Moreover, in terms of accuracy, the WENO-ACM

scheme provides the equally accurate results as those of the WENO-M and WENO-PM6

schemes, which are much more accurate than the solutions of the WENO-JS scheme

whose L∞ convergence rate of accuracy drops by almost 2 orders leading to an overall

accuracy loss shown with L1 and L2 convergence orders.

We also use this example to test the efficiency of various WENO schemes and the

MWENO5 scheme [46] is taken into account once again. Fig. 3 shows that the WENO-

ACM scheme costs the least CPU time among all considered schemes, so it has the

best efficiency. Again, the MWENO5 scheme performs almost identical to the WENO-M

scheme, and they have the second best efficiency, followed by the WENO-PM6 scheme.

As excepted, the WENO-JS scheme has the lowest efficiency.
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Table 2: Convergence properties of various schemes as applied to Example 4.2 at output time t = 2 with
CFL = (∆x)2/3.

Scheme h = ∆x L1 error L1 order L2 error L2 order L∞ error L∞ order

WENO-JS 0.2 1.24488e-01 - 1.09463e-01 - 1.24471e-01 -

0.1 1.01260e-02 3.6199 8.72198e-03 3.6496 1.43499e-02 3.1167

0.05 7.22169e-04 3.8096 6.76133e-04 3.6893 1.09663e-03 3.7099

0.025 3.42286e-05 4.3991 3.63761e-05 4.2162 9.02485e-05 3.6030

0.0125 1.58510e-06 4.4326 2.29598e-06 3.9858 8.24022e-06 3.4531

0.00625 7.95517e-08 4.3165 1.68304e-07 3.7700 8.31702e-07 3.3085

WENO-M 0.2 7.53259e-02 - 6.39017e-02 - 7.49250e-02 -

0.1 3.70838e-03 4.3443 3.36224e-03 4.2484 5.43666e-03 3.7847

0.05 1.45082e-04 4.6758 1.39007e-04 4.5962 2.18799e-04 4.6350

0.025 4.80253e-06 4.9169 4.52646e-06 4.9406 6.81451e-06 5.0049

0.0125 1.52120e-07 4.9805 1.42463e-07 4.9897 2.14545e-07 4.9893

0.00625 4.77083e-09 4.9948 4.45822e-09 4.9980 6.71080e-09 4.9987

WENO-PM6 0.2 9.51313e-02 - 7.83600e-02 - 9.32356e-02 -

0.1 4.82173e-03 4.3023 4.29510e-03 4.1894 5.91037e-03 3.9796

0.05 1.55428e-04 4.9552 1.43841e-04 4.9001 2.09540e-04 4.8180

0.025 4.87327e-06 4.9952 4.54036e-06 4.9855 6.83270e-06 4.9386

0.0125 1.52750e-07 4.9956 1.42488e-07 4.9939 2.14532e-07 4.9932

0.00625 4.77729e-09 4.9988 4.45807e-09 4.9983 6.71079e-09 4.9986

WENO-ACM 0.2 8.75629e-02 - 6.98131e-02 - 7.91292e-02 -

0.1 4.39527e-03 4.3163 4.02909e-03 4.1150 5.89045e-03 3.7478

0.05 1.52219e-04 4.8517 1.42172e-04 4.8247 2.09893e-04 4.8107

0.025 4.86436e-06 4.9678 4.53770e-06 4.9695 6.83017e-06 4.9416

0.0125 1.52735e-07 4.9931 1.42486e-07 4.9931 2.14533e-07 4.9926

0.00625 4.77728e-09 4.9987 4.45807e-09 4.9983 6.71079e-09 4.9986

Example 4.3. We solve the one-dimensional linear advection equation ut+ux = 0 with

the following initial condition:

u(x, 0) =











































1

6

[

G(x, β, z − δ̂) + 4G(x, β, z) +G(x, β, z + δ̂)
]

, x ∈ [−0.8,−0.6],

1, x ∈ [−0.4,−0.2],

1−
∣

∣10(x− 0.1)
∣

∣, x ∈ [0.0, 0.2],

1

6

[

F (x, α, a − δ̂) + 4F (x, α, a) + F (x, α, a + δ̂)
]

, x ∈ [0.4, 0.6],

0, otherwise,

(4.3)

where

G(x, β, z) = e−β(x−z)2 , F (x, α, a) =
√

max
(

1− α2(x− a)2, 0
)

,
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Figure 3: Comparison of various WENO schemes for Example 4.2 in CPU time and computing errors.

and the constants are z = −0.7, δ̂ = 0.005, β = log 2/(36δ̂2), a = 0.5 and α = 10. The

periodic boundary conditions are used in the two directions and the CFL number is set

to be 0.1. This example is obtained from [23] and it consists of a Gaussian, a square

wave, a sharp triangle and a semi-ellipse.

Tables 3 and 4 show the L1, L2, L∞ errors and convergence orders of various con-

sidered WENO schemes at output times t = 2 and t = 2000. At output time t = 2, we

find: (1) for all schemes, the L1 and L2 orders are approximately 1.0 and 0.4 to 0.5,

respectively, and the L∞ orders are all negative; (2) in terms of accuracy, the WENO-

ACM scheme provides the most accurate results closely followed by the WENO-PM6

and WENO-M schemes, which are more accurate than that of the WENO-JS scheme.

At output time t = 2000, we find: (1) for the WENO-JS and WENO-M schemes, the L1,

L2 orders decrease to very small values and even become negative; (2) however, for

Table 3: Convergence properties of various schemes as applied to Example 4.3 at output time t = 2 with
CFL = 0.1.

Scheme h = ∆x L1 error L1 order L2 error L2 order L∞ error L∞ order

WENO-JS 0.01 6.30497e-02 - 1.08621e-01 - 4.09733e-01 -

0.005 2.81654e-02 1.2103 7.71111e-02 0.4943 4.19594e-01 -0.0343

0.0025 1.41364e-02 0.9945 5.69922e-02 0.4362 4.28463e-01 -0.0302

WENO-M 0.01 4.77201e-02 - 9.53073e-02 - 3.94243e-01 -

0.005 2.23407e-02 1.0949 6.91333e-02 0.4632 4.05856e-01 -0.0419

0.0025 1.11758e-02 0.9993 5.09232e-02 0.4411 4.16937e-01 -0.0389

WENO-PM6 0.01 4.66681e-02 - 9.45566e-02 - 3.96866e-01 -

0.005 2.13883e-02 1.1256 6.82948e-02 0.4694 4.06118e-01 -0.0332

0.0025 1.06477e-02 1.0063 5.03724e-02 0.4391 4.15277e-01 -0.0322

WENO-ACM 0.01 4.45059e-02 - 9.24356e-02 - 3.92505e-01 -

0.005 2.03633e-02 1.1280 6.69718e-02 0.4649 4.03456e-01 -0.0397

0.0025 1.02139e-02 0.9954 4.95672e-02 0.4342 4.13217e-01 -0.0345



18 R. Li and W. Zhong

Table 4: Convergence properties of various schemes as applied to Example 4.3 at output time t = 2000
with CFL = 0.1.

Scheme h = ∆x L1 error L1 order L2 error L2 order L∞ error L∞ order

WENO-JS 0.01 6.12899e-01 - 5.08726e-01 - 7.99265e-01 -

0.005 5.99215e-01 0.0326 5.01160e-01 0.0216 8.20493e-01 -0.0378

0.0025 5.50158e-01 0.1232 4.67585e-01 0.1000 8.14650e-01 0.0103

WENO-M 0.01 3.81597e-01 - 3.59205e-01 - 6.89414e-01 -

0.005 3.25323e-01 0.2302 3.12970e-01 0.1988 6.75473e-01 0.0295

0.0025 3.48528e-01 -0.0994 3.24373e-01 -0.0516 6.25645e-01 0.1106

WENO-PM6 0.01 2.17323e-01 - 2.28655e-01 - 5.63042e-01 -

0.005 1.05197e-01 1.0467 1.47518e-01 0.6323 5.04977e-01 0.1570

0.0025 4.47030e-02 1.2347 9.34250e-02 0.6590 4.71368e-01 0.0994

WENO-ACM 0.01 2.21313e-01 - 2.28433e-01 - 5.36234e-01 -

0.005 1.06583e-01 1.0541 1.46401e-01 0.6418 5.03925e-01 0.0897

0.0025 4.76305e-02 1.1620 9.40930e-02 0.6378 5.15924e-01 -0.0339

the WENO-ACM and WENO-PM6 schemes, their L1 orders are maintained at approxi-

mately 1.0, and their L2 orders increase to approximately 0.6 to 0.7; (3) for all schemes,

the L∞ orders are very small and even become negative. Overall, for both short and

long output times, the WENO-ACM scheme performs as well as the WENO-PM6 scheme

in calculating this problem that includes various discontinuities.

We consider the cases of t = 20 and t = 200 respectively to test the efficiency of var-

ious considered WENO schemes for short and long output time calculations. Figs. 4 and

5 show that the WENO-ACM scheme uses less CPU time than all the other considered

WENO schemes to get the same quantities of computing errors for both short and long

output times, so it is the most efficient one of all considered WENO schemes on solv-

ing this one-dimensional linear advection problem with the initial condition including

discontinuities.
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Figure 4: Comparison of various WENO schemes for Example 4.3 with output time t = 20 in CPU time
and computing errors.
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Figure 5: Comparison of various WENO schemes for Example 4.3 with output time t = 200 in CPU time
and computing errors.

Example 4.4. We solve the one-dimensional linear advection equation ut+ux = 0 with

the periodic boundary conditions and the following initial condition [11]:

u(x, 0) = sin9(πx). (4.4)

Again, the CFL number is set to be (∆x)2/3. It is easy to verify that the initial condition

in Eq. (4.4) has high-order critical points.

Table 5 shows the L1, L2, L∞ errors of various considered WENO schemes at several

output times with a uniform mesh size of ∆x = 1/100. Clearly, at short output times,

the WENO-ACM scheme achieves similar results as those of the WENO-M and WENO-

PM6 schemes. However, at long output times, the numerical solutions computed by

the WENO-M scheme are far less accurate than that of the WENO-PM6 scheme, while

the solutions of the WENO-ACM scheme are still as accurate as results of the WENO-

PM6 scheme. Another observation is that the WENO-M, WENO-PM6 and WENO-ACM

schemes all provide more accurate numerical solutions than the WENO-JS scheme.

Fig. 6 shows the performance of the WENO-JS, WENO-M, WENO-PM6 and WENO-

ACM schemes at output time t = 1000 with a uniform mesh size of ∆x = 1/100. Clearly

the WENO-ACM and WENO-PM6 schemes give the highest resolution followed by the

WENO-M scheme whose resolution decreases significantly, and the WENO-JS scheme

shows the lowest resolution.

We consider the cases of t = 10 and t = 100 respectively to test the efficiency of var-

ious considered WENO schemes for short and long output time calculations. Figs. 7 and

8 show that the WENO-ACM scheme consumes the least CPU time among all consid-

ered WENO schemes to obtain the same quantities of computing errors for both short

and long output times, so it is the most efficient one of all considered WENO schemes

on solving this one-dimensional linear advection problem with the initial condition in-

cluding high-order critical points.
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Figure 6: Performance of the WENO-JS, WENO-M, WENO-PM6 andWENO-ACM schemes for Example 4.4
at output time t = 1000 with a uniform mesh size of ∆x = 1/100.
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Figure 7: Comparison of various WENO schemes for Example 4.4 with output time t = 10 in CPU time
and computing errors.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

-6

-5

-4

-3

-2

-1

Lo
g1

0(
L 1

 e
rro

r)

Log10(CPU time/s)

 WENO-JS
 WENO-M
 WENO-PM6
 WENO-ACM

1.0 1.5 2.0 2.5 3.0 3.5 4.0

-6

-5

-4

-3

-2

-1

Lo
g1

0(
L 2

 e
rro

r)

Log10(CPU time/s)

 WENO-JS
 WENO-M
 WENO-PM6
 WENO-ACM

Figure 8: Comparison of various WENO schemes for Example 4.4 with output time t = 100 in CPU time
and computing errors.
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Table 5: The L1, L2, L∞ errors of various schemes as applied to Example 4.4 at several output times with
∆x = 1/100,CFL = (∆x)2/3.

Time
WENO-JS WENO-M

L1 error L2 error L∞ error L1 error L2 error L∞ error

t = 1 3.87826e-05 3.62689e-05 6.69118e-05 8.84565e-06 8.31248e-06 1.38461e-05

t = 10 3.86931e-04 3.52611e-04 5.36940e-04 8.90890e-05 8.32089e-05 1.38348e-04

t = 30 1.17988e-03 1.06511e-03 1.58134e-03 2.73430e-04 2.51737e-04 4.13887e-04

t = 50 2.05488e-03 1.84782e-03 2.69500e-03 4.81901e-04 4.39983e-04 6.87879e-04

t = 100 5.42288e-03 5.17716e-03 1.20056e-02 1.29154e-03 1.28740e-03 3.32665e-03

t = 200 2.35657e-02 2.68753e-02 6.47820e-02 5.74021e-03 7.66721e-03 2.37125e-02

t = 500 1.55650e-01 1.46859e-01 2.57663e-01 4.89290e-02 6.23842e-02 1.78294e-01

t = 1000 2.91359e-01 2.66692e-01 4.44664e-01 1.34933e-01 1.46524e-01 3.17199e-01

Time
WENO-PM6 WENO-ACM

L1 error L2 error L∞ error L1 error L2 error L∞ error

t = 1 8.52448e-06 8.22944e-06 1.38389e-05 8.43356e-06 8.20366e-06 1.38389e-05

t = 10 8.40259e-05 8.19676e-05 1.38205e-04 8.42873e-05 8.19107e-05 1.38205e-04

t = 30 2.51117e-04 2.45084e-04 4.13397e-04 2.52378e-04 2.45090e-04 4.13398e-04

t = 50 4.17588e-04 4.07311e-04 6.86969e-04 4.19825e-04 4.07429e-04 6.86983e-04

t = 100 8.30374e-04 8.09152e-04 1.36410e-03 8.35747e-04 8.09679e-04 1.36404e-03

t = 200 1.63963e-03 1.59697e-03 2.68938e-03 1.65557e-03 1.59929e-03 2.68955e-03

t = 500 3.88864e-03 3.83159e-03 6.45650e-03 3.95849e-03 3.84802e-03 6.45564e-03

t = 1000 7.17606e-03 7.19008e-03 1.21637e-02 7.24723e-03 7.21626e-03 1.21593e-02

4.2. One-dimensional Euler system

In this subsection, we calculate the one-dimensional Euler system of gas dynamics

with different initial and boundary conditions. The one-dimensional Euler system is

given by the following strong conservation form of mass, momentum and energy:

∂ρ

∂t
+

∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
= 0,

∂E

∂t
+

∂(uE + up)

∂x
= 0,

(4.5)

where ρ, u, p and E are the density, velocity, pressure and total energy, respectively.

The Euler system Eq. (4.5) is closed by the equation of state for an ideal polytropic gas,

which is given by

p = (γ − 1)

(

E − 1

2
ρu2
)

,
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where γ is the ratio of specific heat, and we use γ = 1.4 in this paper. The finite volume

version of the characteristic-wise one-dimensional WENO procedure is employed, and

we refer to [43] for details. In all examples of this subsection, the CFL number is set to

be 0.5.

Example 4.5 (Sod’s shock tube problem). We consider the Sod’s shock tube problem

[35], specified by the following initial condition:

(ρ, u, p)(x, 0) =

{

(1.0, 0.0, 1.0), x ∈ [0.0, 0.5],

(0.125, 0.0, 0.1), x ∈ [0.5, 1.0].

The transmissive boundary conditions are used in two directions.

Fig. 9 presents the density profiles computed by the WENO-JS, WENO-M, WENO-

PM6 and WENO-ACM schemes at output time t = 0.25 with a uniform mesh size of N =
200. We observe that the WENO-M, WENO-PM6 and WENO-ACM schemes capture

sharper discontinuity compared to the WENO-JS scheme, and the WENO-ACM scheme

gives slightly better resolution than the WENO-PM6 and WENO-M schemes.

Example 4.6 (Riemann problem of Lax). The second considered problem modeled by

the one-dimensional Euler system Eq. (4.5) is the Lax’s problem [24], specified by the

following initial condition:

(

ρ, u, p
)

(x, 0) =

{

(0.445, 0.698, 3.528), x ∈ [−5, 0],

(0.500, 0.000, 0.571), x ∈ [0, 5].

The transmissive boundary conditions are used at x = ±5, and the uniform cell number

is chosen to be N = 200.

Fig. 10 presents the density profiles computed by the WENO-JS, WENO-M, WENO-

PM6 and WENO-ACM schemes at output time t = 1.3. It is observed that the WENO-

M, WENO-PM6 and WENO-ACM schemes have higher resolution than the WENO-JS
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Figure 9: The density profiles of the Sod’s shock tube problem.
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Figure 10: The density profiles of the Riemann problem of Lax.

scheme near the discontinuity. Also, if we take a closer look at x ∈ (1.8, 3.3), it demon-

strates that the WENO-ACM scheme performs slightly better than the WENO-PM6 and

WENO-M schemes.

Example 4.7 (Mach 3 shock-density wave interaction). We solve the Mach 3 shock-

density wave interaction [34], whose solution consists of several shocklets and fine-

scale structures that are located behind a main right-going shock [5]. Its boundaries at

x = ±5 are specified by zero-gradient boundary condition, and its initial condition is

given by

(ρ, u, p)(x, 0) =

{

(3.857143, 2.629369, 10.333333), x ∈ [−5.0,−4.0],

(1.0 + 0.2 sin(5x), 0, 1), x ∈ [−4.0, 5.0].

Fig. 11 gives the comparison on density between the WENO-JS, WENO-M, WENO-

PM6 and WENO-ACM schemes at output time t = 1.8 with the uniform cell num-
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Figure 11: The density profiles of the Mach 3 shock-density wave interaction.
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ber N = 300. The solid line is the reference solution using the WENO-JS scheme

with N = 10000. The WENO-M, WENO-PM6 and WENO-ACM schemes capture much

more fine-scale structures of the solution than the WENO-JS scheme. Furthermore,

the WENO-ACM scheme shows the best description near shocklets and high-frequency

waves behind the main shock.

Example 4.8 (Woodward-Colella interacting blastwaves). We solve the standard test

problem first used by Woodward and Colella [42]. The reflective boundary conditions

are used at x = 0, 1, and the initial condition is set to be

(ρ, u, p)(x, 0) =











(1, 0, 1000), x ∈ [0, 0.1),

(1, 0, 0.01), x ∈ [0.1, 0.9),

(1, 0, 100), x ∈ [0.9, 1.0].

In order to test the robustness of the WENO-ACM scheme as discussed in Subsec-

tion 3.1.2, we test this blastwave problem by using the WENO-ACM scheme with more

different CFSs, that is, CFSs = 0.001ds, 0.01ds, 0.095ds, 0.099ds, 0.0999ds, 0.1ds, 0.3ds,
0.5ds, 0.7ds, 0.9ds, as well as the considered WENO schemes used in previous exam-

ples. Fig. 12 shows the density profiles at output time t = 0.038 with the uniform cell

number N = 400. The reference solution is calculated by using the WENO-JS scheme

with N = 10000.

As expected, when CFSs gets too small, like CFSs < 0.1ds, the solutions have

blown-up. In other words, the effect of the parameter CFSs in the WENO-ACM scheme

for solving time-dependent PDEs, especially for the robustness of the WENO-ACM

scheme, is nonnegligible. In addition, for the computing cases when CFSs ≥ 0.1ds,
the solutions have not blown-up. From Fig. 12, we can see these phenomena very clear

that: (1) when CFSs gets larger and CFSs ≥ 0.1ds, the WENO-ACM scheme gives so-

lution with more numerical dissipation and lower resolution; (2) when CFSs = 0.3ds,
the WENO-ACM scheme gives solution close to that of the WENO-PM6 scheme whose

solution is comparable with that of the WENO-M scheme; (3) when CFSs = 0.5ds, the

WENO-ACM scheme gives solution close to that of the WENO-JS scheme; (4) when

CFSs = 0.7ds, 0.9ds, the WENO-ACM scheme gives solutions with lower resolution

than that of the WENO-JS scheme whose solution shows lowest resolution among

those of the WENO-JS, WENO-M and WENO-PM6 schemes; (5) when CFSs = 0.1ds,
the WENO-ACM scheme gives solution with the highest resolution among those of all

considered schemes, while the solutions blow up when CFSs < 0.1ds.

4.3. Two-dimensional Euler system

In this subsection, we calculate the two-dimensional Euler system of gas dynamics

with different initial and boundary conditions. The two-dimensional Euler system is

given by the following strong conservation form of mass, momentum and energy:

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0, (4.6a)
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Figure 12: The density profiles of the Woodward-Colella interacting blastwaves.

∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
+

∂(ρuv)

∂y
= 0, (4.6b)

∂(ρv)

∂t
+

∂(ρvu)

∂x
+

∂(ρv2 + p)

∂y
= 0, (4.6c)

∂E

∂t
+

∂(uE + up)

∂x
+

∂(vE + vp)

∂y
= 0, (4.6d)

where v represents the velocity component in the y-direction, and the other variables

are the same as in Eq. (4.5). The equation of state for an ideal polytropic gas used to

close the two-dimensional Euler system Eq. (4.6) is given by

p = (γ − 1)

(

E − 1

2
ρ(u2 + v2)

)

.

In all numerical examples of this subsection, the CFL number is set to be 0.5.

Example 4.9 (Shock-vortex interaction). In the shock-vortex interaction problem [7,

28, 30], a left-moving shock wave interacts with a right-moving vortex. The initial
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condition is set over the computational domain [0, 1] × [0, 1] by

(ρ, u, v, p)(x, y, 0) =

{

(ρL, uL, vL, pL), x < 0.5,

(ρR, uR, vR, pR), x ≥ 0.5,

where the left state is taken as (ρL, uL, vL, pL) = (1,
√
γ, 0, 1), and the right state is

given as

pR = 1.3, ρR = ρL

(

γ − 1 + (γ + 1)pR
γ + 1 + (γ − 1)pR

)

,

uR = uL

(

1− pR
√

γ − 1 + pR(γ + 1)

)

, vR = 0.

A vortex given by perturbations (δρ, δu, δv, δp) is superimposed onto the state when

x < 0.5, and the perturbations are defined by

δρ =
ρ2L

(γ − 1)pL
δT, δu = ǫ

y − yc
rc

eα(1−r2),

δv = −ǫ
x− xc
rc

eα(1−r2), δp =
γρ2L

(γ − 1)ρL
δT,

where ǫ = 0.3, rc = 0.05, α = 0.204, xc = 0.25, yc = 0.5 and

r =

√

1

r2c

(

(x− xc)2 + (y − yc)2
)

, δT = −γ − 1

4αγ
ǫ2e2α(1−r2).

We discretize the computational domain with a uniform mesh size of 400×400. The

transmissive boundary conditions are used and the output time is taken as t = 0.35.

The initial and final positions of the shock and vortex in density profile, computed

using the WENO-ACM scheme, have been shown in Fig. 13. We can easily observe that

the WENO-ACM scheme performs very well in capturing the complex structure of the

shock and vortex after the interaction. In Fig. 14, we have presented the cross-sectional

slices of density profile along the plane y = 0.5, computed by the WENO-JS, WENO-

M, WENO-PM6 and WENO-ACM schemes at output time t = 0.35. The reference

solution is obtained using the WENO-JS scheme with a uniform mesh size of 1000 ×
1000. As shown in the zoomed-in plots around the shock, the WENO-ACM scheme

resolves the shock in a non-oscillatory manner and provides a better resolution than

the other considered schemes. The WENO-PM6 and WENO-M schemes perform better

than the WENO-JS scheme, while the WENO-PM6 scheme performs slightly better than

the WENO-M scheme.

Example 4.10 (Explosion problem). We solve the explosion problem [36] modeled by

the two-dimensional Euler equations (4.6) on the square domain [−1, 1]× [−1, 1] in the
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Figure 13: Density plots for the shock-vortex interaction problem using 30 contour lines with range from
0.9 to 1.4, computed using the WENO-ACM scheme at output time t = 0.35 with a uniform mesh size of
400× 400. (left: initial density, right: final density).
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Figure 14: The cross-sectional slices of density plot along the plane y = 0.5, computed using the WENO-JS,
WENO-M, WENO-PM6 and WENO-ACM schemes at output time t = 0.35 with a uniform mesh size of
400× 400.
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Figure 15: Density plots for the explosion problem with range from 0.125 to 1.0, computed using the
WENO-ACM scheme at output time t = 0.25 with a uniform mesh size of 400× 400. (left: initial density,
right: final density).

x− y plane. It involves two constant states of flow variables separated with a circle of

radius R = 0.4 centered at (0, 0). The initial condition is given as

(ρ, u, v, p)(x, y, 0) =

{

(1, 0, 0, 1), if
√

x2 + y2 < 0.4,

(0.125, 0, 0, 0.1), otherwise.

Transmissive boundary conditions are used on all boundaries. The computational do-

main is discretized with a uniform mesh size of 400 × 400 and the final time is chosen

to be t = 0.25.

The density contours of the initial and final states, computed using the WENO-ACM

scheme, have been shown in Fig. 15. The WENO-ACM scheme is able to capture the

structure of the explosion problem. In Fig. 16, we have presented the cross-sectional

slices of density profile along the plane y = 0.0, calculated by the WENO-JS, WENO-

M, WENO-PM6 and WENO-ACM schemes. The reference solution is obtained using

the WENO-JS scheme with a uniform mesh size of 1000 × 1000. We can observe that

the WENO-M, WENO-PM6 and WENO-ACM schemes provide significantly better res-

olutions than the WENO-JS scheme. In Fig. 16(b) and (d), at x ∈ (−0.15, 0.15) and

x ∈ (0.8, 0.82), the WENO-ACM scheme presents a higher resolution than the WENO-

PM6 and WENO-M schemes whose resolutions are comparable. In Fig. 16(c), the

WENO-ACM scheme gives better resolution at x ∈ (0.38, 0.62) than the WENO-PM6

scheme which performs slightly better than the WENO-M scheme.

Example 4.11 (2D Riemann problem). The calculation of the 2D Riemann problem

[31,32] is done over a unit square domain [0, 1]× [0, 1], initially involving the constant

states of flow variables over each quadrant which is got by dividing the computational

domain using lines x = x0 and y = y0. There are many different configurations for the

2D Riemann problem [31]. In this example, the configuration is taken from [25, 31]
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Figure 16: The cross-sectional slices of density plot along the plane y = 0.0, computed using the WENO-JS,
WENO-M, WENO-PM6 and WENO-ACM schemes at output time t = 0.25 with a uniform mesh size of
400× 400.

with the following initial data

(ρ, u, v, p)(x, y, 0) =























(1.0, 0.0,−0.3, 1.0), 0.5 ≤ x ≤ 1.0, 0.5 ≤ y ≤ 1.0,

(2.0, 0.0, 0.3, 1.0), 0.0 ≤ x ≤ 0.5, 0.5 ≤ y ≤ 1.0,

(1.0625, 0.0, 0.8145, 0.4), 0.0 ≤ x ≤ 0.5, 0.0 ≤ y ≤ 0.5,

(0.5313, 0.0, 0.4276, 0.4), 0.5 ≤ x ≤ 1.0, 0.0 ≤ y ≤ 0.5.

The transmission boundary conditions are used on all boundaries, and the numerical

solutions are calculated using considered WENO schemes at output time t = 0.3 with a

mesh size of 1200 × 1200.

In Fig. 17, we have shown the numerical results of density obtained using the

WENO-JS, WENO-M, WENO-PM6 and WENO-ACM schemes. All considered schemes

can capture the main structure of the solution. However, this example is commonly

focused on the description of instability of the slip line [25,29], and we have displayed

the close-up view of this instability in Fig. 18. We can observe that the WENO-JS and

WENO-M schemes failed to resolve the instability of the slip line under current spa-
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Figure 17: Density plots for the 2D Riemann problem using 30 contour lines with range from 0.5 to 2.4,
computed using the WENO-JS, WENO-M, WENO-PM6, WENO-ACM schemes at output time t = 0.3
with a uniform mesh size of 1200 × 1200.

tial resolution, while both the WENO-PM6 and WENO-ACM schemes have evidently

resolved this instability. The unstable physical structures in the solution of the WENO-

ACM scheme appear to have larger length scale and bigger wave numbers when com-

pared with WENO-PM6.

Example 4.12 (Double Mach reflection, DMR). Now we apply the considered WENO

schemes to the two-dimensional double Mach reflection problem [42]. This problem is

an important test where a vertical shock wave moves horizontally into a wedge that is

inclined by some angle. The computational domain of this problem is [0, 4]× [0, 1] and

the initial condition is given by

(ρ, u, v, p)(x, y, 0) =











(

8.0, 8.25 cos
π

6
,−8.25 sin

π

6
, 116.5

)

, x < x0 +
y√
3
,

(1.4, 0.0, 0.0, 1.0), x ≥ x0 +
y√
3
,

where x0 = 1/6. The left boundary condition is inflow, with the post-shock values
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Figure 18: The zoomed-in density plots for the 2D Riemann problem, computed using the WENO-JS,
WENO-M, WENO-PM6, WENO-ACM schemes at output time t = 0.3 with a uniform mesh size of 1200×
1200.

as stated above, and the outflow boundary condition is used on the right boundary.

On the bottom boundary, the reflective boundary condition is applied to the interval

[x0, 4], while at (0, x0), the post-shock values are imposed. The boundary condition on

the upper boundary is implemented as follows:

(ρ, u, v, p)(x, 1, t) =







(

8.0, 8.25 cos
π

6
,−8.25 sin

π

6
, 116.5

)

, x ∈ [0, s(t)),

(1.4, 0.0, 0.0, 1.0), x ∈ [s(t), 4],

where s(t) is the position of the shock wave at time t on the upper boundary and given

by s(t) = x0+(1 + 20t)/
√
3. The computational domain [0, 3]× [0, 1] is discretized with

a uniform mesh size of 2000 × 500 and the output time is chosen to be t = 0.2.

In Fig. 19, we have shown the numerical results of density obtained using the

WENO-JS, WENO-M, WENO-PM6 and WENO-ACM schemes. Further, in Fig. 20, we

have displayed the close-up view of the region around the double Mach stems to ob-

serve more clearly the numerical solutions of all considered WENO schemes. In gen-

eral, the global structure of the solution is very similar for different schemes, and all

schemes are able to capture the companion structures behind the lower half of the

right-moving reflection shock. However, the dissipation of the various schemes can be

distinguished by the number and size of the small vortices generated along the slip

lines. We can clearly see that the WENO-ACM and WENO-PM6 schemes capture more

in number and bigger in size of the small vortices along the slip lines than the WENO-M

and WENO-JS schemes, and it indicates that the resolving ability of the WENO-ACM

and WENO-PM6 schemes is better than the other ones. In the solution of the WENO-JS

scheme, the vortex rolled up near the slip lines is significantly dissipated due to the ex-

cessive numerical dissipation. It should be noted that all considered schemes suffered

from the post shock oscillations in this test. The post shock oscillation seems slight in



32 R. Li and W. Zhong

Figure 19: Density plots for the DMR problem using 30 contour lines with range from 1.4 to 25, computed
using the WENO-JS, WENO-M, WENO-PM6 and WENO-ACM schemes at output time t = 0.2 with
a uniform mesh size of 2000× 500.
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Figure 20: The zoomed-in density plots for the DMR problem, computed using the WENO-JS, WENO-M,
WENO-PM6 and WENO-ACM schemes at output time t = 0.2 with a uniform mesh size of 2000 × 500.

the solution of the WENO-JS schemes and it becomes more serious in the solution of

the WENO-M scheme. Furthermore, it gets much more serious in the solutions of both

the WENO-PM6 and WENO-ACM schemes. As mentioned in [44], these oscillations do

not affect the “ENO (essentially non-oscillatory)” property of WENO schemes, but they

are indeed responsible for the numerical residue to hang at the truncation error level

of the scheme. As it is not the key point we are concerned about here, we refer to [44]

for more details, in which Zhang et al. proposed a systematic analysis and detailed

discussion about this issue.

Example 4.13 (Forward facing step problem, FFS). This model problem was first pre-

sented by Woodward and Colella [42]. Recently, important details such as the physical

instability and roll-up of the vortex sheet that emanates from the Mach stem have been

successfully captured by various high order schemes [2, 3, 8, 10, 45]. Our purpose is

to prove that the WENO-ACM scheme is also able to successfully capture the roll-up of

the vortex sheet and perform robustly on this severely stringent problem.
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The setup of the problem is as follows. There is a step with a height of 0.2 length

units located 0.6 length units from the left-hand end of a wind tunnel, which is 1
length unit wide and 3 length units long. The computational domain of this problem is

Ω = [0, 0.6] × [0, 1] ∪ [0.6, 3] × [0.2, 1] and the flow is initialized by

(ρ, u, v, p)(x, y, 0) = (1.4, 3.0, 0.0, 1.0), (x, y) ∈ Ω.

Reflective boundary conditions are used along the walls of the wind tunnel and the

step, and inflow and outflow conditions are used at the entrance and the exit of the

wind tunnel respectively. In order to handle the singularity at the left top corner of

the step, the same technique used in [42] is employed. The computational domain is

discretized with uniform mesh sizes of 900 × 300 and 1200 × 400, and the output time

is chosen to be t = 4.

The density contours obtained by all considered schemes are shown in Figs. 21 and

22 for different computing mesh cells. We can observe that these considered schemes

capture all the shocks properly with sharp profiles. From Fig. 21, we find that on

the uniform mesh size of 900 × 300, the roll-up of the vortex sheet is clearly visible

when the WENO-ACM scheme is used, while not observed in solutions of the other

three considered WENO schemes. From Fig. 22, we can see that with an increase of

the mesh size from 900 × 300 to 1200 × 400, the roll-up of the vortex sheet becomes

clearly visible when the WENO-PM6 scheme is used, while it is not particularly clear

for the WENO-M scheme and still invisible for the WENO-JS scheme. Moreover, the

roll-up of the vortex sheet is observed more evidently and maintains the most intensely

when the WENO-ACM scheme is used. These demonstrate the advantage of the WENO-

ACM scheme that has less dissipation and better resolution in capturing details of the

complicated flow structures. Again, we can see the post shock oscillations in solutions

of all considered schemes as mentioned in the DMR example above. And very similar

phenomenon is observed.

4.4. Computational cost comparison for 2D Euler problems

In this subsection, we compare the computational costs of the WENO-ACM scheme

with the WENO-JS, WENO-M and WENO-PM6 schemes. The numerical experiments

of the two-dimensional Euler system simulated earlier, that is, Example 4.9 to Exam-

ple 4.13 in Subsection 4.3, are taken as the test objects. These examples are tested

with all conditions the same as in Subsection 4.3. In addition, we also test each ex-

ample with a different mesh size respectively. An in-house code developed in C++

is employed, running in serial mode under Windows system, and the CPU is Intel(R)

Core(TM) i9-9880H. In order to rule out the effect of other operations such as the

boundary treatment, initialization, etc., as applied in reference [5], the CPU timing

per Runge-Kutta step is considered here. And to mitigate the influence of randomness,

each test is repeated three times under the same condition.
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Figure 21: Density plots for the forward facing step problem using 50 density contour lines with range from
0.32 to 6.5, computed using the WENO-JS, WENO-M, WENO-PM6 and WENO-ACM schemes at output
time t = 4.0 with a uniform mesh size of 900 × 300.
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Figure 22: Density plots for the forward facing step problem using 50 density contour lines with range from
0.32 to 6.5, computed using the WENO-JS, WENO-M, WENO-PM6 and WENO-ACM schemes at output
time t = 4.0 with a uniform mesh size of 1200 × 400.
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Let T (X) denote the cost (the CPU time that a Runge-Kutta step consumes) of the

WENO-X scheme and P (X) denote the extra cost brought by the mapping process of

the WENO-X scheme compared to the WENO-JS scheme, that is,

P (X) =
T (X)− T (JS)

T (JS)
× 100%.

In Table 6 to Table 10, we have given T (X) of all considered schemes and P (X)
(in brackets) of the WENO-M, WENO-PM6 and WENO-ACM schemes for Example 4.9

to Example 4.13, respectively. In order to measure the reduced cost of the mapping

process of the WENO-ACM scheme compared to those of the WENO-M and WENO-

PM6 schemes, in the last two columns of each table, we have shown these reduced costs

in percentages computed by

χM =
P (M)− P (ACM)

P (M)
=

T (M)− T (ACM)

T (M)− T (JS)
,

Table 6: CPU time (in seconds) and the extra computational cost compared to the WENO-JS scheme (in
percentage) per Runge-Kutta step of Example 4.9 as computed by considered WENO schemes.

Grid size Test WENO-JS WENO-M WENO-PM6 WENO-ACM
Saved

χM χPM6

200 × 200 Test 1 0.219 0.281(28.31%) 0.359(63.93%) 0.229(4.57%) 83.87% 92.86%

Test 2 0.226 0.282(24.78%) 0.361(59.73%) 0.234(3.54%) 85.71% 94.07%

Test 3 0.218 0.274(25.69%) 0.345(58.26%) 0.228(4.59%) 82.14% 92.13%

Average 0.221 0.279(26.24%) 0.355(60.63%) 0.230(4.22%) 83.91% 93.03%

400 × 400 Test 1 0.890 1.118(25.62%) 1.415(58.99%) 0.921(3.48%) 86.40% 94.10%

Test 2 0.875 1.124(28.46%) 1.399(59.89%) 0.906(3.54%) 87.55% 94.08%

Test 3 0.885 1.115(25.99%) 1.410(59.32%) 0.924(4.41%) 83.04% 92.57%

Average 0.883 1.119(26.68%) 1.408(59.40%) 0.917(3.81%) 85.71% 93.58%

Table 7: CPU time (in seconds) and the extra computational cost compared to the WENO-JS scheme (in
percentage) per Runge-Kutta step of Example 4.10 as computed by considered WENO schemes.

Grid size Test WENO-JS WENO-M WENO-PM6 WENO-ACM
Saved

χM χPM6

200 × 200 Test 1 0.207 0.258(24.64%) 0.321(55.07%) 0.213(2.90%) 88.24% 94.74%

Test 2 0.204 0.263(28.92%) 0.328(60.78%) 0.215(5.39%) 81.36% 91.13%

Test 3 0.210 0.268(27.62%) 0.343(63.33%) 0.218(3.81%) 86.21% 93.98%

Average 0.207 0.263(27.05%) 0.331(59.74%) 0.215(4.03%) 85.12% 93.26%

400 × 400 Test 1 0.794 0.987(24.31%) 1.219(53.53%) 0.807(1.64%) 93.26% 96.94%

Test 2 0.782 0.982(25.58%) 1.232(57.54%) 0.811(3.71%) 85.50% 93.56%

Test 3 0.788 0.998(26.65%) 1.211(53.68%) 0.814(3.30%) 87.62% 93.85%

Average 0.788 0.898(25.51%) 1.221(54.91%) 0.811(2.88%) 88.72% 94.76%
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Table 8: CPU time (in seconds) and the extra computational cost compared to the WENO-JS scheme (in
percentage) per Runge-Kutta step of Example 4.11 as computed by considered WENO schemes.

Grid size Test WENO-JS WENO-M WENO-PM6 WENO-ACM
Saved

χM χPM6

600 × 600 Test 1 1.852 2.414(30.35%) 2.917(57.51%) 1.884(1.73%) 94.31% 97.00%

Test 2 1.843 2.319(25.83%) 2.905(57.62%) 1.900(3.09%) 88.03% 94.63%

Test 3 1.861 2.404(29.18%) 2.935(57.71%) 1.918(3.06%) 89.50% 94.69%

Average 1.852 2.379(28.46%) 2.919(57.61%) 1.900(2.63%) 90.77% 95.44%

1200 × 1200 Test 1 6.678 8.699(30.26%) 10.920(63.52%) 6.978(4.49%) 85.16% 92.93%

Test 2 6.749 8.694(28.82%) 10.943(62.14%) 6.882(1.97%) 93.16% 96.83%

Test 3 6.740 8.743(29.72%) 11.000(63.20%) 7.001(3.87%) 86.97% 93.87%

Average 6.722 8.712(29.60%) 10.954(62.95%) 6.954(3.44%) 88.37% 94.53%

and

χPM6 =
P (PM6)− P (ACM)

P (PM6)
=

T (PM6)− T (ACM)

T (PM6)− T (JS)
,

respectively.

From Table 6 to Table 10, we can easily observe that:

(1) for each example with different mesh sizes, the cost in the three tests has a certain

degree of fluctuation;

(2) on average, the extra costs compared to the WENO-JS scheme are higher than

24% for the WENO-M scheme, higher than 54% for the WENO-PM6 scheme, while

lower than 5% for the WENO-ACM scheme;

(3) the reduced costs of the WENO-ACM scheme are more than 83% and 93% com-

pared to the WENO-M scheme and the WENO-PM6 scheme, respectively.

Table 9: CPU time (in seconds) and the extra computational cost compared to the WENO-JS scheme (in
percentage) per Runge-Kutta step of Example 4.12 as computed by considered WENO schemes.

Grid size Test WENO-JS WENO-M WENO-PM6 WENO-ACM
Saved

χM χPM6

1000× 250 Test 1 1.132 1.462(29.15%) 1.794(58.48%) 1.178(4.06%) 86.06% 93.05%

Test 2 1.160 1.478(27.41%) 1.757(51.47%) 1.191(2.67%) 90.25% 94.81%

Test 3 1.156 1.469(27.08%) 1.765(52.68%) 1.186(2.60%) 90.42% 95.07%

Average 1.149 1.469(27.87%) 1.772(54.18%) 1.185(3.10%) 88.87% 94.27%

2000× 500 Test 1 4.299 5.610(30.50%) 6.749(56.99%) 4.462(3.79%) 87.57% 93.35%

Test 2 4.278 5.618(31.32%) 6.739(57.53%) 4.435(3.67%) 88.28% 93.62%

Test 3 4.307 5.648(31.14%) 6.766(57.09%) 4.502(4.53%) 85.46% 92.07%

Average 4.295 5.625(30.98%) 6.751(57.20%) 4.466(4.00%) 87.10% 93.01%
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Table 10: CPU time (in seconds) and the extra computational cost compared to the WENO-JS scheme (in
percentage) per Runge-Kutta step of Example 4.13 as computed by considered WENO schemes.

Grid size Test WENO-JS WENO-M WENO-PM6 WENO-ACM
Saved

χM χPM6

900× 300 Test 1 1.873 2.497(33.32%) 3.142(67.75%) 1.945(3.84%) 88.46% 94.33%

Test 2 1.880 2.502(33.09%) 3.124(66.17%) 1.926(2.45%) 92.60% 96.30%

Test 3 1.868 2.465(31.96%) 3.147(68.47%) 1.928(3.21%) 89.95% 95.31%

Average 1.874 2.488(32.79%) 3.138(67.46%) 1.933(3.17%) 90.34% 95.31%

1200 × 400 Test 1 3.221 4.308(33.75%) 5.372(66.78%) 3.360(4.32%) 87.21% 93.54%

Test 2 3.238 4.359(34.62%) 5.498(69.80%) 3.393(4.79%) 86.17% 93.14%

Test 3 3.230 4.288(32.76%) 5.423(67.89%) 3.381(4.67%) 85.73% 93.11%

Average 3.229 4.318(33.71%) 5.431(68.16%) 3.378(4.59%) 86.37% 93.26%

5. Conclusions

In order to reduce the computational cost introduced by mapping processes of the

mapped WENO-M [20] and WENO-PM6 [11] schemes on the premise of retaining their

advantages, we have devised a new mapped WENO scheme named WENO-ACM for hy-

perbolic conservation laws by introducing an approximate constant mapping function.

It is theoretically and numerically demonstrated that the WENO-ACM scheme achieves

the optimal convergence orders at critical points as the original mapped WENO-M

scheme does. The new approximate constant mapping function satisfies the two ad-

ditional properties first proposed in the WENO-PM6 scheme, and these properties en-

sure that the WENO-ACM scheme is able to generate comparable or better numerical

solutions compared with the WENO-PM6 scheme, which has lower dissipation and

provides higher resolution results than the classic WENO-JS and WENO-M schemes.

Extensive numerical tests with two dimensional Euler equations show that the WENO-

ACM scheme can reduce the cost of the mapping process by more than 83% compared

to the WENO-M scheme and by more than 93% compared to the WENO-PM6 scheme,

making the extra computational cost reduced from more than 24% for the WENO-M

scheme and more than 54% for the WENO-PM6 scheme to a more acceptable value of

no more than 5%.
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