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Abstract. In this work, in order to capture discontinuities correctly in linear elastic
solid, augmented internal energy is defined according to the first law of thermody-

namics and Hooke’s law. The non-conservative linear elastic system is then rewrit-
ten into a conservative form with the help of an augmented total energy equation.

We find that the non-physical oscillations occur to the popular HLL and HLLC ap-

proximate Riemann solvers when directly applied to simulate the augmented linear
elastic solid. We analyze the intrinsic reason by defining a discrepancy factor which

can be used to estimate the difference of the total stress across a contact discontinu-

ity, where it is physically required to be continuous. We discover that non-physical
oscillations inevitably appear in the vicinity of the contact discontinuity if this fac-

tor is away from zero for an approximate Riemann problem solver. In order to
overcome this difficulty, we propose an approximate Riemann solver based on the

linearized double-shock technique. Theoretical analysis and numerical results show

that in comparison to the HLL and HLLC approximate Riemann solvers, the present
linearized double-shock Riemann solver can eliminate the non-physical oscillations

effectively.
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1. Introduction

In recent decades, various elastic and plastic models, such as hyper-elastic plastic

models and hypo-elastic plastic models, have been developed for simulating mechanical

behaviors of solid materials. To better understand the performance of those theoretical

models, researchers [9–11,20,21] have put much effort into developing exact solutions

concerning various models. Those exact solutions are precious and have played an

important role in constructing and verifying numerical solvers in the simulation of
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compressible solids. In this work, we focus on developing numerical method for linear

elastic solid and verifying it with exact solutions.

A hyper-elastic plastic model usually satisfies the second law of thermodynam-

ics and the corresponding governing system can be written in a conservative form.

Garaizar [11] proposed an exact iterative Riemann problem solver for the isotropic

hyper-elastic model. Based on the above work, LeFloch and Olsson [15] presented an

approximate Riemann solver, which only utilized features of shock waves. Gavrilyuk

et al. [12] constructed an approximate Riemann solver for the non-conservative non-

linear elastic system. Miller [20] presented an exact iterative Riemann solver for the

general hyper-elastic system. Barton et al. [1] presented another iterative method for

finding the exact solution to the Riemann problem with non-linear elasticity. Trangen-

stein et al. [22] constructed an approximate Riemann solver for considering the inter-

action of elastic waves at cell boundaries.

Compared with hyper-elastic plastic models, a hypo-elastic plastic model might be

inconsistent with thermodynamics strictly and often results in a non-conservation gov-

erning system. However, such a model bears the advantages of reproducing experi-

mental data accurately (especially for metal materials), introducing plastic deforma-

tion naturally, and dealing with complex multi-dimensional boundary problems easily.

For a hypo-elastic plastic model, an equation of state (EOS) or Hooke’s law is usually

applied in the elastic region, the EOS commonly includes the Murnagham equation of

state and the Mie-Gruüneisen equation of state. The former is suitable for simulating

the solid state at high temperature and high pressure. Tang et al. [21] put forward an

exact Riemann solver for the hydro-elastoplastic solid. For the latter, Maire et al. [19]

proposed a nodal-based Riemann solver in the lagrangian coordinate. Chen et al. [2]

proposed an approximate iterative solver for elastic-plastic Riemann problems. Cheng

and colleges [3, 4] developed a two-rarefaction Riemann solver (TRRSE) and Harten-

Lax-van Leer-contact (HLLC) approximate Riemann solvers for elastic waves. In their

work [3], they found the popular HLLC approximate Riemann solver suffered numeri-

cal oscillations. Later, they proposed a multi-material HLLC with both elastic and plastic

(MHLLCEP) approximate Riemann solvers [17] to fix the above difficulty by enforcing

the continuity of total stress across the contact discontinuity. Recently, Li et al. [16] pre-

sented another HLLC-type approximate Riemann solver, where the elastic-plastic shear

wave was considered, to overcome the above-mentioned problem.

In practice, for metal materials under not very high temperature and pressure,

Hooke’s law is more appropriate in reflecting the mechanical behavior of metals. This

usually leads to linear elastic modeling to the solid. Wilkins [23] extensively investi-

gated the linear elastic model, in which Hooke’s law was applied to model the elastic

region, and perfect plasticity was adopted to treat the plastic region with an equation

of state. As a result, the governing system is non-conservative in the elastic region,

while it is conservative in the plastic region. When there is a shock wave in the elastic

region, a non-conservation system might lead to incorrect numerical results as found

by Gavrilyuk et al. [12]. Barton et al. [1] and Trangenstein et al. [22] also pointed out

that the non-conservative system of an elastic model produced non-physical character-
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istic speeds. Consequently, the maintenance of conservation is essential to deal with

weak solutions (shock and contact waves) for elastic solids. To capture the shock wave

correctly with Hooke’s law, Gao et al. [9, 10] constructed self-consistent conservation

equations of mass and momentum by substituting the integral form of Hooke’s law into

the momentum equation. Based on that, they gave all the possible exact solutions for

the linear elastic-perfectly plastic Riemann problem [10] and proposed a non-iterative

solution structure-based adaptive approximate (SSAA) Riemann solver for simulating

the elastic-perfectly plastic flows in solid [9].

In the work [9], the governing system with the perfect plastic model is conservative

and contains a conserved energy equation, while the governing system in the elastic

region is non-conservative without any energy equation. As a result, the coupling of

a conservation system with a non-conservation system makes the production of plastic

energy unnatural during the transition of the elastic state to the plastic state. For

tackling this problem, it is necessary to restore the energy conservation equation in the

linear elastic region. In this work, we will define augmented specific internal energy

by utilizing the first law of thermodynamics and Hooke’s law, and the conserved total

energy equation can then be put back into the governing system. Such augmented

technology has been employed by Liu [18] for modeling compressible water with the

Tait equation.

For the conservation system with the augmented total energy equation, we will

show that non-physical oscillations occur to the popular Harten-Lax-van Leer (HLL)

[6–8, 14] and Harten-Lax-van Leer-contact (HLLC) [13] approximate Riemann solvers

when they are directly applied. We shall theoretically analyze the defects of HLL and

HLLC approximate Riemann solvers by using a discrepancy factor which is defined

based on a physical requirement that the total stress should be continuous across a con-

tact wave. In order to correct the defects of the above solvers, we shall propose an

approximate Riemann solver based on the linearized double-shock technique [5] for

the augmented system.

This paper is organized as follows. In Section 2, we develop the conserved system

for the linear elastic solid with the augmented total energy equation, and the compat-

ibility between the augmented system and the original system is analyzed. The exact

Riemann solver for the Riemann problem of the linear elastic system is presented in

Section 3. In Sections 4 and 5, the discrepancy of total stress to the HLL and HLLC

Riemann solvers are analyzed, respectively. In Section 6, we propose a linearized

double-shock approximate Riemann solver. Several numerical examples are presented

in Section 7 to validate the method. Finally, conclusions are given in Section 8.

2. Governing equations

2.1. Non-conservative equations

For the one-dimensional linear elastic solid, the non-conservative governing equa-

tions are as follows [10]:
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∂U

∂t
+

∂F (U)

∂x
= S(U), (2.1)

where

U =




ρ
ρu
ρσx


 , F (U) =




ρu
ρu2 − σx
ρuσx


 , S(U) =




0
0

−
(
K +

4

3
µ

)
ρ̇


 . (2.2)

Here, ρ is the density, u is the velocity, σx is the total stress, K is the bulk modulus

and µ is the shear modulus. The total stress σx can be decomposed into the hydrostatic

pressure p and the deviatoric stress sx, which is

σx = −p+ sx. (2.3)

With Hooke’s law, we have

ṗ = K
ρ̇

ρ
, ṡx = 2µ

(
ε̇x +

1

3

ρ̇

ρ

)
. (2.4)

Here, the variable εx is the strain. The dot “·” represents the derivative of a physical

quantity in the Lagrangian coordinate.

2.2. Augmented equations

In this section, augmented specific internal energy e is constructed for the linear

elastic governing equations by utilizing Hooke’s law and the first law of thermodynam-

ics. Integrating (2.4), we obtain

ρ = ρ0 exp

(
p− p0
K

)
, (2.5)

where ρ0 is the density at a reference pressure p0. Supposing the solid is adiabatic, the

first law of thermodynamics goes to

de+ pd

(
1

ρ

)
= 0. (2.6)

Substituting (2.5) into (2.6) yields

de+ pd

(
1

ρ0 exp
(
p−p0
K

)
)

= 0. (2.7)

Integrating the above equation, we can get

p = ρe0 − ρe−K, (2.8)



Double-Shock Approximate Riemann Solver for Linear Elastic Solid 145

where the e serves to be the specific internal energy, e0 is a given constant which guar-

antees positive pressure. Hence, we can define augmented total energy E as follows:

E = ρe+
1

2
ρu2. (2.9)

The system (2.1) can then be rewritten as

∂U

∂t
+

∂G (U)

∂x
= 0, (2.10)

where

U =



ρ
ρu
E


 , G (U) =




ρu
ρu2 − σx
(E − σx)u


 (2.11)

with the constitutive model as

(I) Total stress decomposition: σx = −p+ sx,

(II) Hooke’s law: ṡx = 2µ

(
ε̇x +

1

3

ρ̇

ρ

)
,

(III) Augmented equation of state: (2.12)

p(ρ, e) = ρe0 − ρe−K,E = ρe+
1

2
ρu2,

(IV) Minimized hydrostatic pressure: min p = −1

3
Y0,

where Y0 is the yield strength of the material in simple tension.

2.3. Compatibility analysis

2.3.1. Non-conservative form

For the quasi-linear form of governing system (2.1)-(2.2), the Riemann problem under

the Eulerian framework is described as

∂W

∂t
+A (W )

∂W

∂x
= 0,

W |t=0 =

{
WL|t=0, x < x0,

WR|t=0, x > x0,

(2.13)

where

A (W ) =



u ρ 0
0 u 1/ρ
0 −K − 4µ/3 u


 . (2.14)

Here, x0 is the initial discontinuity position, W = (ρ, u, σx)
T , WL = (ρL, uL, σxL)

T and

WR = (ρR, uR, σxR)
T are the initial primitive constant variables of the linear elastic

solid at time t = 0.
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The eigenvalues and corresponding right eigenvectors of the Jacobian matrix A(W )
are

λ1 = u− c, λ2 = u, λ3 = u+ c, (2.15)

and

R1 =




−ρ
c

−K − 4µ/3


 , R2 =




1
0
0


 , R3 =




ρ
c

K + 4µ/3


 , (2.16)

where c =
√

(4µ + 3K)/(3ρ).
It is easy to show that λ2-field is linearly degenerated, λ1-field and λ3-field are

genuinely non-linear. The Riemann invariants for the respective λ1-field and λ3-field

are given by
dρ

±ρ
=

dρu

±c
=

dσx
±(K + 4µ/3)

. (2.17)

According to above ODEs, we can get

Iλ1
(ρ, u) = u−

√
16µ + 12K

3ρ
= constant,

Iλ1
(ρ, σx) = σx +

(
4µ

3
+K

)
ln ρ = constant,

(2.18)

Iλ3
(ρ, u) = u+

√
16µ + 12K

3ρ
= constant,

Iλ3
(ρ, σx) = σx +

(
4µ

3
+K

)
ln ρ = constant.

(2.19)

For λ2-field, the Riemann invariants are obtained as

dρ

1
=

dρu

0
=

dσx
0

. (2.20)

By solving (2.20), one can obtain

Iλ2
(ρ, u) = u = constant,

Iλ2
(ρ, σx) = σx = constant.

(2.21)

The expression of (2.21) implies that the velocity and total stress are continuous across

the λ2-field. Thus, λ2-field is a contact discontinuity.

2.3.2. Conservative form

According to (2.5) and (2.8), only one variable is independent of each other among

p, e, ρ. Assuming this independent variable is ρ, we can get

f(ρ) := σx = −p+ sx = −
(
K +

4µ

3

)
ln ρ+ C, g = −∂f

∂ρ
, (2.22)



Double-Shock Approximate Riemann Solver for Linear Elastic Solid 147

where C is an arbitrary constant. Substituting (2.22) into (2.11), let m = ρ, n = ρu, l =
E, we can write the augmented governing system (2.10)-(2.11) into its quasi-linear

form
∂U

∂t
+B (U)

∂U

∂x
= 0, (2.23)

where

B =




0 1 0

− n2

m2
− g

2n

m
0

−nl

x2
− n

mg − f

m2

l − f

m

n

m



. (2.24)

Here, U is a vector of conservative variables (m,n, l)T . We can obtain its three eigen-

values

γ1 =
n−√

gm

m
= u− c, γ2 =

n

m
= u, γ3 =

n+
√
gm

m
= u+ c, (2.25)

and corresponding right eigenvector matrix

R =




0 − m

f +
√
gn− l

m

−f +
√
gn+ l

0 − n−√
gm

f +
√
gn− l

−
(
−√

g
)
m− n

−f +
√
gn+ l

1 1 1



. (2.26)

We can show that the γ1-field and γ3-field are genuinely non-linear for the conser-

vative system, while the γ2-field is linearly degenerated. For the γ1-field, the Riemann

invariants can be calculated by

dm

− m
f+

√
gn−l

=
dn

− n−√
gm

f+
√
gn−l

=
dl

1
. (2.27)

The augmented energy l is completely determined by density m and velocity n/m, only

one ordinary differential equation is obtained in the (2.27), which is

dm

− m
f+

√
gn−l

=
dn

− n−√
gm

f+
√
gn−l

. (2.28)

Thus the Riemann invariant for γ1-field can be given by

Iγ1(m,n) =
n

m
−
√

16µ + 12K

3m
= u−

√
16µ + 12K

3ρ
= constant. (2.29)

Similarly, the Riemann invariant for γ3-field can be obtained by

Iγ3(m,n) =
n

m
+

√
16µ + 12K

3m
= u+

√
16µ + 12K

3ρ
= constant. (2.30)
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Hooke’s law still holds for the γ1-field and γ3-field, we can get

Iγ1(m,σx) = Iγ3(m,σx) = σx +

(
4µ

3
+K

)
lnm

= σx +

(
4µ

3
+K

)
ln ρ = constant. (2.31)

For the γ2-field, according to (2.22), we can prove that f(m) is a monotone and con-

tinuous function. The inverse function for f(m) can be given by

φ(σx) := m = C0 exp

(
− σx

4
3µ+K

)
, (2.32)

where C0 is a constant. Combining (2.26) with (2.32), the Riemann invariants of the

γ2-field can be obtained by solving the following ODEs:

dφ(σx)

0
=

dn

0
=

dl

1
. (2.33)

The corresponding Riemann invariants are

Iγ2(m,n) =
n

m
= u = constant,

Iγ2(m,σx) = σx = constant.
(2.34)

As a result, the γ2-field is a contact discontinuity, across which the velocity and the total

stress are continuous. Comparing (2.15) with (2.25) and (2.17)-(2.21) with (2.27)-

(2.34), we can conclude the following conclusion.

Theorem 2.1. The eigenvalues systems and corresponding Riemann invariants of the aug-

mented conservative system (2.23)-(2.24) and non-conservative system (2.1)-(2.2) are

consistent.

3. Exact Riemann solver

For linear elastic solid, the one-dimensional exact solid-solid Riemann solution

structure can be presented as shown in Fig. 1.

Figure 1: The exact three-wave solution structure of solid-solid Riemann solution.
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Where, WL = (ρ∗L, u∗L, σx∗L)
T and WR = (ρ∗R, u∗R, σx∗R)

T are the unknown prim-

itive constant variables on the left and right sides of the contact discontinuity.

As analysis in Section 2, λ1-field and λ3-field are genuinely non-linear, the corre-

sponding wave can be either a rarefaction wave or a shock wave. If it is a rarefaction

wave, according to (2.18) and (2.19), one can get

u∗L = uL −
√

16µ + 12K

3ρL
+

√
16µ + 12K

3ρ∗L
,

u∗R = uR +

√
16µ+ 12K

3ρR
−
√

16µ + 12K

3ρ∗R
,

(3.1)

where

ρ∗L = ρL exp

(
3σxL − 3σx∗L

4µ + 3K

)
, ρ∗R = ρR exp

(
3σxR − 3σx∗R

4µ + 3K

)
. (3.2)

Supposing λ1-field and λ3-field are both shock waves, the Rankine-Hugoniot condition

across the elastic shock wave is

[ρu] = S[ρ],
[
ρu2 − σx

]
= S[ρu],

(3.3)

where S represents the shock wave speed. Applying (3.3) for the λ1-field and λ3-field

respectively, we can obtain

u∗L = uL +

√
(σxL − σx∗L)

(
1

ρL
− 1

ρ∗L

)
,

u∗R = uR −
√

(σxR − σx∗R)

(
1

ρR
− 1

ρ∗R

)
.

(3.4)

For λ2-field, due to (2.21), σx∗L = σx∗R and u∗L = u∗R hold. Then we can obtain the

total stress σ∗L and σ∗R in the star region by solving a nonlinear algebraic equation,

say, with the bisection method. The nonlinear algebraic equation is shown as follows:

h (σ∗L.WL,WR) = geL (σ∗L,WL) + geR (σ∗R,WR) + uR − uL = 0, (3.5)

where the geL(σ∗L,WL) and geR(σ∗R,WR) are given by

geL (σx∗L,WL) =





√
(σL − σx∗L)

(
1

ρL
− 1

ρ∗L

)
, if σx∗L < σL,

√
16µ + 12K

3ρL
−
√

16µ + 12K

3ρ∗L
, if σx∗L ≥ σL,

(3.6a)
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geR (σx∗R,WR) =





√
(σR − σx∗R)

(
1

ρR
− 1

ρ∗R

)
, if σx∗R < σR,

√
16µ + 12K

3ρR
−
√

16µ + 12K

3ρ∗R
, if σx∗R ≥ σR,

(3.6b)

ρ∗L = ρL exp

(
3σxL − 3σx∗L

4µ+ 3K

)
, ρ∗R = ρR exp

(
3σxR − 3σx∗R

4µ+ 3K

)
. (3.6c)

Here, superscript e denotes that the solid is elastic, subscripts ”L” and ”R” stand for

the left and right constant states respectively. If the total stress σx∗L and σx∗R in the

star region are known, thanks to (3.2) and (3.5), we can obtain

u∗L = u∗R =
1

2
(uL + uR) +

1

2

[
geR (σ∗R ,WR)− geL (σ∗L ,WL)

]
,

ρ∗L = ρL exp

(
3σxL − 3σx∗L

4µ + 3K

)
, ρ∗R = ρR exp

(
3σxR − 3σx∗R

4µ+ 3K

)
,

sx∗L = −4µ

3
ln

ρ∗
ρL

+ sxL, sx∗R = −4µ

3
ln

ρ∗
ρR

+ sxR.

(3.7)

4. HLL approximate Riemann solver for the augmented governing system

4.1. The HLL approximate Riemann solver

As shown in Fig. 2, the whole wave structure arising from the solution of Riemann

problem is contained in the control volume [xL, xR]× [0, T ], where xL and xR satisfy

xL ≤ SLT , xR ≥ SRT . (4.1)

Here, SL and SR are the slowest and fastest signal speeds perturbing the initial data

states UL and UR, respectively, and T is the chosen time. The integral form of the

conservation laws (2.10) in the control volume [xL, xR]× [0, T ] reads
∫ xR

xL

U(x, T )dx =

∫ xR

xL

U(x, 0)dx+

∫ T

0
F
(
U(xL, t)

)
dt−

∫ T

0
F
(
U(xR, t)

)
dt. (4.2)

Figure 2: The HLL approximate Riemann solver.
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The HLL approximate Riemann solver’s conserved quantity in the star region [8] is

defined by

U
hll :=

1

T (SR − SL)

∫ TSR

TSL

U(x, T )dx =
SRUR − SLUL + FL − FR

SR − SL
. (4.3)

Considering a control volume [xL, 0] × [0, T ], as shown in Fig. 2, integrating (2.10)

in the above control volume, we can get

∫ 0

xL

U(x, T )dx =

∫ 0

xL

U(x, 0)dx+

∫ T

0
F (U (xL, t))dt−

∫ T

0
F (U (0, t)) dt. (4.4)

Combining (4.3) and (4.4), one can obtain

F
hll := FR + SR

(
U

hll −UR

)
=

SRFL − SLFR + SLSR (UR −UL)

SR − SL
. (4.5)

The HLL approximate Riemann solver is then given as follows:

Ũ(x, t) =





UL, if
x

t
≤ SL,

U
hll, if SL ≤ x

t
≤ SR,

UR, if
x

t
≥ SR,

U
hll =

SRUR − SLUL + FL − FR

SR − SL
, (4.6)

F
hll =





FL, if 0 ≤ SL,

SRFL − SLFR + SLSR (UR −UL)

SR − SL
, if SL ≤ 0 ≤ SR,

FR, if 0 ≥ SR.

(4.7)

Where FK=F(UK , sK),K = L/R. If the speeds of left- and right-going waves are

given, we can evaluate all states in the star regions. Here we define the speeds of left-

and right-going waves as

SR = max(uL + cL, uR + cR, 0), SL = min(uL − cL, uR − cR, 0), (4.8)

where cL =
√

4µ+3K
3ρL

and cR =
√

4µ+3K
3ρR

.

4.2. The discrepancy analysis for the HLL approximate Riemann solver

The numerical examples in the next section will show that non-physical oscillations

occurring to the HLL approximate Riemann solver when directly applied to simulate the

augmented linear elastic solid. We analyze the reason by defining a discrepancy factor

that can be utilized to estimate the difference of the total stress across the contact

discontinuity, where it is physically required to be continuous.
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We assume that WL = (ρL, uL, pL, sxL)
T , WR = (ρR, uR, pR, sxR)

T and W hll =

(ρhll, uhll, phll, shll)
T

, where the variables in the star region are density ρhll, velocity

uhll, deviator stress shll and pressure phll. They are known if the U
hll is given.

Thanks to (3.7) and (4.6), we can obtain

sx∗L := −4µ

3
ln

ρhll

ρL
+ sxL, sx∗R := −4µ

3
ln

ρhll

ρR
+ sxR, (4.9)

px∗L := K ln
ρhll

ρL
+ pxL, px∗R := K ln

ρhll

ρR
+ pxR. (4.10)

Using (2.12), we can get

σx∗L = −px∗L + sx∗L, σx∗R = −px∗R + sx∗R. (4.11)

Substituting (4.9) and (4.10) into (4.11) yields

σx∗L = σxL −
(
4µ

3
+K

)
ln

ρhll

ρL
, (4.12)

σx∗R = σxR −
(
4µ

3
+K

)
ln

ρhll

ρR
, (4.13)

where

ρhll =
SRρR − SLρL + ρLuL − ρRuR

SR − SL

. (4.14)

Then we define a discrepancy factor η, which is

θ1 =

∣∣∣∣
σx∗L − σx∗R

σx∗L

∣∣∣∣ , θ2 =

∣∣∣∣
σx∗L − σx∗R

σx∗R

∣∣∣∣ , (4.15)

η := max {θ1, θ2} . (4.16)

To describe the discrepancy degree of the HLL approximate Riemann solver, we expand

the formula (4.16) in detail. Substituting (4.12)-(4.15) into (4.16) yields

η := max

{∣∣∣∣
σxL − σxR

σxL −
(4µ

3 +K
)
ln
(
1 + uL−uR

SR−SL

)
∣∣∣∣,

∣∣∣∣
σxL − σxR

σxR −
(4µ

3 +K
)
ln
(
1 + uL−uR

SR−SL

)
∣∣∣∣

}
, (4.17)

if ρL = ρR. Based on (4.17), we discuss the influence of different initial conditions on

the HLL approximate Riemann solver by using the discrepancy factor. In general, the

speed of sound cL and cR are much larger than the initial velocity uL and uR. In the

premise of ignoring high-speed collision which usually leads to plastic deformation, we

can obtain

ln

(
1 +

uL − uR
SR − SL

)
→ 0 (4.18)
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with

cR + cL ≫ |uR − uL|.

Thus if cR + cL ≫ |uR − uL| holds, the discrepancy factor η is mainly determined by

(σxL − σxR)/σxL and (σxL − σxR)/σxR. Because the 4µ/3 + K is a large number for

solid, as |uR − uL| grows larger, its effect on the discrepancy factor cannot be ignored.

Based on the above discussion, the discrepancy factor can be refined as follows:

η =





max

{∣∣∣
σxL − σxR

σxL

∣∣∣,
∣∣∣
σxL − σxR

σxR

∣∣∣
}
, if cR + cL ≫ |uR − uL|,

max

{∣∣∣∣
σxL − σxR

σxL −
(4µ

3 +K
)
ln
(
1 + uL−uR

SR−SL

)
∣∣∣∣,

∣∣∣∣
σxL − σxR

σxR − (4µ3 +K) ln
(
1 + uL−uR

SR−SL

)
∣∣∣∣

}
, others.

(4.19)

According to (4.19), if σxL = σxR holds, we can get η = 0. If not, the discrepancy

of the total stress across the contact discontinuity appears, which is against the phys-

ical requirement. The larger the initial difference of the total stress is, the higher the

discrepancy factor is.

5. HLLC approximate Riemann solver for the augmented governing
system

5.1. The HLLC approximate Riemann solver

As shown in Fig. 3, the whole wave structure arising from the solution of the Rie-

mann problem is contained in the control volume [xL, xR] × [0, T ]. Now, in addition

to the slowest and fastest signal speeds SL and SR, we include a middle wave of the

speed S∗.

Evaluation of the integral form of the conservation laws in the control volume re-

produces the result of Eq. (4.3), even if variations of the integrand across the wave

of the speed S∗ are allowed. By splitting the left-hand side of integral (4.3) into two

Figure 3: The HLLC approximate Riemann solver.
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terms, we can obtain

1

T (SR − SL)

∫ TSR

TSL

U(x, T )dx

=
1

T (SR − SL)

∫ TS∗

TSL

U(x, T )dx+
1

T (SR − SL)

∫ TSR

TS∗

U(x, T )dx. (5.1)

Defining the integral averages

U∗L =
1

T (SR − SL)

∫ TS∗

TSL

U(x, T )dx,

U∗R =
1

T (SR − SL)

∫ TSR

TS∗

U(x, T )dx

(5.2)

with (4.3), (5.1) and (5.2), one can have

S∗ − SL

SR − SL
U∗L +

SR − S∗
SR − SL

U∗R = UHLL. (5.3)

Applying Rankine-Hugoniot conditions across each wave with respective speeds SL, SR

and S∗, we can get

F∗L = FL + SL (U∗L − UL) , (5.4)

F∗R = F∗L + S∗ (U∗R − U∗L) , (5.5)

F∗R = FR + SR (U∗R − UR) . (5.6)

The middle wave with speed S∗ is assumed to be a contact discontinuity, for pressure

and velocity we have

p∗L = p∗R = p∗, u∗L = u∗R = u∗. (5.7)

In addition, it is entirely convenient to set

S∗ = u∗. (5.8)

By using (5.3)-(5.8), the HLLC approximate Riemann solver is given as follows:

Ũ(x, t) =





UL, if
x

t
≤ SL,

U∗L, if SL ≤ x

t
≤ S∗,

U∗R, if S∗ ≤
x

t
≤ SR,

UR, if
x

t
≥ SR,

(5.9)

where

U∗L =
SLUL − FL + p∗LD∗

SL − S∗
,

U∗R =
SRUR − FR + p∗RD∗

SL − S∗
,

(5.10)
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and D∗ = [0, 1, S∗]
T . A corresponding HLLC numerical flux [8] in the Eulerian frame-

work is defined as

F
HLLC =





FL, if 0 ≤ SL,

F∗L, if SL ≤ 0 ≤ S∗,

F∗R, if S∗ ≤ 0 ≤ SR,

FR, if 0 ≥ SR,

(5.11)

where

F∗K = F (U∗K , s∗K) , FK=F (UK , sK) , K = L,R, (5.12)

S∗ =
pR − pL + ρLuL (SL − uL)− ρRuR (SR − uR)

ρL (SL − uL)− ρR (SR − uR)
. (5.13)

The deviator stress in the star region is computed by

sx∗L = −4µ

3
ln

ρ∗L
ρL

+ sxL, sx∗R = −4µ

3
ln

ρ∗L
ρR

+ sxR. (5.14)

5.2. The discrepancy analysis for the HLLC approximate Riemann solver

The numerical examples in the next section will show that the non-physical oscil-

lations occurring to the HLLC approximate Riemann solver when directly applied to

simulate the augmented linear elastic solid. Here, we analyze the insightful reason by

using the discrepancy factor defined above.

We assume that WL = (ρL, uL, pL, sxL)
T , WR = (ρR, uR, pR, sxR)

T and W∗L =
(ρ∗L, u∗L, p∗L, sx∗L)

T , W∗R = (ρ∗R, u∗R, p∗R, sx∗R)
T , where the meanings of above sub-

scripts “L”, “ ∗ L”, “ ∗ R”, “R”, “xL”, “x ∗ L”, “x ∗ R”, “xR” are the same as shown in

Fig. 1.

There are two ways to construct HLLC approximate Riemannian solver in detail.

The first is to use the fluid approximate Riemann solver directly, ignoring the effect of

deviatoric stress. According to reference [8], we get that

p∗L = pL + ρL (SL − uL) (S∗ − uL) , p∗R = pR + ρR (SR − uR) (S∗ − uR) . (5.15)

At the left and right sides of the contact discontinuity, applying (2.12), we can have

σx∗L = −p∗L + sx∗L, σx∗R = −p∗R + sx∗R. (5.16)

Substituting (5.14), (5.15) into (5.16) yields,

σx∗L = σxL − 4µ

3
ln

ρ∗L
ρL

− ρL (SL − uL) (S∗ − uL) , (5.17)

σx∗R = σxR − 4µ

3
ln

ρ∗R
ρR

− ρR (SR − uR) (S∗ − uR) . (5.18)
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Subtracting (5.17) from (5.18), we can obtain

σx∗L − σx∗R = σxL − σxR +
4µ

3

(
ln

ρ∗R
ρR

− ln
ρ∗L
ρL

)
+ ρR (SR − uR) (S∗ − uR)

− ρL (SL − uL) (S∗ − uL) , (5.19)

where

ρ∗L=ρL

(
SL − uL
SL − S∗

)
, ρ∗R=ρR

(
SR − uR
SR − S∗

)
. (5.20)

Then we can compute the discrepancy factor η as defined in the (4.16) in detail.

Supposing ρL = ρR, substituting (5.17)-(5.20) into (4.16) yields

η :=max





∣∣∣∣
σxL−σxR+ 4µ

3
ln

(SR−uR)(SL−S∗)
(SR−S∗)(SL−uL)

+ρR(SR−uR)(S∗−uR)−ρL(SL−uL)(S∗−uL)

σxR− 4µ
3

ln
(

SR−uR
SR−S∗

)

−ρR(SR−uR)(S∗−uR)

∣∣∣∣,
∣∣∣∣
σxL−σxR+ 4µ

3
ln

(SR−uR)(SL−S∗)
(SR−S∗)(SL−uL)

+ρR(SR−uR)(S∗−uR)−ρL(SL−uL)(S∗−uL)

σxL− 4µ
3

ln
(

SL−uL
SL−S∗

)

−ρL(SL−uL)(S∗−uL)

∣∣∣∣





. (5.21)

The second is to adopt the method of reference [3]. From (5.4)-(5.6), one can obtain

p∗L = pL + ρL (SL − uL) (s
∗ + sx∗L − uL) ,

p∗R = pR + ρR (SR − uR) (s
∗ + sx∗R − uR) ,

(5.22)

where

s∗ =
pR − pL + ρL (uL − sx∗L) (SL − uL)− ρR (uR − sx∗R) (SR − uR)

ρL (SL − uL)− ρR (SR − uR)
, (5.23)

sx∗L =
s∗xx, L − sxL

ρL (sL − uL)
, sx∗R =

s∗xx,R − sxR

ρR (sR − uR)
, (5.24)

s∗xx, L = sx L + ρL (sL − uL) s̃
∗
x, s∗xx,R = sxR + ρR (sR − uR) s̃

∗
x,

s̃∗x =
sxR − sxL

ρL (sL − uL)− ρR (sR − uR)
.

Combining (5.16) and (5.22)-(5.24), we can get

σ∗L = −pL − ρL (SL − uL) (s
∗ + sx∗L − uL) +

s∗xx, L − sxL

ρL (sL − uL)
,

σ∗R = −pR − ρR (SR − uR) (s
∗ − sx∗R − uR) +

s∗xx,R − sxR

ρR (sR − uR)
,

(5.25)

σx∗L − σx∗R = (pR − pL) + ρR (SR − uR) (s
∗ − sx∗R − uR)− ρL,

(SL − uL) (s
∗ + sx∗L − uL) +

s∗xx,R − sxR

ρR (sR − uR)
−

s∗xx, L − sxL

ρL (sL − uL)
.

(5.26)

Supposing ρL = ρR and substituting (5.25)-(5.26) into (4.16) yields

η := max

(∣∣∣
σx∗L − σx∗R

σx∗L

∣∣∣,
∣∣∣
σx∗L − σx∗R

σx∗R

∣∣∣
)
. (5.27)
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According to (5.21) and (5.27), if the η 6= 0 holds, it means that the total stress is

not continuous across a contact discontinuity, which goes against the physical require-

ment. One may have realized that the appearance of discrepancy is due to the wrong

imposition of pressure continuity across the contact discontinuity in the previous litera-

ture. Such a defect has been fixed in the MHLLCEP [17] by enforcing the continuity of

total stress across the contact discontinuity. In the next section, we will propose a lin-

earized double-shock approximate Riemann solver, which can naturally hold continuity

of total stress there.

6. Linearized double-shock approximate Riemann solver for the
augmented governing system

To overcome the shortcomings of the popular HLL and HLLC approximate Riemann

solvers, we present a linearized double-shock approximation solver. The structure of

the solution is the same as shown in Fig. 1, in which the nonlinear waves are assumed

both shock waves.

In (3.6) Taylor expansion yields

√
(σxL − σx∗L)

(
1

ρL
− 1

ρ∗L

)
= − σxL

cLρL

(
σx∗L
σxL

− 1

)
+O

(
σx∗L
σxL

− 1

)2

, (6.1)

√
(σxR − σx∗R)

(
1

ρR
− 1

ρ∗R

)
= − σxR

cRρR

(
σx∗R
σxR

− 1

)
+O

(
σx∗R
σxR

− 1

)2

. (6.2)

Taking the leading term of (6.1) and (6.2), we have

√
(σxL − σx∗L)

(
1

ρL
− 1

ρx∗L

)
= − σxL

cLρL

(
σx∗L
σxL

− 1

)
, (6.3)

√
(σxR − σx∗R)

(
1

ρR
− 1

ρ∗R

)
= − σxR

cRρR

(
σx∗R
σxR

− 1

)
. (6.4)

Substituting (6.3) and (6.4) into (3.5), one can get

σx∗L = σx∗R =
1

1
cRρR

+ 1
cLρL

(
σxR
cRρR

+
σxL
cLρL

)
+ uR − uL. (6.5)

Substituting (6.3)-(6.5) into (3.7), we can obtain

u∗L = u∗R =
1

2
(uL + uR) +

1

2

[
σxL
cLρL

(
σx∗L
σxL

− 1

)
− σR

cRρR

(
σx∗R
σxR

− 1

)]
, (6.6)

ρ∗L = ρL exp

(
3σxL − 3σx∗L

4µ+ 3K

)
, ρ∗R = ρR exp

(
3σxR − 3σx∗R

4µ+ 3K

)
, (6.7)

sx∗L = −4µ

3
ln

ρ∗L
ρL

+ sxL, sx∗R = −4µ

3
ln

ρ∗R
ρR

+ sxR. (6.8)
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According to reference [9], when |σI/σK − 1| < 1, for the elastic wave connecting

WK with W∗K , σx∗K calculated by (6.5) approximates its exact solution σe
x∗K to the

accuracy of O(σI/σxL − 1)2 + O(σI/σxR − 1)2, u∗K calculated by (6.6) approximates

its exact solution ue∗K to the accuracy of O(σI/σxL − 1)2 −O(σI/σxR − 1)2.

We calculate the discrepancy factor η for the linearized double-shock approximate

Riemann solver. Substituting (6.5) into (4.16), one can obtain

θ1 = 0, θ2 = 0, η = 0. (6.9)

Thus no matter what the initial conditions are, the η = 0 always holds for the lin-

earized double-shock approximate Riemann solver, which means that the total stress

is always continuous across a contact discontinuity under the linearized double-shock

approximate Riemann solver.

7. Numerical performance testing of approximate Riemann solvers

In this section, the HLLC approximate Riemann solver in reference [3] is proposed

for elastic-plastic flows in solid for comparison. We test the HLL, HLLC, and linearized

double-shock approximate Riemann solvers to demonstrate that the discrepancy factor

can be used as an index to measure the magnitude of the non-physical oscillations. If

η = 0 holds, There are no non-physical oscillations in the numerical simulation. If not,

the non-physical oscillations will become more obvious when η increases.

In order to obtain numerical results, we use the following numerical algorithm.

Algorithm 7.1

Step 1. Inputting the initial constant states UL, UR and material parameters for

the solid.

Step 2. Obtaining the flux Fi± 1

2

by using approximation Riemann solver.

Step 3. Obtaining the Un+1 by using Un+1
ij = Un

ij − ∆t
∆x

(F i+ 1

2

− Fi− 1

2

).

Step 4. The stress can be obtained by the formula sn+1
x,i = snx,i −∆t4µ3 ln ρn+1

ρn
.

In the following numerical tests, the solid material is aluminum with physical con-

stant parameters γ = 2.67, c0 = 5380.0m/s, ρ0 = 2710.0 kg/m3 , K = 7400.0Mpa,

µ = 2650.0Mpa, Y0 = 300.0Mpa. After the nondimensionalization, these parameters

are transformed into γ = 2.67, c0 = 538.0, ρ0 = 2.71, K = 740000.0, µ = 265000,Y0 =
3000.0. The numerical results can be compared with the exact solution [10]. The com-

putational domain is set to be [0.0, 4.0] with 3000 uniform grid points and the initial

interface is located at 2.0. Besides, the CFL number is 0.2 and the terminal time is

0.001. Below, in the figures, the legends of HLL, HLLC and Double-Shock represent the

numerical results simulated with HLL, HLLC and the linearized double-shock approxi-

mate Riemann solvers, respectively.
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Test 1. Numerical test of η = 0.0. Its Riemann problem solution type is “SE|SE”.

The nondimensional initial conditions are

uL = 2.0, pL = 1.0, sL = 0.0, ρL = 2.7,

uR = −1.0, pR = 1.0, sR = 0.0, ρR = 2.7.
(7.1)

For the case of test 1, the σxL − σxR = 0 holds, which means that discrepancy

factor η equals zero for the HLL and HLLC schemes. As shown in Fig. 4, there are no

non-physical oscillations in the region of interface for all three approximate Riemann

solvers.

Density Deviator stress

Total stress Velocity

Figure 4: Numerical test of η = 0.0 (test 1).

Test 2. Numerical test of η 6= 0.0. The nondimensional initial conditions are

uL = 2.0, pL = 1.0, sL = −500.0, ρL = 2.7,

uR = −1.0, pR = 1.0, sR = 0.0, ρR = 2.7.
(7.2)

For test 2, the initial difference of total stress is not zero. As a result, the discrepancy

factors are not zero for both the HLL and HLLC solvers. As shown in Fig. 5, we can

see that non-physical oscillations occurring to the HLL and HLLC solvers in the region

of the interface. The non-physical oscillations inevitably appear in the vicinity of con-

tact discontinuity if this factor is away from zero for the HLL and HLLC approximate
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Density Deviator stress

Total stress Velocity

Figure 5: Numerical test of η 6= 0.0 (test 2).

Riemann solvers, and the linearized double-shock approximate Riemann solver can

eliminate these non-physical oscillations effectively.

Test 3. Numerical test of η 6= 0.0. The nondimensional initial conditions are

uL = 2.0, pL = 1.0, sL = −1400.0, ρL = 2.7,

uR = −1.0, pR = 1.0, sR = 0.0, ρR = 2.7.
(7.3)

For test 3, we increase the difference of initial total stress to σxL − σxR = −1400. As

shown in Fig. 6, severe non-physical oscillations occur in the vicinity of the interface

for the HLL and HLLC approximate Riemann problem solvers, as the discrepancy factor

η goes larger. There are still no non-physical oscillations happening to the linearized

double-shock approximate Riemann solver.

Test 4. Two-dimensional linear elastic solid interaction. A semi-infinite long

aluminum target with a non-dimensional velocity of 2 impacts on a semi-infinite alu-

minum target in two dimensions. The entire non-dimensional computational domain is

a square region x×y ∈ [0, 4]×[0, 2], comprising a rectangle region x×y ∈ [0, 2]×[0, 2] for

the left semi-infinite long aluminum target and a rectangle region x× y ∈ [2, 4]× [0, 2]
for the right semi-infinite aluminum target at the time t = 0. A total of 300 × 200
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Density Deviator stress

Total stress Velocity

Figure 6: Numerical test of η 6= 0.0 (test 3).

Y-direction deviator stress X-direction velocity

Figure 7: Numerical result comparison of different approximate Riemann solvers (test 4).

uniform grid points are distributed in the whole computational domain. The CFL is set

to be 0.4 and the terminal time is 0.001. The non-dimensional initial conditions for the

semi-infinite long aluminum target are

uL = 1.0, vL = 0.0, pL = 1.0, sxL = −1000.0, syL = sxyL = 0.0, ρL = 2.7,

uR = −1.0, vR = 0.0, pR = 1.0, sxR = syR = sxyR = 0.0, ρR = 2.7.
(7.4)
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Density X-direction deviator stress

Y-direction deviator stress X-direction velocity

Y-direction velocity Shear

Pressure

Figure 8: Numerical simulation of a 2 m/s semi-infinite long aluminum target impacting on a semi-infinite
aluminum target in two dimensions (test 4).
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For this two-dimensional numerical test, in order to compare the numerical results

of the HLL and linearized double-shock approximate Riemann solvers clearly, the x-

direction velocity and y-direction deviator stress are displayed in Fig. 7. We can dis-

cover that there are acute non-physical oscillations near the interface for the HLL ap-

proximate Riemann solver. As always, the linearized double-shock approximate Rie-

mann solver eliminates non-physical oscillations in the numerical simulation.

The contours of other physical quantities are shown in Fig. 8 for the present method.

Numerical results demonstrate that the linearized double-shock approximate Riemann

solver can be extended to a two-dimensional augmented linear elastic solid.

8. Conclusions

In this work, augmented energy was constructed by utilizing Hooke’s law and the

first law of thermodynamics for the one-dimensional linear elastic solid. The non-

conservative elastic system can be rewritten into a conservation form with the help

of augmented energy. We analyzed the insightful reason why non-physical oscillations

occur to the popular HLL and HLLC approximate Riemann solvers by defining a discrep-

ancy factor η. A linearized double-shock approximate Riemann solver was proposed to

heal such difficulty successfully. We believe that the discrepancy factor η can also be ex-

tended to analyze the elastic-plastic Riemann solver in future work and the linearized

double-shock approximate Riemann solver can be applied to simulate the elastic-plastic

flows in solid.
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