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Abstract. Collocation and Galerkin methods in the discontinuous and globally con-
tinuous piecewise polynomial spaces, in short, denoted as DC, CC, DG and CG

methods respectively, are employed to solve second-kind Volterra integral equations

(VIEs). It is proved that the quadrature DG and CG (QDG and QCG) methods ob-
tained from the DG and CG methods by approximating the inner products by suitable

numerical quadrature formulas, are equivalent to the DC and CC methods, respec-

tively. In addition, the fully discretised DG and CG (FDG and FCG) methods are
equivalent to the corresponding fully discretised DC and CC (FDC and FCC) meth-

ods. The convergence theories are established for DG and CG methods, and their
semi-discretised (QDG and QCG) and fully discretized (FDG and FCG) versions. In

particular, it is proved that the CG method for second-kind VIEs possesses a similar

convergence to the DG method for first-kind VIEs. Numerical examples illustrate the
theoretical results.
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1. Introduction

In this paper, we consider the following Volterra integral equations (VIEs) of the

second kind:

u(t) = g(t) +

∫ t

0
K(t, s)u(s) ds, t ∈ I := [0, T ] (1.1)

with continuous kernel, which arise widely as mathematical models of physical and

biological phenomena (see the two monographs [1, 2]). There are lots of researchers

focus on the numerical methods of VIEs (see [1,6–9,11–19,21] and the references cited
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therein). Among these numerical methods, the collocation method is one of the most

popular methods for (1.1). In general, collocation solutions are sought either in the

space

S
(−1)
m−1(Ih) :=

{
v : v|σn ∈ Pm−1(σn) (0 ≤ n ≤ N − 1)

}

of discontinuous piecewise polynomials of degree m−1 ≥ 0, or in the space of globally

continuous piecewise polynomials of degree m ≥ 1 (see [1,13,14])

S(0)
m (Ih) :=

{
v ∈ C(I) : v|σn ∈ Pm(σn) (0 ≤ n ≤ N − 1)

}
.

Here,

Ih :=
{
tn := nh : n = 0, . . . , N (tN := T )

}

denotes a given mesh on I = [0, T ], with mesh diameter h := T/N , and Pk = Pk(σn) is

the linear space of (real) polynomials on σn := [tn, tn+1] of degree not exceeding k. For

a given mesh Ih the set

Xh :=
{
tn,i := tn + cih : 0 < c1 < · · · < cm ≤ 1 (0 ≤ n ≤ N − 1)

}

will denote the collocation points corresponding to prescribed collocation parame-

ters {ci}.

In [13], it is proved that the collocation solution in the globally continuous piece-

wise polynomial space S
(0)
m (Ih) for the second-kind VIE (1.1) converges to the exact

solution, if and only if the collocation parameters {ci} satisfy the following condition:

−1 ≤ l0(1) = (−1)m
m∏

i=1

1− ci
ci

≤ 1, (1.2)

where l0(s) is defined in (3.3) of Section 3.1.1. It is very interesting that (1.2) is also

the sufficient and necessary condition for the collocation solution in the discontinuous

polynomial space S
(−1)
m−1(Ih) converging to the exact solution of the following first-kind

VIE (see [1, Theorem 2.4.2]):

0 = g(t) +

∫ t

0
K(t, s)u(s) ds, t ∈ I := [0, T ] (1.3)

with |K(t, t)| ≥ k0 > 0. It means that the continuous collocation (CC) method in

the globally continuous piecewise polynomial space S
(0)
m (Ih) for the second-kind VIE

(1.1) has a similar convergence to the discontinuous collocation (DC) method in the

discontinuous piecewise polynomial space S
(−1)
m−1(Ih) for the first-kind VIE (1.3).

In 2009, [3] investigated the discontinuous Galerkin (DG) method in the discontin-

uous piecewise polynomial space S
(−1)
m−1(Ih) for the first-kind VIE (1.3), and it is proved

that an (m−1)-th degree DG approximation exhibits global convergence of order m−1
when m is even and order m when m is odd. A natural question is that does the con-

tinuous Galerkin (CG) method in the globally continuous piecewise polynomial space



On Discontinuous and Continuous Approximations to Second-Kind VIEs 93

S
(0)
m (Ih) for the second-kind VIE (1.1) possess a similar convergence? This is one of

the core parts of this paper, and we will give an affirmative answer in Theorem 3.5 of

Section 3.4.

Notice that the cardinality of Xh is |Xh| = Nm, and

dimS
(−1)
m−1(Ih) = Nm and dimS(0)

m (Ih) = Nm+ 1, (1.4)

so for the VIE (1.1), the DC method in discontinuous polynomial collocation space

S
(−1)
m−1(Ih) is more natural than the CC method in globally continuous polynomial col-

location space S
(0)
m (Ih) (see [13, 14]). Therefore for (1.1), in this paper, we will first

investigate DG methods, and the relationship between DG and DC methods, then ana-

lyze CG methods, and the relationship between CG and CC methods.

This paper deals with the second-kind VIE (1.1), and the outline is mainly divided

into two parts. Section 2 is the first part, and it mainly focuses on discontinuous ap-

proximations, including DC and DG methods: First, we will review the DC and fully dis-

cretised DC (FDC) schemes. Second, we will introduce the DG, quadrature DG (QDG)

and fully discretised DG (FDG) schemes, then investigate the relationships between

QDG and DC schemes, FDG and FDC schemes, respectively. Last, we will review the

convergence for the DC method and give the detailed convergence analysis for the DG

method. Section 3 is the second part, and it mainly focuses on continuous approxima-

tions, including CC and CG methods: the organization is as same as the first part, but

now DC, FDC, DG, QDG and FDG are replaced as CC, FCC, CG, QCG and FCG. Finally,

in Section 4, some numerical experiments are given to illustrate the theoretical results.

2. Discontinuous approximations

2.1. Review: DC approximations

In [1, Chapter 2], both DC and FDC methods are investigated thoroughly for VIE

(1.1). In order to establish the relationship between DC and DG methods, in this

subsection, we will review DC and FDC methods briefly.

2.1.1. DC schemes

Denote uDC ∈ S
(−1)
m−1(Ih) as the DC solution of (1.1), then the collocation equation is

uDC(t) = g(t) +

∫ t

0
K(t, s)uDC(s) ds, t ∈ Xh. (2.1)

Since uDC ∈ S
(−1)
m−1(Ih), the local representation of the collocation solution uDC on

the subinterval σn can be written as

uDC(tn + sh) =
m∑

j=1

Lj(s) (U
n
DC)j , s ∈ (0, 1], (2.2)
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where (Un
DC)j := uDC(tn,j), and

Lj(s) :=
m∏

k=1,k 6=j

s− ck
cj − ck

, j = 1, . . . ,m

denote the Lagrange basis functions with respect to the distinct points {ci}. Therefore,

by the collocation equation (2.1) and the local representation (2.2), we obtain

uDC(tn,i) = g(tn,i) +

∫ tn,i

0
K(tn,i, s)uDC(s) ds

= g(tn,i) + h

∫ ci

0
K(tn,i, tn + sh)uDC(tn + sh) ds

+ h
n−1∑

l=0

∫ 1

0
K(tn,i, tl + sh)uDC(tl + sh) ds

= g(tn,i) + h
m∑

j=1

∫ ci

0
K(tn,i, tn + sh)Lj(s) ds (U

n
DC)j

+ h

n−1∑

l=0

m∑

j=1

∫ 1

0
K(tn,i, tl + sh)Lj(s) ds(U

l
DC)j . (2.3)

Denote

Gn
DC :=

(
g(tn,1), . . . , g(tn,m)

)T
, Un

DC :=
(
(Un

DC)1 , . . . ,
(
Un
DC

)

m

)T
,

Bn
DC :=





∫ ci

0
K(tn,i, tn + sh)Lj(s) ds

(i, j = 1, . . . ,m)



 ,

B
(n,l)
DC :=





∫ 1

0
K(tn,i, tl + sh)Lj(s) ds

(i, j = 1, . . . ,m)



 (0 ≤ l < n ≤ N − 1).

Then the collocation equation can be written as the following concise form:

(Im − hBn
DC)U

n
DC = Gn

DC + h

n−1∑

l=0

B
(n,l)
DC Ul

DC , (2.4)

where Im denotes the identity matrix in R
m×m.

If g ∈ C(I) and K ∈ C(D), where D := {(t, s) : 0 ≤ s ≤ t ≤ T}, then the matrix

Bn
DC is bounded, so by Neumann Lemma, there exists a constant hDC > 0 such that

for any h ∈ (0, hDC), the linear algebraic system (2.4) has a unique solution Un
DC for

all n = 0, . . . , N −1. Hence (2.1) determines a unique DC solution uDC ∈ S
(−1)
m−1(Ih) for

(1.1) whose local representation on σn is given by (2.2).
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2.1.2. FDC schemes

In general, the integrals of Bn
DC ,B

(n,l)
DC in (2.4) cannot be found analytically, but have to

be approximated by suitable numerical quadrature formulas, and the resulting scheme

is the so-called fully discretised DC (FDC) scheme.

Let ûDC ∈ S
(−1)
m−1(Ih) be the FDC solution. Then the local representation of ûDC on

the subinterval σn can be written as

ûDC(tn + sh) =

m∑

j=1

Lj(s)
(
Ûn
DC

)

j
, s ∈ (0, 1], (2.5)

where (Ûn
DC)j := ûDC(tn,j).

On σn, we choose interpolatory m-point quadrature formulas whose abscissas are

based on the m collocation parameters {ci}, and denote

bi :=

∫ 1

0
Li(s) ds

as the corresponding weights. Then by (2.3), we have

(
Ûn
DC

)

i
= g(tn,i) + hci

m∑

j=1

m∑

k=1

K(tn,i, tn + cickh)Lj(cick)bk
(
Ûn
DC

)

j

+ h
n−1∑

l=0

m∑

j=1

m∑

k=1

K(tn,i, tl,k)Lj(ck)bk
(
Û l
DC

)

j

= g(tn,i) + hci

m∑

j=1

m∑

k=1

K(tn,i, tn + cickh)Lj(cick)bk
(
Ûn
DC

)

j

+ h

n−1∑

l=0

m∑

j=1

K(tn,i, tl,j)bj
(
Û l
DC

)

j
. (2.6)

Here, we have used the fact that

Lj(ck) = δj,k =

{

1, if k = j,

0, otherwise.
(2.7)

Denote

Ûn
DC :=

((
Ûn
DC

)

1
, . . . ,

(
Ûn
DC

)

m

)T

,

B̂n
DC :=






ci

m∑

k=1

K(tn,i, tn + cickh)Lj(cick)bk

(i, j = 1, . . . ,m)




 ,

B̂
(n,l)
DC :=

(
K(tn,i, tl,j)bj

(i, j = 1, . . . ,m)

)

(0 ≤ l < n ≤ N − 1).
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Then (2.6) can be written as the following concise form:

(
Im − hB̂n

DC

)
Ûn

DC = Gn
DC + h

n−1∑

l=0

B̂
(n,l)
DC Ûl

DC . (2.8)

Similarly to Section 2.1.1, if g ∈ C(I) and K ∈ C(D), then there exists a constant

ĥDC > 0 so that for any h ∈ (0, ĥDC), the linear algebraic system (2.8) has a unique

solution Ûn
DC for all n = 0, . . . , N − 1. Hence there exists a unique FDC solution

ûDC ∈ S
(−1)
m−1(Ih) for (1.1) whose local representation on σn is given by (2.5).

2.2. DG approximations

The DG method was considered in [5,20] to solve (1.1). However, these two papers

mainly focus on high accuracy methods, including Richardson extrapolation methods,

interpolation correction methods and iterative correction methods, and the conver-

gence analysis is based on the operator theory. In this section, we will introduce the

DG scheme for (1.1) again, and give the convergence analysis anew without operator

theory.

2.2.1. DG schemes

For the DG method, we are looking for an approximate solution uDG ∈ S
(−1)
m−1(Ih) for

(1.1), such that for ∀φ ∈ S
(−1)
m−1(Ih),

∫ tn+1

tn

uDG(s)φ(s) ds

=

∫ tn+1

tn

g(s)φ(s) ds +

∫ tn+1

tn

(∫ s

0
K(s, v)uDG(v) dv

)

φ(s) ds, (2.9)

i.e.,

h

∫ 1

0
uDG(tn + sh)φ(tn + sh) ds

= h

∫ 1

0
g(tn + sh)φ(tn + sh) ds

+ h

∫ 1

0

(∫ tn+sh

0
K(tn + sh, v)uDG(v) dv

)

φ(tn + sh) ds

= h

∫ 1

0
g(tn + sh)φ(tn + sh) ds

+ h2
∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)uDG(tn + vh) dv

)

φ(tn + sh) ds

+ h2
n−1∑

l=0

∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)uDG(tl + vh) dv

)

φ(tn + sh) ds. (2.10)
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It is obvious that the exact solution u also satisfies (2.9), i.e.,

∫ tn+1

tn

u(s)η(s) ds

=

∫ tn+1

tn

g(s)η(s) ds +

∫ tn+1

tn

∫ s

0
K(s, v)u(v) dvη(s) ds, ∀η ∈ Pm−1. (2.11)

Let

eDG(t) := u(t)− uDG(t).

Then by (2.11) and (2.9), for 0 ≤ n ≤ N − 1 and ∀η ∈ Pm−1,

Bn(eDG, η)

:=

∫ tn+1

tn

eDG(s)η(s) ds −
∫ tn+1

tn

∫ s

0
K(s, v)eDG(v) dvη(s) ds = 0, (2.12)

which means that the DG error eDG(t) has the orthogonality property in each subinter-

val σn.

Since uDG ∈ S
(−1)
m−1(Ih), the local representation of the DG solution on the subinter-

val σn can be written as

uDG(tn + sh) =

m−1∑

j=0

Pj(s) (U
n
DG)j , s ∈ (0, 1], (2.13)

where Pj(s) (j = 0, . . . ,m − 1) denote the ‘shifted’ Legendre polynomials of degree j
on [0, 1], and (Un

DG)j are unknowns to be determined. Thus, by (2.10) and (2.13), for

i = 0, . . . ,m− 1,

m−1∑

j=0

∫ 1

0
Pj(s)Pi(s) ds (U

n
DG)j =

∫ 1

0
g(tn + sh)Pi(s) ds

+ h
m−1∑

j=0

[∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)Pj(v) dv

)

Pi(s) ds

]

(Un
DG)j

+ h
n−1∑

l=0

m−1∑

j=0

[∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Pj(v) dv

)

Pi(s) ds

]
(
U l
DG

)

j
. (2.14)

Denote

Gn
DG :=

(∫ 1

0
g(tn + shn)P0(s) ds, . . . ,

∫ 1

0
g(tn + shn)Pm−1(s) ds

)T

,

Un
DG :=

(
(Un

DG)0 , . . . , (U
n
DG)m−1

)T
, An

DG :=





∫ 1

0
Pj(s)Pi(s) ds

(i, j = 0, . . . ,m− 1)



 ,
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Bn
DG :=





∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)Pj(v) dv

)

Pi(s) ds

(i, j = 0, . . . ,m− 1)



 ,

B
(n,l)
DG :=





∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Pj(v) dv

)

Pi(s) ds

(i, j = 0, . . . ,m− 1)



 (0 ≤ l < n ≤ N − 1).

Then (2.14) can be written as

(
An

DG − hBn
DG

)
Un

DG = Gn
DG + h

n−1∑

l=0

B
(n,l)
DG Ul

DG. (2.15)

By [3, Proposition A.1], the matrix

An
DG :=





∫ 1

0
Pi(s)Pj(s) ds

(i, j = 0, . . . ,m− 1)



 =











1
1

3
. . .

1

2m− 1











is nonsingular. Therefore, similarly to Section 2.1.1, if g ∈ C(I) and K ∈ C(D), there

exists a constant hDG > 0 so that for any h ∈ (0, hDG), the linear algebraic system

(2.15) has a unique solution Un
DG for all n = 0, . . . , N − 1. Hence (2.9) determines

a unique DG solution uDG ∈ S
(−1)
m−1(Ih) for (1.1) whose local representation on σn is

given by (2.13).

Remark 2.1. Note that if a different set of basis functions is employed, say {Lj(s)}mj=1,

then there exists a nonsingular matrix QDG, such that

(
L1(s), . . . , Lm(s)

)T
= (QDG)

T
(
P0(s), . . . , Pm−1(s)

)T
.

Denote the corresponding solution as ũDG, then (2.13) becomes

ũDG(tn + sh) =

m∑

j=1

Lj(s)
(
Ũn
DG

)

j
,

where (Ũn
DG)j are unknowns to be determined. Denote

G̃n
DG :=

(∫ 1

0
g(tn + sh)L1(s) ds, . . . ,

∫ 1

0
g(tn + sh)Lm(s) ds

)T

,

Ũn
DG :=

((
Ũn
DG

)

1
, . . . ,

(
Ũn
DG

)

m

)T

, Ãn
DG :=





∫ 1

0
Lj(s)Li(s) ds

(i, j = 1, . . . ,m)



 ,
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B̃n
DG :=





∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)Lj(v) dv

)

Li(s) ds

(i, j = 1, . . . ,m)



 ,

B̃
(n,l)
DG :=





∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Lj(v) dv

)

Li(s) ds

(i, j = 1, . . . ,m)



 (0 ≤ l < n ≤ N − 1).

Then (2.15) becomes

(
Ãn

DG − hB̃n
DG

)
Ũn

DG = G̃n
DG + h

n−1∑

l=0

B̃
(n,l)
DG Ũl

DG, (2.16)

which can be rewritten as

(
An

DG − hBn
DG

)
QDGŨ

n
DG = Gn

DG + h
n−1∑

l=0

B
(n,l)
DG QDGŨ

l
DG.

By the uniqueness of the solution, we obtain that Un
DG = QDGŨ

n
DG, so on the subin-

terval σn, the DG solution based on the basis functions Lj(s) is

ũDG(tn + sh) =

m∑

j=1

Lj(s)
(
Ũn
DG

)

j
=
(
L1(s), . . . , Lm(s)

)






(
Ũn
DG

)

1
...

(
Ũn
DG

)

m






=
(
P0(s), . . . , Pm−1(s)

)
QDG (QDG)

−1






(Un
DG)0
...

(Un
DG)m−1






=
(
P0(s), . . . , Pm−1(s)

)






(Un
DG)0
...

(Un
DG)m−1






=

m−1∑

j=0

Pj(s) (U
n
DG)j = uDG(tn + sh),

which means that whatever the choice of basis functions, the resulting DG solutions are

equivalent.

2.2.2. QDG schemes and the relationship with DC schemes

The QDG scheme is obtained from the DG scheme (2.14) by approximating the inner

product by suitable numerical quadrature formulas (see [4]). On σn, suppose that the

quadrature nodes and weights are based on {di}qi=1 and {wi}qi=1, respectively, where
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q ≥ m, 0 ≤ d1 < · · · < dq ≤ 1, and at least m weights are nonzero. Then comparing

with (2.14), but now employing the basis functions Lj(s), we have

m∑

j=1

q
∑

k=1

Lj(dk)Li(dk)wk

(
Ūn
DG

)

j
=

q
∑

k=1

g(tn + dkh)Li(dk)wk

+ h

q
∑

k=1





m∑

j=1

∫ dk

0
K(tn + dkh, tn + vh)Lj(v) dv

(
Ūn
DG

)

j



Li(dk)wk

+ h

q
∑

k=1

n−1∑

l=0





m∑

j=1

∫ 1

0
K(tn + dkh, tl + vh)Lj(v) dv

(
Ū l
DG

)

j



Li(dk)wk.

Now take the special case with q = m and dk = ck. Then

m∑

j=1

m∑

k=1

Lj(ck)Li(ck)wk

(
Ūn
DG

)

j
=

m∑

k=1

g(tn + ckh)Li(ck)wk

+ h

m∑

k=1





m∑

j=1

∫ ck

0
K(tn + ckh, tn + vh)Lj(v) dv

(
Ūn
DG

)

j



Li(ck)wk

+ h
m∑

k=1

n−1∑

l=0





m∑

j=1

∫ 1

0
K(tn + ckh, tl + vh)Lj(v) dv

(
Ū l
DG

)

j



Li(ck)wk.

By (2.7), for wi 6= 0, we obtain

(
Ūn
DG

)

i
= g(tn,i) + h

m∑

j=1

∫ ci

0
K(tn,i, tn + vh)Lj(v) dv

(
Ūn
DG

)

j

+ h

n−1∑

l=0

m∑

j=1

∫ 1

0
K(tn,i, tl + vh)Lj(v) dv

(
Ū l
DG

)

j
, (2.17)

which is exactly the DC scheme (2.3), so we have proved the following theorem.

Theorem 2.1. Suppose that the inner products in (2.14) are approximated by m-point

quadrature formulas with nonzero weights w1, . . . , wm and nodes 0 < d1 < · · · < dm ≤ 1.

Then the resulting QDG scheme is identical to the DC scheme of Section 2.1.1 with the

collocation parameters {ci}mi=1 = {di}mi=1 whatever the choice of weights.

2.2.3. FDG schemes and the relationship with FDC schemes

The FDG scheme is obtained from the QDG scheme (2.17) by approximating the in-

tegral by suitable numerical quadrature formulas. On σn, we choose interpolatory
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m-point quadrature formulas whose abscissas are based on the m collocation parame-

ters {ci}, and denote bi as the corresponding weights. Then comparing with (2.17), we

have

(
Ûn
DG

)

i
= g(tn,i) + hci

m∑

j=1

m∑

k=1

K(tn,i, tn + cickh)Lj(cick)bk
(
Ûn
DG

)

j

+ h

n−1∑

l=0

m∑

j=1

K(tn,i, tl,j)bj
(
Û l
DG

)

j
, (2.18)

which is exactly the FDC scheme (2.6), so we have proved the following theorem.

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold. Then the resulting FDG

scheme is identical to the FDC scheme in Section 2.1.2.

2.3. Error analysis for DC approximations

Since in Sections 2.2.2 and 2.2.3, we have shown that for the special choice of

the numerical quadrature formula, the resulting QDG and FDG schemes are identical

to the DC and FDC schemes, respectively, so in this subsection, we will review the

convergence results of the DC (which is also QDG) and the FDC (which is also FDG)

methods in [1, Chapter 2], but not give the proofs.

2.3.1. Error analysis for DC methods

Theorem 2.3 ([1, Theorem 2.2.3]). Assume:

(a) The given functions describing the VIE (1.1) satisfy g ∈ Cm(I) and K ∈ Cm(D).

(b) u and uDC ∈ S
(−1)
m−1(Ih) are the exact solution of (1.1) and the DC solution defined

by the collocation equation (2.1) with h < hDC .

Then for any set Xh of collocation points with 0 ≤ c1 < · · · < cm ≤ 1,

‖u− uDC‖∞ := sup
t∈I

|u(t)− uDC(t)| ≤ CDGMmhm,

where Mm := maxt∈I |u(m)(t)|, and the constant CDC depends on {ci}, but not on h
and N .

2.3.2. Error analysis for FDC methods

Theorem 2.4 ([1, Theorem 2.2.11]). Under the conditions of Theorem 2.3, assume that

the collocation equation defining the exact collocation solution uDC ∈ S
(−1)
m−1(Ih) is discre-

tised by using interpolatory m-point quadrature formulas whose abscissas are based on

the collocation parameters {ci} and h < ĥDC . Then the resulting FDC solution ûDC has

the same convergence property as uDC .
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2.4. Error analysis for DG methods

Theorem 2.5. Assume:

(a) The given functions describing the VIE (1.1) satisfy g ∈ Cm(I) and K ∈ Cm(D).

(b) u and uDG ∈ S
(−1)
m−1(Ih) are the exact solution of (1.1) and the DG solution defined

by (2.9) with h < hDG.

Then

‖u− uDG‖∞ := sup
t∈I

|u(t)− uDG(t)| ≤ CDGMmhm,

where CDG is a constant independent of h and N .

Proof. Assumption (a) implies u ∈ Cm(I) (see [1, Theorem 2.1.3]), so by [3, Lem-

ma 2.3], we have

u(tn + sh) =

m−1∑

j=0

Pj(s)û
n
j + hmRm,n(s), s ∈ (0, 1], (2.19)

where

ûnj =

∫ 1

0
Pj(s)u(tn + sh) ds

(∫ 1

0

(
Pj(s)

)2
ds

)−1

is the best L2 degree m − 1 polynomial approximation of u(tn + sh). The remainder

term is bounded by

|Rm,n(s)| ≤
|u(m)(ζn)|

m!
for some ζn ∈ (tn, tn+1).

Therefore, by (2.13) and (2.19), we obtain

eDG(tn + sh) =

m−1∑

j=0

Pj(s) (ε
n
DG)j + hmRm,n(s), (2.20)

where (εnDG)j := ûnj − (Un
DG)j . By (2.12) and (2.20), for i = 0, . . . ,m− 1,

∫ 1

0





m−1∑

j=0

Pj(s) (ε
n
DG)j + hmRm,n(s)



Pi(s) ds

= h

∫ 1

0





∫ s

0
K(tn + sh, tn + vh)





m−1∑

j=0

Pj(v)
(
εnDG

)

j
+ hmRm,n(v)



 dv



Pi(s) ds

+ h

n−1∑

l=0

∫ 1

0





∫ 1

0
K(tn + sh, tl + vh)





m−1∑

j=0

Pj(v)
(
εlDG

)

j
+ hmRm,l(v)



 dv



Pi(s) ds,
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i.e.,

m−1∑

j=0

(∫ 1

0
Pj(s)Pi(s) ds

)
(
εnDG

)

j

= h
m−1∑

j=0

[∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)Pj(v) dv

)

Pi(s) ds

]
(
εnDG

)

j

+ h
n−1∑

l=0

m−1∑

j=0

[∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Pj(v) dv

)

Pi(s) ds

]
(
εlDG

)

j

+ hm
(
ρnDG

)

i
+

n−1∑

l=0

hm+1
(
ρlDG

)

i
,

where

(ρnDG)i := h

∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)Rm,n(v) dv

)

Pi(s) ds

−
∫ 1

0
Rm,n(s)Pi(s) ds,

(

ρ
(n,l)
DG

)

i
:=

∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Rm,l(v) dv

)

Pi(s) ds.

Denote

ε
n
DG :=

(
(εnDG)0 , . . . , (ε

n
DG)m−1

)T
,

ρ
n
DG :=

(
(ρnDG)0 , . . . , (ρ

n
DG)m−1

)T
,

ρ
(n,l)
DG :=

((

ρ
(n,l)
DG

)

0
, . . . ,

(

ρ
(n,l)
DG

)

m−1

)T

.

Then

(An
DG − hBn

DG) ε
n
DG = h

n−1∑

l=0

B
(n,l)
DG ε

l
DG + hmρ

n
DG + hm+1

n−1∑

l=0

ρ
(n,l)
DG . (2.21)

Since h < hDG, similarly to Section 2.2.1, we know that there exists a constant D1,

such that ‖(An
DG − hBn

DG)
−1‖∞ ≤ D1, and

‖εnDG‖∞ ≤ D1

[
n−1∑

l=0

hmK̄P̄ 2‖εlDG‖∞ + hm

(

hK̄P̄
‖u(m)‖∞

m!
+ P̄

‖u(m)‖∞
m!

)

+ hm+1
n−1∑

l=0

K̄P̄
‖u(m)‖∞

m!

]

≤ D1

[
n−1∑

l=0

hmK̄P̄ 2‖εlDG‖∞ + P̄
(
2TK̄ + 1

)Mm

m!
hm

]

,
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where

K̄ := max
0≤s≤t≤T

|K(t, s)|, P̄ := max
s∈[0,1],0≤j≤m−1

|Pj(s)|.

The discrete Gronwall inequality (see [1, Corollay 2.1.19]) yields

‖εnDG‖∞ ≤ D1P̄
(
2TK̄ + 1

)

m!
exp

(
D1K̄P̄ 2mT

)
Mmhm,

which together with (2.20) yield

|eDG(tn + sh)| ≤ D1mP̄ 2
(
2TK̄ + 1

)
exp

(
D1K̄P̄ 2mT

)
+ 1

m!
Mmhm.

This completes the proof.

Remark 2.2. By Theorems 2.3 and 2.5, we see that the convergence order of the DG

method is as same as the order of the DC method.

3. Continuous approximations

3.1. CC approximations

In [13], CC methods are investigated thoroughly for (1.1). In order to establish

the relationship between CC and CG methods, in this subsection, we will review CC

methods first.

3.1.1. CC schemes

At t = tn,i, the collocation equation reads as

uCC(t) = g(t) +

∫ t

0
K(t, s)uCC(s) ds, t ∈ Xh (3.1)

with uCC(0) = g(0).

Since uCC ∈ S
(0)
m (Ih), the local representation of the CC solution uCC on the subin-

terval σn can be written as

uCC(tn + sh) =
m∑

j=0

lj(s) (U
n
CC)j , s ∈ [0, 1], (3.2)

where

(Un
CC)0 := uCC(tn), (Un

CC)j := uCC(tn,j) for j = 1, . . . ,m,

and

l0(s) :=

m∏

i=1

s− ci
−ci

, lj(s) :=
s

cj

m∏

i=1,i 6=j

s− ci
cj − ci

. (3.3)
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Therefore, by (3.1) and (3.2),

(Un
CC)i = g(tn,i) +

∫ tn,i

0
K(tn,i, s)uCC(s) ds

= g(tn,i) + h

∫ ci

0
K(tn,i, tn + sh)uCC(tn + sh) ds

+ h

n−1∑

l=0

∫ 1

0
K(tn,i, tl + sh)uCC(tl + sh) ds

= g(tn,i) + h

∫ ci

0
K(tn,i, tn + sh)

(
m∑

j=0

lj(s)
(
Un
CC

)

j

)

ds

+ h
n−1∑

l=0

∫ 1

0
K(tn,i, tl + sh)

(
m∑

j=0

lj(s)
(
U l
CC

)

j

)

ds

= g(tn,i) + h

∫ ci

0
K(tn,i, tn + sh)l0(s) dsuCC(tn)

+ h

m∑

j=1

∫ ci

0
K(tn,i, tn + sh)lj(s) ds

(
Un
CC

)

j

+ h
n−1∑

l=0

∫ 1

0
K(tn,i, tl + sh)l0(s) dsuCC(tl)

+ h

n−1∑

l=0

m∑

j=1

∫ 1

0
K(tn,i, tl + sh)lj(s) ds

(
U l
CC

)

j
. (3.4)

Denote

Un
CC :=

(
(Un

CC)1 , . . . , (U
n
CC)m

)T
, e :=

(

1, . . . , 1
︸ ︷︷ ︸

m

)T

,

Mn
CC := diag





∫ ci

0
K(tn,i, tn + sh)l0(s) ds

(i = 1, . . . ,m)



 ,

Bn
CC :=





∫ ci

0
K(tn,i, tn + sh)lj(s) ds

(i, j = 1, . . . ,m)



 ,

M
(n,l)
CC := diag





∫ 1

0
K(tn,i, tl + sh)l0(s) ds

(i = 1, . . . ,m)



 ,

B
(n,l)
CC :=





∫ 1

0
K(tn,i, tl + sh)lj(s) ds

(i, j = 1, . . . ,m)



 (0 ≤ l < n ≤ N − 1).
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Then (3.4) can be written as the following concise form:
(
Im − hBn

CC

)
Un

CC

= Gn
DC + hMn

CCeuCC(tn) + h
n−1∑

l=0

[

M
(n,l)
CC euCC(tl) +B

(n,l)
CC Ul

CC

]

. (3.5)

Similarly to Section 2.1.1, if g ∈ C(I) and K ∈ C(D), there exists a constant hCC > 0 so

that for any h ∈ (0, hCC ), the linear algebraic system (3.5) has a unique solution Un
CC

for all n = 0, . . . , N − 1. Hence (3.1) determines a unique CC solution uCC ∈ S
(0)
m (Ih)

for (1.1) whose local representation on [tn, tn+1] is given by (3.2).

3.1.2. FCC schemes

Similarly to Section 2.1.2, denote ûCC ∈ S
(0)
m (Ih) as the FCC solution, then the local

representation of ûCC on the subinterval σn can be written as

ûCC(tn + sh) =
m∑

j=0

lj(s)
(
Ûn
CC

)

j
, s ∈ [0, 1], (3.6)

where
(
Ûn
CC

)

0
:= ûCC(tn),

(
Ûn
CC

)

j
:= ûCC(tn,j) for j = 1, . . . ,m.

On σn, we choose interpolatory m + 1-point quadrature formulas whose abscissas are

based on c0 := 0, and the m collocation parameters {ci}, and denote

b̃i :=

∫ 1

0
li(s) ds, i = 0, . . . ,m

as the corresponding weights. Then by (3.4), we have

(
Ûn
CC

)

i
= g(tn,i) + hci

m∑

j=0

m∑

k=0

K(tn,i, tn + cickh)lj(cick)b̃k
(
Ûn
CC

)

j

+ h

n−1∑

l=0

m∑

j=0

m∑

k=0

K(tn,i, tl + ckh)lj(ck)b̃k
(
Û l
CC

)

j

= g(tn,i) + hci

m∑

j=0

m∑

k=0

K(tn,i, tn + cickh)lj(cick)b̃k
(
Ûn
CC

)

j

+ h

n−1∑

l=0

m∑

j=0

K(tn,i, tl,j)b̃j
(
Û l
CC

)

j
, (3.7)

where we have used the fact that

lj(ck) = δj,k =

{

1, if k = j,

0, otherwise.
(3.8)
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Denote

Ûn
CC :=

((
Ûn
CC

)

1
, . . . ,

(
Ûn
CC

)

m

)T

,

M̂n
CC := diag






ci

m∑

k=0

K(tn,i, tn + cickh)l0(cick)b̃k

(i = 1, . . . ,m)




 ,

B̂n
CC :=






ci

m∑

k=0

K(tn,i, tn + cickh)lj(cick)b̃k

(i, j = 1, . . . ,m)




 ,

M̂
(n,l)
CC := diag

(
K(tn,i, tl)b̃0

(i = 1, . . . ,m)

)

,

B̂
(n,l)
CC :=

(
K(tn,i, tl,j)b̃j

(i, j = 1, . . . ,m)

)

(0 ≤ l < n ≤ N − 1).

Then (3.7) can be written in the following concise form

(
Im − hB̂n

CC

)
Ûn

CC

= Gn
DC + hM̂n

CCeûCC(tn) + h
n−1∑

l=0

[

M̂
(n,l)
CC eûCC(tl) + B̂

(n,l)
CC Ûl

CC

]

. (3.9)

Similarly to Section 2.1.1, if g ∈ C(I) and K ∈ C(D), then there exists a constant

ĥCC > 0 so that for any h ∈ (0, ĥCC), the linear algebraic system (3.9) has a unique

solution Ûn
CC for all n = 0, . . . , N − 1. Hence there determines a unique FCC solution

ûCC ∈ S
(0)
m (Ih) for (1.1) whose local representation on [tn, tn+1] is given by (3.6).

3.2. CG approximations

3.2.1. CG schemes

In the CG method, we are looking for an approximate solution uCG ∈ S
(0)
m (Ih) for (1.1)

such that for 0 ≤ n ≤ N − 1 and ∀η ∈ Pm−1,

∫ tn+1

tn

uCG(s)η(s) ds

=

∫ tn+1

tn

g(s)η(s) ds +

∫ tn+1

tn

∫ s

0
K(s, v)uCG(v) dvη(s) ds. (3.10)

Here, because of the continuity of uCG(t), we have

uCG(tn−1) = lim
t→t−n−1

uCG(t) = lim
t→t+n−1

uCG(t).
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Hence uCG(t) has only m degrees of freedom on each subinterval, so η ∈ Pm−1 (see

[10]).

It is obvious that the exact solution u also satisfies (3.10), i.e., for ∀η ∈ Pm−1,
∫ tn+1

tn

u(s)η(s) ds

=

∫ tn+1

tn

g(s)η(s) ds +

∫ tn+1

tn

∫ s

0
K(s, v)u(v) dvη(s) ds. (3.11)

Let

eCG(t) := u(t)− uCG(t).

Then by (3.10) and (3.11), for 0 ≤ n ≤ N − 1 and ∀η ∈ Pm−1,

Bn(eCG, η)

:=

∫ tn+1

tn

eCG(s)η(s) ds −
∫ tn+1

tn

∫ s

0
K(s, v)eCG(v) dvη(s) ds = 0, (3.12)

which means that the CG error eCG(t) has the orthogonality property in each subinter-

val σn.

Since uCG ∈ S
(0)
m (Ih), the local representation of the CG solution on the subinterval

σn can be written as

uCG(tn + sh) =

m∑

j=0

Pj(s) (U
n
CG)j , s ∈ [0, 1], (3.13)

where the unknowns (Un
CG)j are to be determined. By (3.10),

h

∫ 1

0
uCG(tn + sh)η(tn + sh) ds

= h

∫ 1

0
g(tn + sh)η(tn + sh) ds

+ h

∫ 1

0

(∫ tn+sh

0
K(tn + sh, v)uCG(v) dv

)

η(tn + sh) ds

= h

∫ 1

0
g(tn + sh)η(tn + sh) ds

+ h2
∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)uCG(tn + vh) dv

)

η(tn + sh) ds

+ h2
n−1∑

l=0

∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)uCG(tl + vh) dv

)

η(tn + sh) ds,

which together with (3.13) yield that for i = 0, . . . ,m− 1,

m∑

j=0

(∫ 1

0
Pj(s)Pi(s) ds

)

(Un
CG)j =

∫ 1

0
g(tn + sh)Pi(s) ds
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+ h

m∑

j=0

[∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)Pj(v) dv

)

Pi(s) ds

]

(Un
CG)j

+ h
n−1∑

l=0

m∑

j=0

[∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Pj(v) dv

)

Pi(s) ds

]
(
U l
CG

)

j
. (3.14)

Denote

Un
CG :=

(
(Un

CG)0 , . . . ,
(
Un
CG

)

m

)T
,

An
CG :=





∫ 1

0
Pj(s)Pi(s) ds

(i = 0, . . . ,m− 1; j = 0, . . . ,m)



 ,

Bn
CG :=





∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)Pj(v) dv

)

Pi(s) ds

(i = 0, . . . ,m− 1; j = 0, . . . ,m)



 ,

B
(n,l)
CG :=





∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Pj(v) dv

)

Pi(s) ds

(i = 0, . . . ,m− 1; j = 0, . . . ,m)



 (0 ≤ l < n ≤ N − 1).

Note that now the matrices An
CG, Bn

CG and B
(n,l)
CG are not square, which are different

from the matrices appearing in the DG scheme in Section 2.2.1, where all of the matri-

ces An
DG, Bn

DG and B
(n,l)
DG are square. Therefore, here we resort to the continuity, which

together with (3.13) and (3.14) yield
(

(P0(0), . . . , Pm(0))
(An

CG − hBn
CG)

)

Un
CG

=

(
(P0(1), . . . , Pm(1))

0m×(m+1)

)

Un−1
CG + h

n−1∑

l=0

(

01×(m+1)

B
(n,l)
CG

)

Ul
CG +

(
0

Gn
DG

)

. (3.15)

By the properties of Legendre polynomials and [3, Proposition A.1], the matrix

Ān
CG :=

( (
P0(0), . . . , Pm(0)

)

An
CG

)

=









1 −1 . . . (−1)m

1 . . . 0 0
...

. . .
...

...

0 . . .
1

2m− 1
0









is nonsingular. It can be easily checked that

(
Ān

CG

)−1
=










0 1 0 . . . 0
0 0 3 . . . 0
...

...
...

...
...

0 0 0 . . . 2m− 1
(−1)m (−1)m−1 (−1)m−23 . . . 2m− 1










. (3.16)
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Therefore, similarly to Section 2.1.1, if g ∈ C(I) and K ∈ C(D), then there exists

a constant hCG > 0 so that for any h ∈ (0, hCG), the linear algebraic system (3.15)

has a unique solution Un
CG for all n = 0, . . . , N − 1. Hence for all sufficiently small

h > 0 (3.10) determines a unique CG solution uCG ∈ S
(0)
m (Ih) for (1.1) whose local

representation on [tn, tn+1] is given by (3.13).

Remark 3.1. Similarly to Remark 2.1, it is easy to obtain that whatever the choice of

basis functions, the resulting CG solutions are equivalent.

3.2.2. QCG schemes and the relationship with CC schemes

Similarly to Section 2.2.2, suppose that the quadrature nodes and weights for the inner

products of (3.14) are {di}qi=1 and {wi}qi=1, respectively, where q ≥ m, 0 ≤ d1 < · · · <
dq ≤ 1, and at least m weights are nonzero. Then comparing with (3.14), but now

employing the basis functions lj and Lj(s), we obtain

m∑

j=0

q
∑

k=1

lj(dk)Li(dk)wk

(
Ūn
CG

)

j
=

q
∑

k=1

g(tn + dkh)Li(dk)wk

+ h
m∑

j=0

q
∑

k=1

(∫ dk

0
K(tn + dkh, tn + vh)lj(v) dv

)

Li(dk)wk

(
Ūn
CG

)

j

+ h

n−1∑

l=0

m∑

j=0

q
∑

k=1

(∫ 1

0
K(tn + dkh, tl + vh)lj(v) dv

)

Li(dk)wk

(
Ū l
CG

)

j
.

Now take the special case with q = m and dk = ck. Then by (3.8), for i = 1, . . . ,m
and wi 6= 0,

(
Ūn
CG

)

i
= g(tn,i) + h

(∫ ci

0
K(tn,i, tn + vh)l0(v) dv

)

ūCG(tn)

+ h
m∑

j=1

(∫ ci

0
K(tn,i, tn + vh)lj(v) dv

)
(
Ūn
CG

)

j

+ h

n−1∑

l=0

(∫ 1

0
K(tn,i, tl + vh)l0(v) dv

)

ūCG(tl)

+ h

n−1∑

l=0

m∑

j=1

(∫ 1

0
K(tn,i, tl + vh)lj(v) dv

)
(
Ū l
CG

)

j
, (3.17)

which is exactly the CC scheme (3.4), so we have proved the following theorem.

Theorem 3.1. Suppose that the inner products of (3.14) are approximated by m-point

quadrature formulas with nonzero weights w1, . . . , wm and nodes 0 < d1 < · · · < dm ≤ 1.

Then the resulting QCG scheme is identical to the CC scheme of Section 3.1.1 with the

collocation parameters {ci}mi=1 = {di}mi=1 whatever the choice of weights.
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3.2.3. FCG schemes and the relationship with FCC schemes

Similarly to Section 3.1.2, comparing with (3.17), we have

(
Ûn
CG

)

i
= g(tn,i) + hci

m∑

k=0

K(tn,i, tn + cickh)l0(cick)b̃kûCG(tn)

+ hci

m∑

j=1

m∑

k=0

K(tn,i, tn + cickh)lj(cick)b̃k
(
Ûn
CG

)

j

+ h

n−1∑

l=0

K(tn,i, tl)b̃0ûCG(tl) + h

n−1∑

l=0

m∑

j=1

K(tn,i, tl,j)b̃j
(
Û l
CG

)

j
, (3.18)

which is exactly the FCC scheme (3.7), so we obtain the following theorem.

Theorem 3.2. Assume that the conditions of Theorem 3.1 hold. Then the resulting FCG

scheme is identical to the FCC scheme in Section 3.1.2.

3.3. Error analysis for CC approximations

Since in Sections 3.2.2 and 3.2.3, we have shown that for the special choice of the

numerical quadrature formula, the resulting QCG and FCG methods are identical to

the CC and FCC methods, respectively, so in this subsection, we will first review the

convergence result of the CC (which is also QCG) method in [13], then give the error

analysis for the FCC (which is also FCG) method.

3.3.1. Error analysis for CC methods

Theorem 3.3 ([13, Theorem 2.1]). Assume that in (1.1) we have g ∈ Cm+2(I) and

K ∈ Cm+2(D). Let u and uCC ∈ S
(0)
m (Ih) be the exact solution and the CC solution

defined by the collocation equation (3.1) with h < hCC . Then the CC solution converges

to the exact solution if and only if, the collocation parameters {ci} satisfy the condition

−1 ≤ l0(1) = (−1)m
m∏

i=1

1− ci
ci

≤ 1.

The corresponding attainable global order of convergence is given by

‖u− uCC‖∞ := max
t∈I

|u(t)− uCC(t)| ≤ CCC

{

hm+1, if − 1 ≤ ρm < 1,

hm, if ρm = 1,

where the constant CCC depends on {ci} and the derivatives of the exact solution u, but

not on h and N .
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3.3.2. Error analysis for FCC methods

Combining the proofs of the convergence for CC methods (see [13, Theorem 2.1]) and

FDC (see [1, Theorem 2.2.11]), we can easily obtain the following theorem.

Theorem 3.4. Under the condition of Theorem 3.3, assume that the CC equation defining

the exact collocation solution uCC ∈ S
(0)
m (Ih) are discretised by using interpolatory m +

1-point quadrature formulas whose abscissas are based on c0 = 0 and the collocation

parameters {ci} and h < ĥCC . Then the resulting discretised collocation approximation

ûCC has the same convergence property as uCC .

3.4. Error analysis for CG methods

Theorem 3.5. Assume that in (1.1) we have g ∈ Cm+2(I) and K ∈ Cm+2(D). Let u and

uCG ∈ S
(0)
m (Ih) be the exact solution and the CG solution defined by (3.10) with h < hCG.

Then

‖u− uCG‖∞ := max
t∈I

|u(t)− uCG(t)| ≤ CCG

{

hm+1, if m is odd,

hm, if m is even,

where the constant CCG depends on the derivatives of the exact solution u, but not on h
and N .

Proof. By the assumption of the regularity on g and K, and [3, Lemma 2.3], we

have

u(tn + sh) =
m∑

j=0

Pj(s)û
n
j + hm+1Rm+1,n(s), (3.19)

where ûnj is the best L2 degree m polynomial approximation of u(tn + sh) defined in

the proof of Theorem 2.5. The remainder term is bounded by

|Rm+1,n(s)| ≤
|u(m+1)(ζ ′n)|
(m+ 1)!

for some ζ ′n ∈ (tn, tn+1).

By (3.13) and (3.19),

eCG(tn + sh) =
m∑

j=0

Pj(s) (ε
n
CG)j + hm+1Rm+1,n(s), (3.20)

where (εnCG)j := ûnj − (Un
CG)j . By (3.12) and (3.20),

∫ 1

0





m∑

j=0

Pj(s) (ε
n
CG)j + hm+1Rm+1,n(s)



Pi(s) ds

=

∫ 1

0

[

h

∫ s

0
K(tn + sh, tn + vh)





m∑

j=0

Pj(v) (ε
n
CG)j + hm+1Rm+1,n(v)



 dv
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+ h

n−1∑

l=0

∫ 1

0
K(tn + sh, tl + vh)





m∑

j=0

Pj(v)
(
εlCG

)

j
+ hm+1Rm+1,l(v)



 dv

]

Pi(s) ds,

i.e.,

m∑

j=0

(∫ 1

0
Pj(s)Pi(s) ds

)

(εnCG)j

= h

m∑

j=0

[∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)Pj(v) dv

)

Pi(s) ds

]

(εnCG)j

+ h

n−1∑

l=0

m∑

j=0

[∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Pj(v) dv

)

Pi(s) ds

]
(
εlCG

)

j

+ hm+1 (ρnCG)i +
n−1∑

l=0

hm+2
(
ρlCG

)

i
, (3.21)

where

(ρnCG)i := h

∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)Rm+1,n(v) dv

)

Pi(s) ds

−
∫ 1

0
Rm+1,n(s)Pi(s) ds,

(

ρ
(n,l)
CG

)

i
:=

∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Rm+1,l(v) dv

)

Pi(s) ds.

Denote

ε
n
CG :=

(
(εnCG)0 , . . . , (ε

n
CG)m

)T
,

ρ
n
CG :=

(
(ρnCG)0 , . . . , (ρ

n
CG)m

)T
,

ρ
(n,l)
CG :=

((
ρ
(n,l)
CG

)

0
, . . . ,

(
ρ
(n,l)
CG

)

m

)T

.

Therefore, by the continuity, (3.20) and (3.21), we have

( (
P0(0), . . . , Pm(0)

)

(An
CG − hBn

CG)

)

ε
n
CG

=

( (
P0(1), . . . , Pm(1)

)

0m×(m+1)

)

ε
n−1
CG + h

n−1∑

l=0

(

01×(m+1)

B
(n,l)
CG

)

ε
l
CG

+ hm+1

(
Rm+1,n−1(1) −Rm+1,n(0)

ρ
n
CG

)

+ hm+2
n−1∑

l=0

(

0

ρ
(n,l)
CG

)

, (3.22)
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so
( (

P0(0), . . . , Pm(0)
)

(ACG − hBn
CG)

)

ε
n
CG −

( (
P0(0), . . . , Pm(0)

)

(
ACG − hBn−1

CG

)

)

ε
n−1
CG

=

( (
P0(1), . . . , Pm(1)

)

0m×(m+1)

)

ε
n−1
CG −

( (
P0(1), . . . , Pm(1)

)

0m×(m+1)

)

ε
n−2
CG

+ h
n−1∑

l=0

(

01×(m+1)

B
(n,l)
CG

)

ε
l
CG − h

n−2∑

l=0

(

01×(m+1)

B
(n−1,l)
CG

)

ε
l
CG + hm+1rnCG,

where

rnCG :=

(
Rm+1,n−1(1) −Rm+1,n(0)

ρ
n
CG

)

−
(

Rm+1,n−2(1) −Rm+1,n−1(0)

ρ
n−1
CG

)

+ h

n−1∑

l=0

(

0

ρ
(n,l)
CG

)

− h

n−2∑

l=0

(

0

ρ
(n−1,l)
CG

)

.

Hence
( (

P0(0), . . . , Pm(0)
)

(ACG − hBn
CG)

)

ε
n
CG

=

[( (
P0(0), . . . , Pm(0)

)

(
ACG − hBn−1

CG

)

)

+

( (
P0(1), . . . , Pm(1)

)

0m×(m+1)

)

+ h

(

01×(m+1)

B
(n,n−1)
CG

)]

ε
n−1
CG

−
( (

P0(1), . . . , Pm(1)
)

0m×(m+1)

)

ε
n−2
CG + h

n−2∑

l=0

(

01×(m+1)

B
(n,l)
CG −B

(n−1,l)
CG

)

ε
l
CG + hm+1rnCG.

By the properties of Legendre polynomials and (3.16),

MCG :=

( (
P0(0), . . . , Pm(0)

)

ACG

)−1( (
P0(1), . . . , Pm(1)

)

0m×(m+1)

)

=










0 1 0 . . . 0
0 0 3 . . . 0
...

...
...

...
...

0 0 0 . . . 2m− 1
(−1)m (−1)m−1 (−1)m−23 . . . 2m− 1

















1 1 . . . 1
0 0 . . . 0
...

...
...

...

0 0 . . . 0








=








0 0 . . . 0
0 0 . . . 0
...

...
...

...

(−1)m (−1)m . . . (−1)m








,

so

ε
n
CG =

(
Im+1 +MCG +O(h)

)
ε
n−1
CG −

(
MCG +O(h)

)
ε
n−2
CG
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+
((

ĀCG

)−1
+O(h)

)

h

n−2∑

l=0

(

01×(m+1)

B
(n,l)
CG −B

(n−1,l)
CG

)

ε
l
CG

+ hm+1
((

ĀCG

)−1
+O(h)

)

rnCG.

Therefore,

(
ε
n
CG

ε
n−1
CG

)

=

[(
Im+1 +MCG −MCG

Im+1 0m+1

)

+O(h)

](
ε
n−1
CG

ε
n−2
CG

)

+ h
n−2∑

l=0






((
ĀCG

)−1
+O(h)

)
(

01×(m+1)

B
(n,l)
CG −B

(n−1,l)
CG

)

0(m+1)×(m+1)

0(m+1)×(m+1) 0(m+1)×(m+1)






(
ε
l
CG

ε
l−1
CG

)

+ hm+1

( ((
ĀCG

)−1
+O(h)

)

rnCG

0(m+1)×1

)

. (3.23)

It is obvious that the eigenvalues of the coefficient matrix

GCG :=

(
Im+1 +MCG −MCG

Im+1 0m+1

)

are

1, . . . , 1
︸ ︷︷ ︸

m+1

, (−1)m, 0, . . . , 0
︸ ︷︷ ︸

m

.

We divide into the following two cases:

Case I: m is odd. For this case, the eigenvalue 1 of multiplicity m+1 has m+1 linearly

independent eigenvectors, while to the eigenvalue 0 of multiplicity m there correspond

m linearly independent eigenvectors. Therefore, the matrix is diagonalizable, and there

exists a nonsingular matrix PCG such that

ΛCG := P−1
CGGCGPCG = diag (1, . . . , 1,−1, 0, . . . , 0) .

Define

Xn
CG :=

∥
∥
∥
∥
P−1

CG

(
ε
n
CG

ε
n−1
CG

)∥
∥
∥
∥
∞

.

Notice that by the assumption, u ∈ Cm+2(I) (see [1, Theorem 2.1.3]), so B
(n,l)
CG −

B
(n−1,l)
CG = O(h) and rnCG = O(h). Then by (3.23),

Xn
CG ≤

(
1 +O(h)

)
Xn−1

CG +O
(
h2
)
n−2∑

l=0

X l
CG +O

(
hm+2

)
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≤
(
1 +O(h)

)2
Xn−2

CG +
(
1 +O(h)

)
n−3∑

l=0

O
(
h2
)
X l

CG

+

n−2∑

l=0

O
(
h2
)
X l

CG +
[
1 +

(
1 +O(h)

)]
O
(
hm+2

)

≤ . . .

≤
(
1 +O(h)

)n−1
X1

CG +
n−2∑

k=0

(
1 +O(h)

)n−2−k
k∑

l=0

O
(
h2
)
X l

CG

+

n−2∑

k=0

(
1 +O(h)

)n−2−kO
(
hm+2

)

≤
n−2∑

l=0

O(h)X l
CG +O

(
hm+1

)
.

The discrete Gronwall inequality (see [1, Corollay 2.1.19]) yields

ε
n
CG = O

(
hm+1

)
.

By (3.20),

eCG(tn + sh) =

m∑

j=0

Pj(s) (ε
n
CG)j + hm+1Rm+1,n(s) = O

(
hm+1

)
.

Case II: m is even. In order to obtain some first insight into the convergence, we first

assume that K(t, s) ≡ 1.

For this case, the eigenvalue 1 of multiplicity m+ 2 has m+ 1 linearly independent

eigenvectors, while to the eigenvalue 0 of multiplicity m there correspond m linearly

independent eigenvectors. Therefore, there exists a nonsingular matrix P̃CG such that

Λ̃CG := P̃−1
CGGCGP̃CG =















1 1
1

. . .

1
0

. . .

0















.

Define

X̃n
CG := P̃−1

CG

(
ε
n
CG

ε
n−1
CG

)

.
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Noticing that now B
(n,l)
CG −B

(n−1,l)
CG = 0, by (3.23) we have

X̃n
CG =

(
Λ̃CG +O(h)

)
X̃n−1

CG +O
(
hm+2

)

=
(
Λ̃CG +O(h)

)2
X̃n−2

CG +
[

I2(m+1) +
(
Λ̃CG +O(h)

)]

O
(
hm+2

)

= . . .

=
(
Λ̃CG +O(h)

)n
X̃0

CG +

n−1∑

k=0

(
Λ̃CG +O(h)

)kO
(
hm+2

)
.

It is easy to check that

Λ̃n
CG =















1 n
1

. . .

1
0

. . .

0















.

Therefore,

X̃n
CG = O(hm),

and the desired result follows from (3.20).

Now we focus on the case of non-constant but arbitrarily smooth kernel K(t, s). We

write the CG approximation uCG and the exact solution in the form

uCG(tn + sh) =

m−1∑

j=0

Pj(s)(ũCG)
n
j + hmR̂m,n(s),

u(tn + sh) =
m−1∑

j=0

Pj(s)û
n
j + hmR̃m,n(s),

where the remainder terms are bounded by

|R̂m,n(s)| ≤
∣
∣u

(m)
CG (ζ̂n)

∣
∣

(m+ 1)!
, |R̃m,n(s)| ≤

∣
∣u(m)(ζ̂ ′n)

∣
∣

(m+ 1)!
,

where ζ̂n, ζ̂
′
n ∈ (tn, tn+1). Therefore,

eCG(tn + sh) =

m−1∑

j=0

Pj(s) (ε̃
n
CG)j + hmR̄m,n(s), (3.24)

where

(ε̃nCG)j := ûnj − (ũCG)
n
j , R̄m,n(s) := R̃m,n(s)− R̂m,n(s).
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By (3.12), we have

∫ 1

0
eCG(tn + sh)Pi(s) ds

= h

∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)eCG(tn + vh) dv

)

Pi(s) ds

+ h

n−1∑

l=0

∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)eCG(tl + vh) dv

)

Pi(s) ds,

which together with (3.24) yield

∫ 1

0





m−1∑

j=0

Pj(s) (ε̃
n
CG)j + hmR̄m,n(s)



Pi(s) ds

= h

∫ 1

0





∫ s

0
K(tn + sh, tn + vh)





m−1∑

j=0

Pj(v) (ε̃
n
CG)j + hmR̄m,n(v)



 dv



Pi(s) ds

+ h
n−1∑

l=0

∫ 1

0





∫ 1

0
K(tn + sh, tl + vh)





m−1∑

j=0

Pj(v)
(
ε̃lCG

)

j
+ hmR̄m,l(v)



 dv



Pi(s) ds,

i.e.,

m−1∑

j=0

∫ 1

0
Pj(s)Pi(s) ds (ε̃

n
CG)j

= h

m−1∑

j=0

∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)Pj(v) dv

)

Pi(s) ds (ε̃
n
CG)j

+ h

n−1∑

l=0

m−1∑

j=0

∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Pj(v) dv

)

Pi(s) ds
(
ε̃lCG

)

j
+ hm (r̃nCG)i ,

where

(r̃nCG)i := −
∫ 1

0
R̄m,n(s)Pi(s) ds + h

∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)R̄m,n(v) dv

)

Pi(s) ds

+ h

n−1∑

l=0

∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)R̄m,l(v) dv

)

Pi(s) ds.

Denote

ε̃
n
CG :=

(
(ε̃nCG)0 , . . . , (ε̃

n
CG)m−1

)T
, r̃nCG :=

(
(r̃nCG)0 , . . . , (r̃

n
CG)m−1

)T
.
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Then

(
An

DG − hBn
DG

)
ε̃
n
CG = h

n−1∑

l=0

B
(n,l)
DG ε̃

l
CG + hmr̃nCG.

The following proof is similar to that of the convergence for DG methods in Theo-

rem 2.5.

Remark 3.2. By Theorems 3.3 and 3.5, we see that both the convergence orders of the

CC and CG methods are m + 1, while the convergence of the CC method depends on

the choice of collocation parameters, but the convergence of the CG method depends

on the parity of m.

Remark 3.3. Comparing Theorem 3.5 with the results obtained in [3], we observe

that the CG solution of the second-kind VIE (1.1) has a similar convergence as the DG

solution of the first-kind VIE (1.3): the convergence depends on the parity of m. In

detail, if m is even, the convergence order is m for the CG solution of the second-kind

(1.1), while the convergence order is m− 1 for the DG solution of the first-kind (1.1);

if m is odd, both of the convergence orders are raised by 1.

4. Numerical experiments

In this section, we present two numerical examples to illustrate the foregoing con-

vergence results. We choose m = 1, 2, 3. For DC (QDG), CC (QCG), FDC (FDG) and

FCC (FCG) methods, and we use c1 = 0.1, 0.49, 0.5, 0.8, 1 respectively for m = 1; for

m = 2 we use the Gauss collocation parameters, c1 = (3−
√
3)/6, c2 = (3 +

√
3)/6;

the Radau IIA collocation parameters, c1 = 1/3, c2 = 1; and three sets of arbitrary

collocation parameters, c1 = 1/4, c2 = 1; c1 = 1/4, c2 = 5/6; c1 = 1/6, c2 = 1/2,

respectively; for m = 3 we use the Gauss collocation parameter, c1 = (5−
√
15)/10,

c2 = 1/2, c3 = (5 +
√
15)/10; the Radau IIA collocation parameters, c1 = (4−

√
6)/10,

c2 = (4 +
√
6)/10, c3 = 1; and three sets of arbitrary collocation parameters, c1 = 1/3,

c2 = 1/2, c3 = 1; c1 = 1/3, c2 = 1/2, c3 = 8/9; c1 = 1/9, c2 = 1/3, c3 = 1/2,

respectively.

Example 4.1. We take K(t, s) ≡ 1, g(t) = 2e−t − 1. It is easy to check that the exact

solution u(t) = e−t.

In Tables 1-8, we list the maximum values of the absolute errors for DC (QDG), CC

(QCG), DG and CG methods at the mesh points for Example 4.1. From these tables, we

observe that the numerical results agree with our theoretical analysis, except for Radau

IIA points in Tables 2, 3 and 6, where we observe the superconvergence phenomena

(for DC methods with Radau IIA points in Tables 2 and 3, see [1, Corollary 2.2.8]; for

CC methods with Radau IIA points in Table 6, it can be proved in a similar way as the

proof of [1, Corollary 2.2.8]).
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Table 1: The errors of uDC ∈ S
(−1)
m−1(Ih) for Example 4.1 with m = 1.

N c1 = 0.1 c1 = 0.49 c1 = 0.5 c1 = 0.8 c1 = 1

29 1.7559e-03 9.9419e-04 9.7466e-04 5.4564e-04 1.1491e-03

210 8.7843e-04 4.9757e-04 4.8780e-04 2.7263e-04 5.7420e-04

211 4.3933e-04 2.4890e-04 2.4402e-04 1.3627e-04 2.8701e-04

212 2.1970e-04 1.2448e-04 1.2204e-04 6.8123e-05 1.4348e-04

Order 1.00 1.00 1.00 1.00 1.00

Table 2: The errors of uDC ∈ S
(−1)
m−1(Ih) for Example 4.1 with m = 2.

N Gauss Radau IIA (1
4
, 1) (1

4
, 5

6
) (1

6
, 1

2
)

25 7.9289e-05 8.3254e-07 2.3253e-05 5.9447e-05 1.9981e-04

26 2.0082e-05 1.0392e-07 5.8955e-06 1.5059e-05 5.0406e-05

27 5.0533e-06 1.2981e-08 1.4841e-06 3.7896e-06 1.2658e-05

28 1.2674e-06 1.6221e-09 3.7231e-07 9.5052e-07 3.1717e-06

Order 2.00 3.00 2.00 2.00 2.00

Table 3: The errors of uDC ∈ S
(−1)
m−1(Ih) for Example 4.1 with m = 3.

N Gauss Radau IIA (1
3
, 1

2
, 1) (1

3
, 1

2
, 8

9
) (1

9
, 1

3
, 1

2
)

23 1.4822e-05 1.1005e-08 1.0950e-05 1.0121e-05 9.0603e-05

24 1.9414e-06 3.4335e-10 1.3486e-06 1.3860e-06 1.1685e-05

25 2.4842e-07 1.0718e-11 1.6731e-07 1.8081e-07 1.4836e-06

26 3.1419e-08 3.3523e-13 2.0834e-08 2.3074e-08 1.8691e-07

Order 2.98 5.00 3.00 2.97 2.99

Table 4: The errors of uCC ∈ S
(0)
m (Ih) for Example 4.1 with m = 1.

c1 = 0.1 c1 = 0.49 c1 = 0.5 c1 = 0.8 c1 = 1

N (l0(1) = −9) (l0(1) = − 51

49
) (l0(1) = −1) (l0(1) = − 1

4
) (l0(1) = 0)

28 8.0529e+237 3.2424e-02 3.8060e-06 1.5191e-06 1.4943e-06

29 NaN 2.2729e+02 9.5259e-07 3.8063e-07 3.7359e-07

210 NaN 4.4675e+10 2.3828e-07 9.5262e-08 9.3397e-08

211 NaN 6.9036e+27 5.9588e-08 2.3829e-08 2.3349e-08

Order - - 2.00 2.00 2.00

Example 4.2. We take K(t, s) = et−s, g(t) = (3e−t − et)/2. It is easy to check that it

has the same exact solution u(t) = e−t as Example 4.1.

In Tables 9-14, we list the maximum values of the absolute errors for FDC (FDG)

and FCC (FCG) methods at the mesh points for Example 4.2. From these tables, we

observe that the numerical results agree with our theoretical analysis. We again observe

the superconvergence phenomena for Radau IIA points in Tables 10, 11 and 14.
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Table 5: The errors of uCC ∈ S
(0)
m (Ih) for Example 4.1 with m = 2.

Gauss Radau IIA (1
4
, 1) (1

4
, 5

6
) (1

6
, 1

2
)

N (l0(1) = 1) (l0(1) = 0) (l0(1) = 0) (l0(1) =
3

5
) (l0(1) = 5)

25 1.4185e-05 1.6383e-07 2.4702e-07 1.2952e-06 8.7820e+15

26 3.5466e-06 2.0617e-08 3.1006e-08 1.7589e-07 2.5641e+37

27 8.8666e-07 2.5858e-09 3.8836e-09 2.3126e-08 1.7403e+81

28 2.2167e-07 3.2376e-10 4.8595e-10 2.9796e-09 6.3981e+169

Order 2.00 3.00 3.00 2.96 -

Table 6: The errors of uCC ∈ S
(0)
m (Ih) for Example 4.1 with m = 3.

Gauss Radau IIA (1
3
, 1

2
, 1) (1

3
, 1
2
, 8
9
) (1

9
, 1

3
, 1

2
)

N (l0(1) = −1) (l0(1) = 0) (l0(1) = 0) (l0(1) =
1

4
) (l0(1) = 16)

23 4.7046e-07 3.4077e-09 9.6947e-08 3.4410e-07 5.8470e+02

24 3.0572e-08 1.0778e-10 6.1441e-09 2.2510e-08 1.5808e+11

25 1.9484e-09 3.3876e-12 3.8660e-10 1.4390e-09 1.8290e+29

26 1.2297e-10 1.0669e-13 2.4241e-11 9.0958e-11 3.8965e+66

Order 3.99 4.99 4.00 3.98 -

Table 7: The errors of uDG ∈ S
(−1)
m−1(Ih) for Example 4.1.

m = 1 m = 2 m = 3

N max
1≤n≤N

|e(tn)| Order max
1≤n≤N

|e(tn)| Order max
1≤n≤N

|e(tn)| Order

22 1.0073e-01 - 4.3796e-03 - 1.1098e-04 -

23 5.6223e-02 0.84 1.1934e-03 1.88 1.5023e-05 2.89

24 2.9652e-02 0.92 3.1161e-04 1.94 1.9545e-06 2.94

25 1.5222e-02 0.96 7.9621e-05 1.97 2.4926e-07 2.97

26 7.7112e-03 0.98 2.0124e-05 1.98 3.1472e-08 2.99

27 3.8809e-03 0.99 5.0585e-06 1.99 3.9537e-09 2.99

28 1.9468e-03 1.00 1.2681e-06 2.00 4.9546e-10 3.00
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Table 8: The errors of uCG ∈ S
(0)
m (Ih) for Example 4.1.

m = 1 m = 2 m = 3

N max
1≤n≤N

|e(tn)| Order max
1≤n≤N

|e(tn)| Order max
1≤n≤N

|e(tn)| Order

22 8.7781e-03 - 5.8725e-04 - 4.0344e-06 -

23 2.3935e-03 1.87 1.4677e-04 2.00 2.7066e-07 3.90

24 6.2432e-04 1.94 3.6691e-05 2.00 1.7529e-08 3.95

25 1.5939e-04 1.97 9.1726e-06 2.00 1.1152e-09 3.97

26 4.0268e-05 1.98 2.2932e-06 2.00 7.0327e-11 3.99

27 1.0120e-05 1.99 9.1726e-06 2.00 4.4150e-12 3.99

28 2.5365e-06 2.00 5.7329e-07 2.00 2.7645e-13 4.00

Table 9: The errors of uFDC ∈ S
(−1)
m−1(Ih) for Example 4.2 with m = 1.

N c1 = 0.1 c1 = 0.49 c1 = 0.5 c1 = 0.8 c1 = 1

29 4.2859e-03 9.9420e-04 9.7466e-04 2.5996e-03 4.5758e-03

210 2.1473e-03 4.9757e-04 4.8780e-04 1.2996e-03 2.2867e-03

211 1.0748e-03 2.4890e-04 2.4402e-04 6.4978e-04 1.1431e-03

212 5.3766e-04 1.2448e-04 1.2204e-04 3.2488e-04 5.7146e-04

Order 1.00 1.00 1.00 1.00 1.00

Table 10: The errors of uFDC ∈ S
(−1)
m−1(Ih) for Example 4.2 with m = 2.

N Gauss Radau IIA (1
4
, 1) (1

4
, 5

6
) (1

6
, 1

2
)

25 7.9291e-05 3.9654e-06 1.8582e-04 5.9454e-05 4.5007e-04

26 2.0082e-05 4.9586e-07 4.7038e-05 1.5059e-05 1.1325e-04

27 5.0533e-06 6.1992e-08 1.1832e-05 3.7896e-06 2.8401e-05

28 1.2674e-06 7.7495e-09 2.9670e-06 9.5053e-07 7.1109e-06

Order 2.00 3.00 2.00 2.00 2.00

Table 11: The errors of uFDC ∈ S
(−1)
m−1(Ih) for Example 4.2 with m = 3.

N Gauss Radau IIA (1
3
, 1

2
, 1) (1

3
, 1

2
, 8

9
) (1

9
, 1

3
, 1

2
)

23 1.4823e-05 7.6075e-08 1.6374e-04 1.0643e-04 3.0343e-04

24 1.9414e-06 2.3845e-09 2.0828e-05 1.3442e-05 3.8873e-05

25 2.4843e-07 7.4574e-11 2.6248e-06 1.6876e-06 4.9128e-06

26 3.1419e-08 2.3323e-12 3.2939e-07 2.1138e-07 6.1730e-07

Order 2.98 5.00 2.99 3.00 2.99
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Table 12: The errors of uFCC ∈ S
(0)
m (Ih) for Example 4.2 with m = 1.

c1 = 0.1 c1 = 0.49 c1 = 0.5 c1 = 0.8 c1 = 1

N (l0(1) = −9) (l0(1) = − 51

49
) (l0(1) = −1) (l0(1) = − 1

4
) (l0(1) = 0)

28 8.0094e+237 3.2351e-02 7.7556e-06 3.2485e-06 1.1904e-05

29 NaN 2.2706e+02 1.9458e-06 8.1121e-07 2.9760e-06

210 NaN 4.4652e+10 4.8730e-07 2.0269e-07 7.4399e-07

211 NaN 6.9019e+27 1.2193e-07 5.0657e-08 1.8600e-07

Order - - 2.00 2.00 2.00

Table 13: The errors of uFCC ∈ S
(0)
m (Ih) for Example 4.2 with m = 2.

Gauss Radau IIA (1
4
, 1) (1

4
, 5

6
) (1

6
, 1

2
)

N (l0(1) = 1) (l0(1) = 0) (l0(1) = 0) (l0(1) =
3

5
) (l0(1) = 5)

25 1.4178e-05 2.6177e-06 3.9421e-06 1.2517e-06 8.5170e+15

26 3.5461e-06 3.2896e-07 4.9441e-07 1.7256e-07 2.5256e+37

27 8.8663e-07 4.1227e-08 6.1901e-08 2.2894e-08 1.7273e+81

28 2.2166e-07 5.1600e-09 7.7438e-09 2.9630e-09 6.3743e+169

Order 2.00 3.00 3.00 2.95 -

Table 14: The errors of uFCC ∈ S
(0)
m (Ih) for Example 4.2 with m = 3.

Gauss Radau IIA (1
3
, 1

2
, 1) (1

3
, 1
2
, 8
9
) (1

9
, 1

3
, 1

2
)

N (l0(1) = −1) (l0(1) = 0) (l0(1) = 0) (l0(1) =
1

4
) (l0(1) = 16)

23 4.7048e-07 3.5947e-08 3.0413e-06 6.2312e-07 4.8013e+02

24 3.0572e-08 1.1518e-09 1.9442e-07 3.9030e-08 1.4464e+11

25 1.9484e-09 3.6413e-11 1.2278e-08 2.4392e-09 1.7531e+29

26 1.2297e-10 1.1453e-12 7.7124e-10 1.5240e-10 3.8167e+66

Order 3.99 4.99 3.99 4.00 -
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